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Abstract. In this paper we show that, using combinatorial inequalities and
Matrix-Averages, we can generate Musielak–Orlicz spaces, i.e., we prove that
Ave
π

max
1≤i≤n

∣∣xiyiπ(i)

∣∣ ∼ ‖x‖ΣMi
, where the Orlicz functions M1, . . . ,Mn depend

on the matrix (yij)
n
i,j=1. We also provide an approximation result for Musielak–

Orlicz norms which already in the case of Orlicz spaces turned out to be very
useful.

1. Introduction

Understanding the structure of the classical Banach space L1 is an important
goal of Banach Space Theory, since this space naturally appears in various areas
of mathmatics, e.g., Functional Analysis, Harmonic Analysis and Probability
Theory. One way to do this is to study the “local” properties of a given space,
i.e., the finite-dimensional subspaces, which on the other hand bear information
about the “global” structure.

In [3] and [4], Kwapień and Schütt proved several combinatorial and prob-
abilistic inequalities and used them to study invariants of Banach spaces and
finite-dimensional subspaces of L1. Among other things, they considered for
x, y ∈ Rn

Ave
π

max
1≤i≤n

∣∣xiyπ(i)

∣∣ ,
and gave the order of the combinatorial expression in terms of an Orlicz norm
of the vector x. In fact, this is not only a main ingredient to prove that every
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finite-dimensional symmetric subspace of L1 is C-isomorphic to an average of
Orlicz spaces (see [3]), but also to show that an Orlicz space with a 2-concave
Orlicz function is isomorphic to a subspace of L1 (see [7]). Here, we are going to
generalize these results and consider combinatorial Matrix-Averages, i.e.,

Ave
π

max
1≤i≤n

∣∣xiyiπ(i)

∣∣ , (1.1)

with x ∈ Rn, y ∈ Rn×n, and express their order in terms of Musielak–Orlicz
norms. The new approach is to average over matrices instead of just vectors. This
corresponds to the idea of considering random variables that are not necessary
identically distributed. In fact, using this idea one can also generalize the results
from [1] to the case of Musielak–Orlicz spaces. We prove that

C1 ‖x‖ΣM∗
i
≤ Ave

π
max
1≤i≤n

∣∣xiyiπ(i)

∣∣ ≤ C2 ‖x‖ΣM∗
i
,

where C1, C2 > 0 are absolute constants and the conjugate Orlicz functions
M∗

1 , . . . ,M
∗
n depend on y ∈ Rn×n. In Section 4, we also provide the converse

result, i.e., given Orlicz functions M1, . . . ,Mn, we show which matrix y ∈ Rn×n

yields the equivalence of (1.1) to the corresponding Musielak–Orlicz norm ‖·‖ΣM∗
i
.

In the last section we prove an approximation result for Musielak–Orlicz norms.
In applications, a corresponding result for Orlicz norms turned out to be quite
fruitful and simplified calculations (see [1]).

However, these Musielak–Orlicz norms are generalized Orlicz norms in the
sense that one considers a different Orlicz function in each component. Since
one can use the combinatorial results in [3], [4] to study embeddings of Orlicz
and Lorentz spaces into L1 (see [5], [7], [8]), the results we obtain can be seen as
a point of departure to obtain embedding theorems for more general classes of
finite-dimensional Banach spaces into L1, e.g., Musielak–Orlicz spaces. This, on
the other hand, is crucial to extend the understanding of the geometric properties
of L1.

2. Preliminaries

A convex function M : [0,∞)→ [0,∞) with M(0) = 0 and M(t) > 0 for t > 0
is called an Orlicz function. Given an Orlicz function M we define its conjugate
or dual function M∗ by the Legendre-Transform

M∗(x) = sup
t∈[0,∞)

(xt−M(t)).

Again, M∗ is an Orlicz function and M∗∗ = M , which yields that an Orlicz
function M is uniquely determined by the dual function M∗. For instance, taking
M(t) = 1

p
tp, p ≥ 1, the dual function is given by M∗(t) = 1

p∗
tp

∗
with 1

p∗
+ 1

p
= 1.

We define the n-dimensional Orlicz space `nM to be Rn equipped with the norm

‖x‖M = inf

{
ρ > 0 :

n∑
i=1

M

(
|xi|
ρ

)
≤ 1

}
.
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Notice that to each decreasing sequence y1 ≥ . . . ≥ yn > 0 there corresponds an
Orlicz function M := My via

M

(
k∑
i=1

yi

)
=
k

n
, k = 1, . . . , n,

and where the function M is extended linearly between the given values.
LetM1, . . . ,Mn be Orlicz functions. We define the n-dimensional Musielak–Orlicz
space `nΣMi

to be the space Rn equipped with the norm

‖x‖ΣMi
= inf

{
ρ > 0 :

n∑
i=1

Mi

(
|xi|
ρ

)
≤ 1

}
.

These spaces can be considered as generalized Orlicz spaces. One can easily show
[5, Lemma 7.3], using Young’s inequality, that the norm of the dual space (`nΣMi

)∗

is equivalent to

‖x‖ΣM∗
i

= inf

{
ρ > 0 :

n∑
i=1

M∗
i

(
|xi|
ρ

)
≤ 1

}
,

which is the analog result as for the classical Orlicz spaces. To be more precise, we
have ‖·‖ΣM∗

i
≤ ‖·‖(ΣMi)

∗ ≤ 2 ‖·‖ΣM∗
i
. A more detailed and thorough introduction

to Orlicz spaces can be found in [2] and [6].
We will use the notation a ∼ b to express that there exist two positive absolute

constants c1, c2 such that c1a ≤ b ≤ c2a. The letters c, C, C1, C2, . . . will denote
positive absolute constants, whose value may change from line to line. By k,m, n
we will denote natural numbers.

In the following, π is a permutation of {1, . . . , n} and we write Ave
π

to denote

the average over all permutations in the group Sn, i.e., Ave
π

:= 1
n!

∑
π∈Sn

.

We need the following result from [3].

Theorem 2.1. [3, Theorem 1.1] Let n ∈ N and y = (yij)
n
i,j=1 ∈ Rn×n be a real

n× n matrix. Then

1

2n

n∑
k=1

s(k) ≤ Ave
π

max
1≤i≤n

∣∣yiπ(i)

∣∣ ≤ 1

n

n∑
k=1

s(k),

where s(k), k = 1, . . . , n2, is the decreasing rearrangement of |yij|, i, j = 1, . . . , n.

3. Combinatorial Generation of Musielak–Orlicz Spaces

We will prove that a Matrix-Average, in fact, yields a Musielak–Orlicz norm.
Following [3], we start with a structural lemma.

Lemma 3.1. Let y = (yij)
n
i,j=1 ∈ Rn×n be a real n × n matrix with yi1 ≥ . . . ≥

yin > 0 and
∑n

j=1 yij = 1 for all i = 1, . . . , n. Let Mi, i = 1, . . . , n, be convex
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functions with

Mi

(
k∑
j=1

yij

)
=
k

n
, k = 1, . . . , n. (3.1)

Furthermore, let

BΣMi
=

{
x ∈ Rn :

n∑
i=1

Mi(|xi|) ≤ 1

}
and

B = convexhull


(
εi

`i∑
j=1

yij

)n

i=1

:
n∑
i=1

`i ≤ n, εi = ±1, i = 1, . . . , n

 .

Then, we have

B ⊂ BΣMi
⊂ 3B.

Proof. We start with the left inclusion:
We have

n∑
i=1

Mi

(∣∣∣∣∣εi
`i∑
j=1

yij

∣∣∣∣∣
)

=
n∑
i=1

Mi

(
`i∑
j=1

yij

)
=

n∑
i=1

`i
n
≤ 1.

Therefore, B ⊂ BΣMi
.

Now the right inclusion:
W.l.o.g. let

n∑
i=1

Mi(|xi|) = 1,

i.e., x ∈ BΣMi
and x1 ≥ . . . ≥ xn ≥ 0. Furthermore, let J, I ⊂ {1, . . . , n}

indexsets with I ∩ J = ∅ s.t.

x = xJ + xI , xJ , xI ∈ Rn,

where we choose J s.t.

Mi(xi) >
1

n
for all i ∈ J

and I s.t.

Mi(xi) ≤
1

n
for all i ∈ I.

Let |J | = r and thus |I| = n− r. We complete the vectors xJ and xI in the other
components with zeros. We disassemble x in two vectors such that the associated
Orlicz functions Mi are greater 1/n and on the other segment less or equal to
1/n. By our requirement we have

Mi(yi1) =
1

n
for all i = 1, . . . , n.

Therefore, xI ≤ (y11, . . . , yn1), since Mi(xi) ≤ 1
n

= Mi(yi1) for all i ∈ I. We have
(y11, . . . , yn1) ∈ B, which follows immediately from the choice of `i = 1, εi = 1 for
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all i = 1, . . . , n, and therefore finally xI ∈ B. It is left to show that xJ ∈ 2B. For
each i ∈ J there exists a ki ≥ 1 with

ki
n
≤Mi(xi) ≤

ki + 1

n
. (3.2)

Summing up all i ∈ J , we obtain by (3.1) and (3.2)∑
i∈J

ki
n

(3.1)
=
∑
i∈J

Mi

(
ki∑
i=1

yij

)
(3.2)

≤
∑
i∈J

Mi(xi) ≤ 1.

Now, let zJ ∈ Rn be the vector with the entries
∑ki

j=1 yij at the points i ∈ J

and zeros elsewhere. Then, we have zJ ∈ B, because
∑

i∈J ki ≤ n. Let wJ ∈ Rn

be the vector with the entries
∑ki+1

j=1 yij at the points i ∈ J and zeros elsewhere.
We have 2zJ ≥ wJ , because yij is decreasing in j and therefore yiki+1 can be

estimated by
∑ki

j=1 yij. Furthermore, we have for all i ∈ J
ki+1∑
j=1

yij ≥ xi,

since

Mi(xi)
(3.2)

≤ ki + 1

n
= Mi

(
ki+1∑
j=1

yij

)
for all i ∈ J.

Hence, 2zJ ≥ xJ and thus xJ ∈ 2B. Altogether, we obtain

x = xJ + xI ∈ 3B.

�

Note that the condition
∑n

j=1 yij = 1 is just a matter of normalization so

that we have normalized Orlicz functions with Mi(1) = 1, and therefore can be
omitted. In addition, replacing the conditions (3.1) by

M∗
i

(
k∑
j=1

yij

)
=
k

n
, k = 1, . . . , n,

yields the result for the dual balls. However, from this lemma we can deduce that
our combinatorial expression generates a Musielak–Orlicz norm.

Theorem 3.2. Let y = (yij)
n
i,j=1 ∈ Rn×n. Let the assumptions be as in Lemma

3.1. Then, for every x ∈ Rn,

1

6n
‖x‖ΣM∗

i
≤ Ave

π
max
1≤i≤n

∣∣xiyiπ(i)

∣∣ ≤ 2

n
‖x‖ΣM∗

i
,

where Mi, i = 1, . . . , n are given by formula (3.1).

Proof. By Theorem 2.1

1

2n

n∑
k=1

s(k) ≤ Ave
π

max
1≤i≤n

∣∣xiyiπ(i)

∣∣ ≤ 1

n

n∑
k=1

s(k),
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where s(k), k = 1, . . . , n2, is the decreasing rearrangement of |xiyij|, i, j =
1, . . . , n. Rewriting the expression gives

n∑
k=1

s(k) =
n∑
i=1

`i∑
j=1

xiyij =
n∑
i=1

xi

`i∑
j=1

yij,

where `i, i = 1, . . . , n are chosen to maximize the upper sum and satisfy
∑n

i=1 `i ≤
n. We have

n∑
i=1

xi

`i∑
j=1

yij =

〈
x,

(
`i∑
j=1

yij

)n

i=1

〉
.

Now, taking the supremum over all z ∈ BΣMi
instead of the supremum over all

elements of B, and using the fact that by Lemma 3.1 B ⊂ BΣMi
, we get

Ave
π

max
1≤i≤n

∣∣xiyiπ(i)

∣∣ ≤ 1

n
‖x‖(ΣMi)

∗ .

As mentioned above, we have that ‖·‖(ΣMi)
∗ ≤ 2 ‖·‖ΣM∗

i
and hence

Ave
π

max
1≤i≤n

∣∣xiyiπ(i)

∣∣ ≤ 2

n
‖x‖ΣM∗

i
.

Similarly, now using the fact that by Lemma 3.1 1
3
BΣMi

⊂ B and that ‖·‖ΣM∗
i
≤

‖·‖(ΣMi)
∗ , we obtain

Ave
π

max
1≤i≤n

∣∣xiyiπ(i)

∣∣ ≥ 1

6n
‖x‖ΣM∗

i
.

�

If we choose a slightly different normalization as in the beginning, we obtain
the following version of the theorem.

Theorem 3.3. Let y = (yij)
n
i,j=1 be a real n × n matrix with yi1 ≥ . . . ≥ yin,

i = 1, . . . , n. Let Mi, i = 1, . . . , n, be Orlicz functions with

Mi

(
1

n

k∑
j=1

yij

)
=
k

n
, k = 1, . . . , n. (3.3)

Then, for every x ∈ Rn,

1

6
‖x‖ΣM∗

i
≤ Ave

π
max
1≤i≤n

∣∣xiyiπ(i)

∣∣ ≤ 2 ‖x‖ΣM∗
i
.

Again, if we assume

M∗
i

(
1

n

k∑
j=1

yij

)
=
k

n
, k = 1, . . . , n.

instead of condition (3.3), we obtain

Ave
π

max
1≤i≤n

∣∣xiyiπ(i)

∣∣ ∼ ‖x‖ΣMi
.
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4. The Converse Result

We will now prove a converse to Theorem 3.3, i.e., given a Musielak–Orlicz
norm, and therefore Orlicz functions Mi, i = 1, . . . , n, we show how to choose the
matrix y = (yij)

n
i,j=1 to generate the given Musielak–Orlicz-Norm ‖·‖ΣM∗

i
.

Theorem 4.1. Let n ∈ N and let Mi, i = 1, . . . , n, be Orlicz functions. Then

C1 ‖x‖ΣM∗
i
≤ Ave

π
max
1≤i≤n

∣∣∣∣xi · n · (M−1
i

(
π(i)

n

)
−M−1

i

(
π(i)− 1

n

))∣∣∣∣
≤ C2 ‖x‖ΣM∗

i
,

where C1, C2 > 0 are absolute constants.

Proof. Let’s consider an Orlicz function Mi for a fixed i ∈ {1, . . . , n}. We ap-
proximate this function by a function which is affine between the given values
1
n
, 2
n
, . . . , n−1

n
, 1. The appropriate inverse images of the defining values are

M−1
i

(
j

n

)
, j = 1, . . . , n.

Now we choose

yij = M−1
i

(
j

n

)
−M−1

i

(
j − 1

n

)
, j = 1, . . . , n.

The vector (yij)
n
j=1 ∈ Rn generates the Orlicz function Mi in the ’classical sense’.

The matrix y = (yij)
n
i,j=1 fulfills the conditions of Theorem 3.2. Using Theorem

3.2, we finish the proof. �

Notice that using M∗
i , i = 1, . . . , n to define the matrix y = (yij)

n
i,j=1 yields the

Musielak–Orlicz norm ‖·‖ΣMi
.

5. Approximation of Musielak–Orlicz Norms

It turned out to be useful to approximate Orlicz norms by a different norm
and work with this expressions instead (see [1]). We will provide a corresponding
result for Musielak–Orlicz norms.

Let n,N ∈ N with n ≤ N . For a matrix a ∈ Rn×N with ai1 ≥ . . . ≥ aiN > 0,
i = 1, . . . , n, we define a norm on Rn by

‖x‖a = max
n∑

i=1
`i≤N

n∑
i=1

(
`i∑
j=1

aij

)
|xi| , x ∈ Rn.

We will show that this norm is equivalent to a Musielak–Orlicz norm, which
generalizes Lemma 2.4 in [4].

Lemma 5.1. Let n,N ∈ N and n ≤ N . Furthermore, let a ∈ Rn×N such that
ai,1 ≥ . . . ≥ ai,N > 0 and

∑N
j=1 ai,j = 1 for all i = 1, . . . , n. Let Mi, i = 1, . . . , n

be Orlicz functions such that for all m = 1, . . . , N

M∗
i

(
m∑
j=1

ai,j

)
=
m

N
. (5.1)
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Then, for all x ∈ Rn,
1

2
‖x‖a ≤ ‖x‖ΣMi

≤ 2 ‖x‖a .

Proof. We start with the second inequality. Let ||| ·||| be the dual norm of ‖·‖ΣM∗
i
.

Then, for all x ∈ Rn,

‖x‖ΣMi
≤ |||x||| ≤ 2 ‖x‖ΣMi

.

Now, consider x ∈ Rn with x1 ≥ . . . ≥ xn > 0 and
∑n

i=1 M
∗
i (xi) = 1, i.e.,

x ∈ BΣM∗
i
. For each i = 1, . . . , n there exist `i ∈ {1, . . . , N} so that

`i∑
j=1

ai,j ≤ xi ≤
`i+1∑
j=1

ai,j. (5.2)

Since for each i = 1, . . . , n the sequence ai,j is arranged in a decreasing order

xi ≤
`i∑
j=1

ai,j + ai,`i+1 ≤
`i∑
j=1

ai,j + ai,1.

We are going to prove that (ai,1)ni=1 and
(∑`i

j=1 ai,j

)n
i=1

are in (Ba)
∗, because then

x ∈ 2(Ba)
∗ and therefore BΣM∗

i
⊆ 2(Ba)

∗, where we denote by Ba the closed unit
ball with respect to the norm ‖·‖a. We have

(Ba)
∗ = {y ∈ Rn|∀x ∈ Ba : 〈x, y〉 ≤ 1} .

Let y ∈ Ba, i.e.,

max
n∑

i=1
`i≤N

n∑
i=1

(
`i∑
j=1

ai,j

)
|yi| ≤ 1.

Define ˜̀
i = 1 for all i = 1, . . . , n. Then,

∑n
i=1

˜̀
i ≤ N and therefore

〈(ai,1)ni=1, y〉 =
n∑
i=1

 ˜̀
i∑

j=1

ai,j

 yi ≤ max
n∑

i=1
`i≤N

n∑
i=1

(
`i∑
j=1

ai,j

)
|yi| ≤ 1.

Thus, (ai,1)ni=1 ∈ (Ba)
∗. Furthermore, by (5.2)

1 =
n∑
i=1

M∗
i (xi) ≥

n∑
i=1

M∗
i

(
`i∑
j=1

ai,j

)
=

n∑
i=1

`i
N
,

and therefore
n∑
i=1

`i ≤ N.

Hence 〈(
`i∑
j=1

ai,j

)n

i=1

, y

〉
≤ max

n∑
i=1

`i≤N

n∑
i=1

(
`i∑
j=1

ai,j

)
|yi| ≤ 1.
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So we have (
`i∑
j=1

ai,j

)n

i=1

∈ (Ba)
∗,

and thus, BΣM∗
i
⊆ 2(Ba)

∗. Hence,

1

2
‖x‖ΣMi

≤ 1

2
|||x||| ≤ ‖x‖a .

Let us now prove the first inequality. Notice that

(Ba)
∗ = convexhull


(
εi

ki∑
j=1

ai,j

)n

i=1

:
n∑
i=1

ki ≤ N, εi = ±1, i = 1, . . . , n

 .

Hence, from equation (5.1) it follows that

n∑
i=1

M∗
i

(∣∣∣∣∣εi
ki∑
j=1

ai,j

∣∣∣∣∣
)

=
n∑
i=1

ki
N
≤ 1,

since
∑n

i=1 ki ≤ N . Therefore, (Ba)
∗ ⊂ BΣM∗

i
and by duality, B|||·||| = B(ΣM∗

i )∗ ⊂
Ba. Since ||| · ||| ≤ 2 ‖·‖ΣMi

, we obtain for any x ∈ Rn

1

2
‖x‖a ≤ ‖x‖ΣMi

.

Altogether this yields
1

2
‖x‖a ≤ ‖x‖ΣMi

≤ 2 ‖x‖a ,

for all x ∈ Rn. �

Again, the condition
∑N

j=1 ai,j = 1 is just a matter of normalization so we
obtain normalized Orlicz functions and can be omitted.
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