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Abstract. In the paper, we prove the following assertions: (1) If T is an
algebraically quasi-∗-A operator, then T is polaroid. (2) If T or T ∗ is an
algebraically quasi-∗-A operator, then Weyl’s theorem holds for f(T ) for every
f ∈ H(σ(T )). (3) If T ∗ is an algebraically quasi-∗-A operator, then a-Weyl’s
theorem holds for f(T ) for every f ∈ H(σ(T )).

1. Introduction

Let H be an infinite dimensional separable Hilbert space, B(H) and K(H)
denote, respectively, the algebra of all bounded linear operators and the ideal of
compact operators on H. If T ∈ B(H), we shall denote the set of all complex
numbers by C, and henceforth shorten T − λI to T − λ. We write N(T ) and
R(T ) for the null space and range space of T ; α(T ) := dim N(T ); β(T ) := dim
N(T ∗); σ(T ), σa(T ), σp(T ) and π(T ) for the spectrum of T , the approximate
point spectrum of T , the point spectrum of T and the set of poles of the resolvent
of T . Let p = p(T ) be the ascent of T , i.e., the smallest nonnegative integer p
such that N(T p) = N(T p+1), if such an integer does not exist, we put p(T ) =∞.
Analogously, let q = q(T ) be the descent of T , i.e., the smallest nonnegative
integer q such that R(T q) = R(T q+1), and if such an integer does not exist, we
put q(T ) = ∞. It is well known that if p(T ) and q(T ) are both finite then
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p(T ) = q(T ). Moreover, 0 < p(λ−T ) = q(λ−T ) <∞ precisely when λ is a pole
of the resolvent of T , see Heuser [10, Proposition 50.2].

An operator T ∈ B(H) is called Fredholm if it has closed range with finite
dimension null space and its range of finite co-dimension. The index of a Fredholm
operator T ∈ B(H) is given by

i(T ) := α(T )− β(T ).

An operator T ∈ B(H) is called Weyl if it is Fredholm of index zero. An operator
T ∈ B(H) is called Browder if it is Fredholm of finite ascent and descent. The
essential spectrum σe(T ), the Weyl spectrum w(T ) and the Browder spectrum
σb(T ) of T ∈ B(H) are defined in [9, 8]:

σe(T ) : = {λ ∈ C : T − λ is not Fredholm};
w(T ) : = {λ ∈ C : T − λ is not Weyl};
σb(T ) : = {λ ∈ C : T − λ is not Browder}.

Evidently,

σe(T ) ⊆ w(T ) ⊆ σb(T ) = σe(T )
⋃

accσ(T ),

where accK denotes the accumulation points of K ⊆ C.
We consider the sets

Φ+(H) := {T ∈ B(H) : R(T ) is closed and α(T ) <∞};
Φ−(H) := {T ∈ B(H) : R(T ) is closed and α(T ∗) <∞};
Φ−+(H) := {T ∈ B(H) : T ∈ Φ+(H) and i(T ) ≤ 0}.

On the other hand,

σea(T ) := {λ ∈ C : T − λ /∈ Φ−+(H)}
is the essential approximate point spectrum and

σab(T ) := ∩{σa(T +K) : TK = KT and K ∈ K(H)}
is the Browder essential approximate point spectrum.

If we write isoK = K \ accK, then we let

π00(T ) : = {λ ∈ isoσ(T ) : 0 < α(T − λ) <∞}.
πa00(T ) : = {λ ∈ isoσa(T ) : 0 < α(T − λ) <∞}.

We write
σ(T ) \ σb(T ) := p00(T ).

Definition 1.1. Let T ∈ B(H).

(1) Weyl’s theorem holds for T if σ(T ) \ w(T ) = π00(T ).
(2) a-Weyl’s theorem holds for T if σa(T ) \ σea(T ) = πa00(T ).
(3) a-Browder’s theorem holds for T if σea(T ) = σab(T ).

It’s known from [3, 8, 15] that if T ∈ B(H) then we have
a-Weyl’s theorem⇒Weyl’s theorem; a-Weyl’s theorem⇒ a-Browder’s theorem.

Recently, some interesting operators were studied in [13], it was also shown
in [7, 16] that Weyl’s theorem holds for totally ∗-paranormal operators. In this
paper, we extend this result to algebraically quasi-∗-A operators.
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2. Examples

Definition 2.1. Let T ∈ B(H).

(1) An operator T is said to be hyponormal if T ∗T ≥ TT ∗.
(2) An operator T is said to be class ∗-A if |T 2| ≥ |T ∗|2.
(3) An operator T is said to be ∗-paranormal if ||T 2x|| ≥ ||T ∗x||2 for every

unite vector x ∈ H.
(4) An operator T is said to be quasi-∗-A if T ∗|T 2|T ≥ T ∗|T ∗|2T.

We say that T ∈ B(H) is an algebraically quasi-∗-A operator if there exists a
nonconstant complex polynomial p such that p(T ) is a quasi-∗-A operator.

From [6, 17], we have the following implications:
hyponormal ⇒ class ∗-A ⇒ ∗-paranormal;
hyponormal ⇒ class ∗-A ⇒ quasi-∗-A ⇒ algebraically quasi-∗-A.

By computing, we have the following Lemma 2.2.

Lemma 2.2. Let K =
⊕+∞

n=1Hn, where Hn
∼= H. For given positive operators A

and B on H, define the operator TA,B on K as follows:

TA,B =



0 0 0 0 0 0 · · ·
A 0 0 0 0 0 · · ·
0 B 0 0 0 0 · · ·
0 0 B 0 0 0 · · ·
0 0 0 B 0 0 · · ·
0 0 0 0 B 0 · · ·
...

...
...

...
...

...
. . .


.

Then the following assertions hold:

(1) TA,B belongs to hyponormal if and only if B2 ≥ A2.
(2) TA,B belongs to class ∗-A if and only if B2 ≥ A2.
(3) TA,B belongs to quasi-∗-A if and only if AB2A ≥ A4.
(4) TA,B belongs to ∗-paranormal if and only if B4 − 2λA2 + λ2 ≥ 0 for all

λ > 0.

Remark 2.3. It is meaningless to use this characterization for distinguishing
some gaps between hyponormal operators and class ∗-A operators. However, for
∗-paranormal operators, quasi-∗-A operators, TA,B has a very useful characteri-
zation. The following examples show that ∗-paranormal operators and quasi-∗-A
operators are independent.

Example 2.4. A non-class ∗-A, non-∗-paranormal and quasi-∗-A operator.
Take A and B as

A =

(
1 0
0 0

)
B =

(
1 1
1 1

)
.

Then

B2 − A2 =

(
1 2
2 2

)
� 0.

And hence TA,B is a non-class ∗-A operator.
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On the other hand,

A(B2 − A2)A =

(
1 0
0 0

)(
1 2
2 2

)(
1 0
0 0

)
=

(
1 0
0 0

)
≥ 0.

Thus TA,B is a quasi-∗-A operator.
Next we show that TA,B is non-∗-paranormal operator.

B4 − 2λA2 + λ2 =

(
8− 2λ+ λ2 8

8 8 + λ2

)
.

If λ = 1, then

B4 − 2λA2 + λ2 � 0.

Hence TA,B is not a ∗-paranormal operator.

Example 2.5. A non-class ∗-A, non-quasi-∗-A and ∗-paranormal operator.
Take A and B as

A =

(
1 1
1 2

) 1
2

B =

(
1 2
2 8

) 1
4

.

Then

B4 − 2λA2 + λ2 =

(
(1− λ)2 2(1− λ)
2(1− λ) λ2 − 4λ+ 8

)
≥ 0

for every λ > 0. Thus TA,B is a ∗-paranormal operator.
On the other hand,

A(B2 − A2)A =

(
−0.3359 · · · −0.2265 · · ·
−0.2265 · · · 0.8244 · · ·

)
� 0.

Hence TA,B is not a quasi-∗-A operator. Therefore TA,B is not a class ∗-A operator.

The following example provides an operator which is algebraically quasi-∗-A
but not quasi-∗-A operator.

Example 2.6. Let T =

(
I 0
I I

)
∈ B(l2

⊕
l2). Then T is an algebraically

quasi-∗-A but not quasi-∗-A operator.

Since T ∗ =

(
I I
0 I

)
, we have

(T ∗2T 2)
1
2 − TT ∗ =

(
1.1213 . . . −0.2929 . . .
−0.2929 . . . −1.2929 . . .

)
,

then

T ∗((T ∗2T 2)
1
2 − TT ∗)T =

(
−0.7574 . . . −1.5858 . . .
−1.5858 . . . −1.2929 . . .

)
� 0.

Therefore T is not a quasi-∗-A operator.
On the other hand, consider the complex polynomial h(z) = (z − 1)2. Then

h(T ) = 0, and hence T is an algebraically quasi-∗-A operator.
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3. Weyl’s theorem for algebraically quasi-∗-A operators

Before we state main theorems, we need several preliminary results.

Lemma 3.1. [17] If T is a quasi-∗-A operator and T does not have dense range,
then

T =

(
A B
0 0

)
on H = R(T )

⊕
N(T ∗),

Where A = T |R(T ) is the restriction of T to R(T ), and A ∈ class ∗-A.

We say that T has the single valued extension property (abbrev. SVEP) if for
every open set U of C the only analytic solution f : U → H of the equation

(T − λ)f(λ) = 0

for all λ ∈ U is the zero function on U .

Lemma 3.2. If T is an algebraically quasi-∗-A operator, then T has SV EP .

Proof. We first suppose that T is a quasi-∗-A operator. We consider the following
two cases:
Case I: If the range of T is dense, then T is class ∗-A, T has SV EP by [6].
Case Π: If the range of T is not dense, we have

T =

(
T1 T2
0 0

)
on H = R(T )

⊕
N(T ∗).

Suppose (T − z)f(z) = 0. Put f(z) = f1(z)
⊕

f2(z) on H = R(T )
⊕

N(T ∗).
Then we can write(

T1 − z T2
0 −z

)(
f1(z)
f2(z)

)
=

(
(T1 − z)f1(z) + T2f2(z)

−zf2(z)

)
= 0.

Hence f2(z) = 0. Then (T1 − z)f1(z) = 0. Since T1 is class ∗-A, T1 has SV EP
by [6]. Hence f1(z) = 0. Consequently, T has SV EP .

Now suppose that T is an algebraically quasi-∗-A operator. Then p(T ) is a
quasi-∗-A operator for some nonconstant complex polynomial p, and hence it
follows from the first part of the proof that p(T ) has SV EP . Therefore T has
SV EP by [11, Theorem 3.3.9]. �

Lemma 3.3. If T is a quasi-∗-A operator with spectrum σ(T ) ⊆ ∂D, where D
denotes the unite disc, then T is unitary.

Proof. If T is quasi-∗-A operator with spectrum σ(T ) ⊆ ∂D, then T is invertible
and hence class ∗-A. [6, Proposition 2.6] now implies it is unitary. �

Lemma 3.4. If T is a quasi-∗-A operator, and assume that σ(T ) = {λ}, then
T = λI.

Proof. We consider the following two cases:
Case I: if λ = 0, then A = 0 in Lemma 3.1, and so T = 0.
Case Π: if λ 6= 0, then T is invertible and class ∗-A. [6, Theorem 2.9] implies
T = λI. �
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An operator T ∈ B(H) is called polaroid if isoσ(T ) ⊂ π(T ). In general, if
T is polaroid, then it is isoloid, however, the converse isn’t true. Consider the
following example, let T ∈ B(l2) is defined by

T (x1, x2, x3 · · · ) = (
x2
2
,
x3
3
· · · ).

Then T is a compact quasinilpotent operator with α(T ) = 1, thus T is isoloid,
however, since T doesn’t have finite ascent, T is not polaroid. In [6] it is showed
that every ∗-paranormal operator is polaroid, we can prove more.

Lemma 3.5. If T is an algebraically quasi-∗-A operator, then T is polaroid.

Proof. We first show that quasi-∗-A operator is polaroid. Suppose T is a quasi-∗-A
operator. Let λ ∈ isoσ(T ). Using the spectral projection P := 1

2πi

∫
∂D

(µ−T )−1dµ,
where D is a closed disk of center λ which contains no other point of σ(T ). We
can represent T as the direct sum

T =

(
T1 0
0 T2

)
,

where σ(T1) = {λ} and σ(T2) = σ(T ) \ {λ}. Since T1 is a quasi-∗-A operator, it
follows from Lemma 3.4 that T1 − λ = 0, therefore T1 − λ has finite ascent and
descent. On the other hand, since T2 − λ is invertible, clearly it has finite ascent
and descent. Therefore T −λ has finite ascent and descent, and hence λ is a pole
of the resolvent of T , thus λ ∈ isoσ(T ) implies λ ∈ π(T ). Hence T is polaroid.

Next we show that algebraically quasi-∗-A operator is polaroid. If T is an
algebraically quasi-∗-A operator, then p(T ) is quasi-∗-A operator for some non-
constant polynomial p. Hence it follows from the first part of the proof that p(T )
is polaroid. Now apply [5, Lemma 3.3] to conclude that p(T ) polaroid implies T
polaroid. �

Corollary 3.6. If T is an algebraically quasi-∗-A operator, then T is isoloid.

In the following theorem, recall that H(σ(T )) is the space of functions analytic
in an open neighborhood of σ(T ).

Theorem 3.7. Suppose T or T ∗ is an algebraically quasi-∗-A operator. Then
Weyl’s theorem holds for f(T ) for every f ∈ H(σ(T )).

Proof. Suppose that T is an algebraically quasi-∗-A operator. We first show
that Weyl’s theorem holds for T . We use the fact [4, Theorem 2.2] that if T is
polaroid then Weyl’s theorem holds for T if and only if T has SV EP at points
of λ ∈ σ(T ) \w(T ). We have that T is polaroid by Lemma 3.5 and T has SV EP
by Lemma 3.2. Hence T satisfies Weyl’s theorem.

Next we show that Weyl’s theorem holds for f(T ). Since T is isoloid, by [12] we
have σ(f(T )) \ π00(f(T )) = f(σ(T ) \ π00(T )) = f(w(T )), where the last equality
holds since T satisfies Weyl’s theorem. Since T has SV EP , by [1, Corollary 2.6],
we have f(w(T )) = w(f(T )). Therefore we have σ(f(T )) \ π00(f(T )) = w(f(T )).
Hence Weyl’s theorem holds for f(T ).

Suppose that T ∗ is an algebraically quasi-∗-A operator. We first show that
Weyl’s theorem holds for T . Since T ∗ has SV EP and is polaroid, T is polaroid.
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And T ∗ has SV EP implies T ∗ satisfies Browder’s theorem, then T satisfies Brow-
der’s theorem. Therefore Weyl’s theorem holds for T . Since T ∗ has SV EP , by
[1, Corollary 2.6], we have f(w(T )) = w(f(T )). Noting that T is isoloid, as in
the proof of the first part, we have that Weyl’s theorem holds for f(T ). This
completes the proof. �

From the proof of Theorem 3.7, we have that the Weyl spectrum obeys the
spectral mapping theorem for algebraically quasi-∗-A operator.

Corollary 3.8. Suppose T or T ∗ is an algebraically quasi-∗-A operator. Then
for every f ∈ H(σ(T )), we have f(w(T )) = w(f(T )).

Corollary 3.9. Suppose T or T ∗ is an algebraically quasi-∗-A operator. If F
is an operator commuting with T and for which there exists a positive integer n
such that F n has a finite rank, then Weyl’s theorem holds for f(T ) +F for every
f ∈ H(σ(T )).

Proof. Suppose T or T ∗ is an algebraically quasi-∗-A operator. By Lemma 3.5
and Theorem 3.7, we have that T is isoloid and Weyl’s theorem holds for f(T ).
Observe that if T is isoloid then f(T ) is isoloid. The result follows from [13,
Theorem 2.4]. �

Theorem 3.10. Suppose T or T ∗ is an algebraically quasi-∗-A operator. Then
σea(f(T )) = f(σea(T )) for every f ∈ H(σ(T )).

Proof. Let f ∈ H(σ(T )). It suffices to show that f(σea(T )) ⊆ σea(f(T )). Suppose
that λ /∈ σea(f(T )). Then f(T )− λ ∈ Φ−+(H) and

f(T )− λ = (T − λ1) · · · (T − λk)g(T ), (3.1)

where λ1, λ2, · · · , λk ∈ C and g(T ) is invertible. Since the operators on the right
side of (3.1) commute, T − λi ∈ Φ+(H). Suppose T is an algebraically quasi-∗-A
operator. Then i(T − λj) ≤ 0 for each j = 1, 2, · · · , k. Therefore λ /∈ f(σea(T )).

Suppose T ∗ is an algebraically quasi-∗-A operator. It follows by [2, Theorem
2.8] that i(T − λj) ≥ 0 for each j = 1, 2, · · · , k. Since

0 ≤
k∑
j=1

i(T − λj) = i(f(T )− λ) ≤ 0,

T − λj is Weyl for each j = 1, 2, · · · , k. Therefore λ /∈ f(σea(T )), and hence
σea(f(T )) = f(σea(T )). This completes the proof. �

Theorem 3.11. Suppose T ∗ is an algebraically quasi-∗-A operator. Then a-
Weyl’s theorem holds for f(T ) for every f ∈ H(σ(T )).

Proof. Suppose T ∗ is an algebraically quasi-∗-A operator. We first prove that
a-Weyl’s theorem holds for T . Since T ∗ has SV EP and T is polaroid, σa(T ) =

σ(T ) = σ(T ∗), π00(T
∗) = πa00(T ) and σea(T ) = w(T ) = w(T ∗). Since T ∗ satisfies

Weyl’s theorem, T satisfies a-Weyl’s theorem.
Next we prove that a-Weyl’s theorem holds for f(T ) for every f ∈ H(σ(T )).

Let f ∈ H(σ(T )). Since T satisfies a-Weyl’s theorem, we have that a-Browder’s
theorem holds for T . Hence σea(T ) = σab(T ). Since T ∗ is an algebraically
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quasi-∗-A operator, it follows from Theorem 3.10 that σab(f(T )) = f(σab(T )) =
f(σea(T )) = σea(f(T )), and hence a-Browder’s theorem holds for f(T ). We use
the fact [3, Theorem 3.8] that if T satisfies a-Browder’s theorem then a-Weyl’s
theorem holds for T if R(T − λ) is closed for each λ ∈ πa00(T ). Hence it suf-
fices to show that if λ ∈ πa00(f(T )), then R(f(T ) − λ) is closed. Since f(T ∗)
has SVEP, π00(f(T )) = πa00(f(T )), and hence R(f(T ) − λ) is closed for each
λ ∈ πa00(f(T )). �
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