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SQUARE ROOT FOR BACKWARD OPERATOR WEIGHTED
SHIFTS WITH MULTIPLICITY 2
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Communicated by J. A. Ball

Abstract. As is well-known, each positive operator T acting on a Hilbert
space has a positive square root which is realized by means of functional cal-
culus. However, it is not always true that an operator have a square root.
In this paper, by means of Schauder basis theory we obtain that if a back-
ward operator weighted shift T with multiplicity 2 is not strongly irreducible,
then there exists a backward shift operator B (maybe unbounded) such that
T = B2. Furthermore, the backward operator weighted shifts in the sense of
Cowen-Douglas are also considered.

1. Introduction and preliminaries

As is well-known, functional calculus is a fundamental tool in operator theory,
and people obtain many beautiful results by means of it. A natural and simple
question is ”Given an operator, does it have a square root?” Although the answer
is negative in general, by restricting the class of operators, we may obtain positive
results. In this paper, we will consider strongly reducible backward operator
weighted shifts, and give a square root for it by means of Schauder basis theory.

First, let us introduce some fundamental notations and results.
Let H be a complex separable Hilbert space and L(H) denote the collection of

bounded linear operators on H.
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Let S be a backward operator weighted shift with multiplicity 2. Its weights
{Wk}∞k=1 are a sequence of invertible linear operators on C2. We can denote S as
a matrix

S =


0 W1 0 . . .
0 0 W2 . . .
0 0 0 . . .
...

...
...

. . .


C2

C2

C2

...

.

Furthermore, denote M0 = I,Mk = W1W2 · · ·Wk and A(S) = A′(S)|ker(S).

Definition 1.1. Let T ∈ L(H). Then T is called strongly irreducible, if there
does not exist a nontrivial idempotent operator commuting with T . The class of
strongly irreducible operators is denoted by S(I).

From C. L. Jiang and J. X. Li [4], one can see the following conclusion.

Lemma 1.2. Let S be the backward operator weighted shift with weights {Wk}∞k=1.
Then the following are equivalent:

(1) S /∈ (SI),
(2) there exists a nontrival idempotent operator P0 such that sup

k
{‖M−1

k P0Mk‖} <
∞.

Let {en}∞n=1 be an orthonormal basis of H. Then for each vector f in H, one

can write f =
∞∑
n=1

〈f, en〉en, where 〈·, ·〉 denotes the inner product on H.

Furthermore, for a sequence of vectors {fm}∞m=1 in H, write

Ff =

f11 f12 · · ·
f21 f22 · · ·
...

...
. . .


where the entries fnm is the n-th coordinate of vector fm. We always use G∗f to
denote a left inverse of Ff whenever the left inverse exists. Notice that Ff and
G∗f may be unbounded operators.

Definition 1.3. A sequence of vectors {fm}∞m=1 in H is said to be quasinormed,
if there exist constants K1 and K2 such that for all m, 0 < K1 ≤ ‖fm‖ ≤ K2.

Definition 1.4. A sequence of vectors {fm}∞m=1 in H is said to be a Schauder
basis for H if every x ∈ H has an unique norm-convergent expansion

x =
∞∑
m=1

cmfm.

The following results about unconditional basis will be used in this article. One
can see [6], [2] and [3] for details respectively.

Lemma 1.5 ([6]). {fm}∞m=1 is an unconditional basis if and only if for any se-
quence of nonzero complex numbers {λm}, {λmfm}∞m=1 is an unconditional basis.

Lemma 1.6 ([2]). Let {fm}∞m=1 be an unconditional basis and let T be an invert-
ible operator. Then TFf generate an unconditional basis, i.e. {TFf (en)}∞n=1 is
an unconditional basis.
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Lemma 1.7 ([3]). {fm}∞m=1 is a quasinormed unconditional basis if and only if
{fm}∞m=1 is a Riesz basis, if and only if Ff is bounded and invertible.

2. Square root and Schauder basis

Proposition 2.1. Let {fm}∞m=1 be a sequence of vectors in H. Let {en}∞n=1 be an
orthonormal basis of H, and let Ff be the matrix defined as above. If

Ff =


A1 0 0 . . .
0 A2 0 . . .
0 0 A3 . . .
...

...
...

. . .

,
where Ak =

[
ak bk
0 ck

]
is invertible, then the following conditions are equivalent

(1) {fm}∞m=1 is a Schauder basis.

(2) sup
k
|bk
ck
| = K <∞.

(3) {fm}∞m=1 is an unconditional basis.

Proof. (1)⇒ (2). Suppose that {| bk
ck
|}∞k=1 is infinite. Then there is a subsequence

ki such that
∞∑
i=1

| cki
bki
|2 <∞. Let x = −

∞∑
i=1

cki
bki
e2ki . Then x ∈ H. Notice that x has

an unique expansion

x =
∞∑
i=1

(
1

aki
f2ki−1 −

1

bki
f2ki),

since f2k−1 = ake2k−1 and f2k = bke2k−1 + cke2k. However, this expansion is not
convergent in the norm topology since ‖ 1

aki
f2ki−1‖ = 1. It is a contradiction to

{fm}∞m=1 being a Schauder basis.
(2) ⇒ (3). If sup

k
| bk
ck
| = K <∞, we can choose a sequence of nonzero complex

numbers {λm}, such that f ′m = λmfm,

Ff ′ ==


A′1 0 0 . . .
0 A′2 0 . . .
0 0 A′3 . . .
...

...
...

. . .

,
where A′k =

[
1 bk

ck
0 1

]
. Since Ff ′ is the matrix representation of an invertible

bounded linear operator, {f ′m}∞m=1 is an unconditional basis and hence {fm}∞m=1

is an unconditional basis by Lemma 1.5.
(3) ⇒ (1). Follows immediately from the definitions of Schauder and uncondi-

tional bases. �

Before introduce our main result, notice that there exists an unbounded opera-
tor densely defined whose square is bounded. For instance, let T be an unbounded
operator defined by T (e1) = 0, T (e2n) = 1

2n
e2n−1 and T (e2n+1) = 2ne2n for n ≥ 1.
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Then T 2(e1) = T 2(e2) = 0 whereas T 2(e2n) = (1− 1
2n

)e2n−2 and T 2(e2n+1) = e2n−1,
that implies T 2 is bounded.

We always denote the backward shift on {en}∞n=1 by Bs, i.e., Bs(e1) = 0 and
Bs(en) = en−1 for n > 1.

Theorem 2.2. Let S be the backward operator weighted shift of multiplicity 2
with weights {Wk}∞k=1. Then the three following conditions are equivalent:

(1) S /∈ (SI).
(2) There exists an unconditional basis {fm}∞m=1 such that S = B2, where B is

the backward shift on {fm}∞m=1. In other words, S = FfB
2
sG
∗
f .

(3) There exists a backward weighted shift operator BΛ on {en}∞n=1, which may
be unbounded, such that S is similar to B2

Λ.

Proof. (1) ⇒ (2).
Step 1. Suppose each Wk is upper triangular. By Lemma 1.2, there exists a

nontrival idempotent operator P0 such that sup
k
{‖M−1

k P0Mk‖} <∞. Notice that

nontrival idempotent operators on C2 have matrices either of the form

[
1 β
0 0

]
or

[
0 β
0 1

]
. Denote Mk =

[
mk1 mk2

0 mk3

]
.

Case 1. If P0 =

[
1 β
0 0

]
, then

M−1
k P0Mk =

[ 1
mk1

− mk2

mk1mk3

0 1
mk3

] [
1 β
0 0

] [
mk1 mk2

0 mk3

]
=

[
1 mk2+βmk3

mk1

0 0

]
,

Thus sup
k
{|mk2+βmk3

mk1
|} <∞. Let D =

[
1 −β
0 1

]
. Now for k = 0, 1, 2, . . ., define

Ak+1 = M−1
k D =

[
1

mk1
−mk2+βmk3

mk1mk3

0 1
mk3

]
.

Let {fm}∞m=1 be a sequence of vectors in H such that

Ff =


A1 0 0 . . .
0 A2 0 . . .
0 0 A3 . . .
...

...
...

. . .

,
Since

sup
k
{|(−mk2 + βmk3

mk1mk3

)/(
1

mk3

)|} = sup
k
{|mk2 + βmk3

mk1

|} <∞,

we have {fm}∞m=1 is an unconditional basis by Proposition 2.1.
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In addition,

FfB
2G∗f =


A1 0 0 . . .
0 A2 0 . . .
0 0 A3 . . .
...

...
...

. . .




0 0 1 0 . . .
0 0 0 1 . . .
0 0 0 0 . . .
...

...
...

...
. . .



A−1

1 0 0 . . .
0 A−1

2 0 . . .
0 0 A−1

3 . . .
...

...
...

. . .



=


0 M−1

0 M1 0 0 . . .
0 0 M−1

1 M2 0 . . .
0 0 0 M−1

2 M3 . . .
0 0 0 0 . . .
...

...
...

...
. . .

 =


0 W1 0 0 . . .
0 0 W2 0 . . .
0 0 0 W3 . . .
0 0 0 0 . . .
...

...
...

...
. . .

 .

Therefore, S = B2, where B is the backward shift on {fm}∞m=1.

Case 2. If P0 =

[
0 β
0 1

]
, then

M−1
k P0Mk =

[ 1
mk1

− mk2

mk1mk3

0 1
mk3

] [
0 β
0 1

] [
mk1 mk2

0 mk3

]
=

[
0 βmk3−mk2

mk1

0 1

]
,

Thus sup
k
{|βmk3−mk2

mk1
|} < ∞. Let D =

[
1 β
0 1

]
. Now for k = 0, 1, 2, . . ., define

Ak+1 = M−1
k D =

[
1

mk1

βmk3−mk2

mk1mk3

0 1
mk3

]
.

Let {fm}∞m=1 be a sequence of vectors in H such that

Ff =


A1 0 0 . . .
0 A2 0 . . .
0 0 A3 . . .
...

...
...

. . .

,
Since

sup
k
{|(βmk3 −mk2

mk1mk3

)/(
1

mk3

)|} = sup
k
{|βmk3 −mk2

mk1

|} <∞,

we have {fm}∞m=1 is an unconditional basis by Proposition 2.1.
In addition,

FfB
2G∗f =


A1 0 0 . . .
0 A2 0 . . .
0 0 A3 . . .
...

...
...

. . .




0 0 1 0 . . .
0 0 0 1 . . .
0 0 0 0 . . .
...

...
...

...
. . .



A−1

1 0 0 . . .
0 A−1

2 0 . . .
0 0 A−1

3 . . .
...

...
...

. . .



=


0 M−1

0 M1 0 0 . . .
0 0 M−1

1 M2 0 . . .
0 0 0 M−1

2 M3 . . .
0 0 0 0 . . .
...

...
...

...
. . .

 =


0 W1 0 0 . . .
0 0 W2 0 . . .
0 0 0 W3 . . .
0 0 0 0 . . .
...

...
...

...
. . .

 .

Therefore, S = B2, where B is the backward shift on {fm}∞m=1.
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Step 2. For S, there exists an unitary operator

U =


U1 0 0 . . .
0 U2 0 . . .
0 0 U3 . . .
...

...
...

. . .


such that UkWkU

−1
k+1 is upper triangular for each k = 1, 2, . . .. Let T = USU−1.

Then

T =


0 U1W1U

−1
2 0 0 . . .

0 0 U2W2U
−1
3 0 . . .

0 0 0 U3W3U
−1
4 . . .

0 0 0 0 . . .
...

...
...

...
. . .

 .

By the conclusion in step 1, there exists an unconditional basis {f ′m}∞m=1 such
that T = B′2, where B′ is the backward shift on {f ′m}∞m=1. Now define {fm}∞m=1

such that Ff = U−1Ff ′ . According to Lemma 1.6, {fm}∞m=1 is an unconditional
basis. Since T = USU−1 = Ff ′B

2
sG
∗
f ′ , S = U−1Ff ′B

2
sG
∗
f ′U = FfB

2
sG
∗
f and hence

the unconditional basis {fm}∞m=1 is required.
(2) ⇒ (3). Let

J =


‖f1‖ 0 0 . . .

0 ‖f2‖ 0 . . .
0 0 ‖f3‖ . . .
...

...
...

. . .


e1

e2

e3
...

,

J∗ =


‖f1‖−1 0 0 . . .

0 ‖f2‖−1 0 . . .
0 0 ‖f3‖−1 . . .
...

...
...

. . .


e1

e2

e3
...

,

and let F̃ = FfJ
∗. There exists a backward weighted shift operator BΛ such that

B2
Λ = JB2

sJ
∗ =


0 0 ‖f1‖

‖f3‖ 0 0 . . .

0 0 0 ‖f2‖
‖f4‖ 0 . . .

0 0 0 0 ‖f3‖
‖f5‖ . . .

...
...

...
...

...
. . .


e1

e2

e3
...

. (2.1)

For instance, we can choose

BΛ =



0 1 0 0 0 0 . . .

0 0 ‖f1‖
‖f3‖ 0 0 0 . . .

0 0 0 ‖f2‖‖f3‖
‖f1‖‖f4‖ 0 0 . . .

0 0 0 0 ‖f1‖‖f4‖
‖f2‖‖f5‖ 0 . . .

0 0 0 0 0 ‖f2‖‖f5‖
‖f1‖‖f6‖ . . .

...
...

...
...

...
...

. . .



e1

e2

e3

e4

e5
...

. (2.2)
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Then

S = FfB
2
sG
∗
f = FfJ

∗B2
ΛJG

∗
f .

By Lemma 1.7, F̃ is an invertible operator and consequently S = F̃B2
ΛF̃
−1, i.e.

S is similar to B2
Λ.

(3) ⇒ (1). Let

P =


1 0 0 0 . . .
0 0 0 0 . . .
0 0 1 0 . . .
0 0 0 0 . . .
...

...
...

...
. . .


e1

e2

e3

e4
...

,

then PB2
Λ = B2

ΛP and hence B2
Λ is strongly reducible. Since strong reducibility

is similar invariant, S /∈ (SI). �

Proposition 2.3. Let S be the backward operator weighted shift of multiplicity 2
with weights

Wk =

[
1 wk
0 1

]
, for k = 1, 2, · · · ,

and let {
∑n

k=1 wk}∞n=1 be bounded. Then S is similar to B2
s .

Proof. Let I2 be the identity 2× 2 matrix acting on C2. Thus

S =


0 W1 0 . . .
0 0 W2 . . .
0 0 0 . . .
...

...
...

. . .


and

B2
s =


0 I2 0 . . .
0 0 I2 . . .
0 0 0 . . .
...

...
...

. . .


Now choose invertible 2× 2 matrices

A1 = I2 and An = W1 . . .Wn−1 =

[
1
∑n−1

k=1 wk
0 1

]
for n ≥ 2.

Let

A =


A1 0 0 . . .
0 A2 0 . . .
0 0 A3 . . .
...

...
...

. . .


Since {

∑n
k=1 wk}∞n=1 is bounded, then A is an invertible bounded linear operator

and it is easy to see ASA−1 = B2
s . �
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3. Square root in the sense of Cowen-Douglas

Now let us consider the operator weighted shift Cowen-Douglas operators. The
definition given by Cowen and Douglas [1] is well known as follows.

Definition 3.1. For Ω a connected open subset of C and n a positive integer, let
Bn(Ω) denotes the operators T in L(H) which satisfy:

(a) Ω ⊆ σ(T ) = {ω ∈ C : T − ω not invertible};
(b) ran(T − ω) = H for ω in Ω;
(c)
∨
kerω∈Ω(T − ω) = H; and

(d) dim ker(T − ω) = n for ω in Ω.

JueXian Li et. al. gave an sufficient and necessary condition for operator
weighted shift Cowen-Douglas operators in [5].

Lemma 3.2. Let n ≥ 1 and let S be a backward operator weighted shift of mul-
tiplicity n with weights {Wk}∞k=1. Then S ∈ Bn(Ω) if and only if

sup
k
{‖Wk‖, ‖W−1

k ‖} <∞.

Proposition 3.3. Let S ∈ B2(Ω) be a backward operator weighted shift of multi-
plicity 2 with weights {Wk}∞k=1. Then the two following conditions are equivalent:

(1) S /∈ (SI).
(2) There exists a backward weighted shift operator BΛ ∈ B1(Ω) such that S is

similar to BsBΛ.

Proof. (2) ⇒ (1) is similar to the last part in the proof of Theorem 2.2.
(1)⇒ (2). Let S /∈ (SI), then S is similar to B2

Λ, where BΛ is defined by (2.2).
Set

B̃Λ =


0 1 0 0 0 . . .

0 0 ‖f1‖
‖f3‖ 0 0 . . .

0 0 0 ‖f2‖
‖f4‖ 0 . . .

0 0 0 0 ‖f3‖
‖f5‖ . . .

...
...

...
...

...
. . .


e1

e2

e3

e4
...

,

then B2
Λ = BsB̃Λ. It suffices to prove that B̃Λ belongs to B1(Ω). Since JB2

sJ
∗ in

(2.1) belongs to B2(Ω), then according to Lemma 3.2, there exist constants K1

and K2 such that 0 < K1 <
‖fn‖
‖fn+2‖ < K2 for each n ≥ 1. Then B̃Λ belongs to

B1(Ω) by Lemma 3.2. �

Let Sd ∈ B2(Ω) be a backward operator weighted shift of multiplicity 2 with

weights {Wk}∞k=1, whereWk =

[
wk1 0
0 wk2

]
. DenoteMk =

k∏
i=1

Wi =

[
mk1 0

0 mk2

]
.

One can write

Sd =

[
T1 0
0 T2

]
H1

H2
,
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where H1 and H2 are subspaces with orthonormal basis {e2k−1}∞k=1 and {e2k}∞k=1

respectively, and

T1 =


0 w11 0 0 . . .
0 0 w21 0 . . .
0 0 0 w31 . . .
...

...
...

...
. . .

, T2 =


0 w12 0 0 . . .
0 0 w22 0 . . .
0 0 0 w32 . . .
...

...
...

...
. . .

.
We shall use the following theorem and give the proof in appendix.

Theorem 3.4. Let S and S ′ be two backward operator weighted shifts of mul-
tiplicity r with weights {Wk}∞k=1 and {W ′

k}∞k=1 respectively. Then S and S ′ are
similar if and only if there exist an invertible r × r matrix D and a constant C
such that

sup
k
{‖M−1

k DM ′
k‖, ‖M ′−1

k D−1Mk‖} ≤ C.

The following two lemmas are special cases of the above theorem.

Lemma 3.5. Let B and B′ be two backward weighted shift operators with weighted

sequences {λk}∞k=1 and {λ′k}∞k=1 respectively. Denote βk =
k∏
i=1

λi and β′k =
k∏
i=1

λ′i.

Then B and B′ are similar if and only if there exist constants C1 and C2 such
that

C1 < inf
k
{|βk
β′k
|} ≤ sup

k
{|βk
β′k
|} < C2.

Lemma 3.6. Let S and S ′ be two backward operator weighted shifts of multiplicity

2 with weights {Wk}∞k=1 and {W ′
k}∞k=1 respectively, where Wk =

[
wk1 0
0 wk2

]
and

W ′
k =

[
w′k1 0
0 w′k2

]
. Denote Mk =

k∏
i=1

Wi =

[
mk1 0

0 mk2

]
and M ′

k =
k∏
i=1

W ′
i =[

m′k1 0
0 m′k2

]
. Then S and S ′ are similar if and only if there exist constants C1

and C2 such that

C1 < inf
k
{|mk1

m′k1

|, |mk2

m′k2

|} ≤ sup
k
{|mk1

m′k1

|, |mk2

m′k2

|} < C2.

Theorem 3.7. Let Sd be defined above. Then the following three conditions are
equivalent:

(1) There exists a backward weighted shift operator BΛ ∈ B1(Ω) such that Sd
is similar to B2

Λ.
(2) There exist constants C1 and C2 such that

0 < C1 < inf
k
{|mk1

mk2

|} ≤ sup
k
{|mk1

mk2

|} < C2.

(3) T1 is similar to T2.

Proof. (1) ⇒ (2). Let BΛ ∈ B1(Ω) be the backward weighted shift operator with
weighted sequence {λn}∞n=1 such that Sd is similar to B2

Λ, which is a backward
operator weighted shift of multiplicity 2 with weights {W ′

k}∞k=1, where W ′
k =
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λ2k−1λ2k, 0

0, λ2kλ2k+1

]
. Then m′k1 = β2k and m′k2 = λ2k+1

λ1
β2k. Consequently,

by Lemma 3.6, there exist constants C ′1 and C ′2 such that

C ′1 < inf
k
{|mk1

m′k1

|, |mk2

m′k2

|} ≤ sup
k
{|mk1

m′k1

|, |mk2

m′k2

|} < C ′2,

then there exist constants C1 and C2 such that

C1 < inf
k
{|mk1

β2k

|, |mk2

β2k

|} ≤ sup
k
{|mk1

β2k

|, |mk2

β2k

|} < C2.

Therefore,

C1C2
−1 < inf

k
{|mk1

mk2

|} ≤ sup
k
{|mk1

mk2

|} < C2C1
−1.

(2) ⇒ (3). It is obtained immediately by Lemma 3.5.
(3) ⇒ (1). Since T1 is similar to T2, then Sd is similar to S ′d = T1 ⊕ T1. Notice

S ′d =


0 0 w11 0 0 0 . . .
0 0 0 w11 0 0 . . .
0 0 0 0 w21 0 . . .
0 0 0 0 0 w21 . . .
...

...
...

...
...

...
. . .

.
Let

BΛ =


0 1 0 0 0 . . .
0 0 w11 0 0 . . .
0 0 0 1 0 . . .
0 0 0 0 w21 . . .
...

...
...

...
...

. . .

.
Then BΛ ∈ B1(Ω) and B2

Λ = S ′d, i.e., Sd is similar to B2
Λ. �

Remark 3.8. If Sd ∈ B2(Ω) is a backward operator weighted shift of multiplicity

2 with weights Wk =

[
1 0
0 2

]
, k = 1, 2, · · · , then by Theorem 2.2, there exists

a backward weighted shift operator BΛ such that Sd ∼ B2
Λ. But BΛ is not a

Cowen-Douglas operator from Theorem 3.7.

4. Appendix: the proof of Theorem 3.4

The proof of Theorem 3.4. ”⇐ ”. Let

A =


M−1

0 DM ′
0 0 0 . . .

0 M−1
1 DM ′

1 0 . . .
0 0 M−1

2 DM ′
2 . . .

...
...

...
. . .

.
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Then A is an invertible bounded linear operator and

SA =


0 M−1

0 DM ′
1 0 0 . . .

0 0 M−1
1 DM ′

2 0 . . .
0 0 0 M−1

2 DM ′
3 . . .

0 0 0 0 . . .
...

...
...

...
. . .

 = AS ′.

Thus S and S ′ are similar.
”⇒ ” Suppose S and S ′ are similar. Then there exists an invertible bounded

linear operator A such that SA = AS ′. Moreover, A−1S = S ′A−1. Write

A =


A11 A12 . . . A1n . . .
A21 A22 . . . A2n . . .

...
...

...
...

...
Am1 Am2 . . . Amn . . .

...
...

...
...

...

, B = A−1 =


B11 B12 . . . B1n . . .
B21 B22 . . . B2n . . .

...
...

...
...

...
Bm1 Bm2 . . . Bmn . . .

...
...

...
...

...

,
where Aij and Bij are r × r matrices for every i, j ∈ N. Since

SA =


W1A21 W1A22 . . . W1A2n . . .
W2A31 W2A32 . . . W2A3n . . .

...
...

...
...

...
Wm−1Am1 Wm−1Am2 . . . Wm−1Amn . . .

...
...

...
...

...



= AS ′ =


0 A11W

′
1 . . . A1n−1W

′
n−1 . . .

0 A21W
′
1 . . . A2n−1W

′
n−1 . . .

...
...

...
...

...
0 Am1W

′
1 . . . Amn−1W

′
n−1 . . .

...
...

...
...

...

,
then

A =


A11 A12 A13 A14 . . .
0 M−1

1 A11M
′
1 M−1

1 A12M
′
1
−1M ′

2 M−1
1 A13M

′
2
−1M ′

3 . . .
0 0 M−1

2 A11M
′
2 M−1

2 A12M
′
1
−1M ′

3 . . .
0 0 0 M−1

3 A11M
′
3 . . .

...
...

...
...

. . .

.
Similarly,

B =


B11 B12 B13 B14 . . .
0 M ′

1
−1B11M1 M ′

1
−1B12M1

−1M2 M ′
1
−1B13M2

−1M3 . . .
0 0 M ′

2
−1B11M2 M ′

2
−1B12M1

−1M3 . . .
0 0 0 M ′

3
−1B11M3 . . .

...
...

...
...

. . .

.
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Notice A and B are bounded and A−1
11 = B11. Consequently, we can take C =

max{‖A‖, ‖A−1‖} and D = A11 which is an invertible r × r matrix, then

sup
k
{‖M−1

k DM ′
k‖, ‖M ′−1

k D−1Mk‖} ≤ C.
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