
Banach J. Math. Anal. 6 (2012), no. 2, 168–179

Banach Journal of Mathematical Analysis

ISSN: 1735-8787 (electronic)

www.emis.de/journals/BJMA/

AN INTERPOLATION THEOREM FOR SUBLINEAR
OPERATORS ON NON-HOMOGENEOUS METRIC MEASURE

SPACES

HAIBO LIN1 AND DONGYONG YANG2∗

Communicated by P. E. Jorgensen

Abstract. Let (X , d, µ) be a metric measure space and satisfy the so-called
upper doubling condition and the geometrically doubling condition. In this
paper, the authors establish an interpolation result that a sublinear operator
which is bounded from the Hardy space H1(µ) to L1,∞(µ) and from L∞(µ) to
the BMO-type space RBMO(µ) is also bounded on Lp(µ) for all p ∈ (1, ∞).
This extension is not completely straightforward and improves the existing
result.

1. Introduction

The classical theory of Calderón-Zygmund operators began with the study of the
convolution operators on R. Later it has played an important role in harmonic
analysis and has been developed into a large branch of analysis on metric spaces.
One of the most interesting cases is the so-called space of homogeneous type
introduced by Coifman and Weiss in [3]; see also [4, 5, 6]. Recall that a metric
space (X , d) equipped with a nonnegative Borel measure µ is called a space of
homogeneous type if (X , d, µ) satisfies the following measure doubling condition
that there exists a positive constant Cµ, depending on µ, such that for any ball
B(x, r) ≡ {y ∈ X : d(x, y) < r} with x ∈ X and r ∈ (0, ∞),

0 < µ(B(x, 2r)) ≤ Cµµ(B(x, r)). (1.1)
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As is known to all, space of homogeneous type is a natural setting for Calderón-
Zygmund operators and function spaces. Typical examples of spaces of homoge-
neous type include Euclidean spaces, Euclidean spaces with weighted measures
satisfying the doubling condition (1.1), Heisenberg groups, connected and simply
connected nilpotent Lie groups.

The measure doubling condition (1.1) above plays a key role in the classical
theory of Calderón-Zygmund operators. However, recently, many classical results
concerning the theory of Calderón-Zygmund operators and function spaces have
been proved still valid if the doubling condition is replaced by a less demanding
condition such as the polynomial growth condition; see, for example [14, 16, 17,
15, 18] and the references therein. In particular, let µ be a non-negative Radon
measure on Rn which only satisfies the polynomial growth condition that there
exist positive constants C and κ ∈ (0, n] such that for all x ∈ Rn and r ∈ (0, ∞),

µ({y ∈ Rn : |x− y| < r}) ≤ Crκ. (1.2)

Such a measure does not need to satisfy the doubling condition (1.1). We mention
that the analysis with non-doubling measures played a striking role in solving the
long-standing open Painlevé’s problem by Tolsa in [18].

Because measures satisfying (1.2) are only different, not more general than mea-
sures satisfying (1.1), the Calderón-Zygmund theory with non-doubling measures
is not in all respects a generalization of the corresponding theory of spaces of ho-
mogeneous type. To include the spaces of homogeneous type and Euclidean spaces
with a non-negative Radon measure satisfying a polynomial growth condition,
Hytönen [8] introduced a new class of metric measure spaces which satisfy the
so-called upper doubling condition and the geometrically doubling condition (see,
respectively, Definitions 2.1 and 2.3 below), and a notion of the regularized BMO
space, namely, RBMO(µ) (see Definition 2.5 below). Since then, more and more
papers focus on this new class of spaces; see, for example [11, 12, 10, 1, 9, 7, 13].

Let (X , d, µ) be a metric measure space satisfying the upper doubling condi-
tion and the geometrically doubling condition. In [10], the atomic Hardy space
H1(µ) (see Definition 2.8 below) was studied and the duality between H1(µ) and
RBMO(µ) of Hytönen was established. Some of results in [10] were also inde-
pendently obtained by Anh and Duong [1] via different approaches. Moreover,
Anh and Duong [1, Theorem 6.4] established an interpolation result that a linear
operator which is bounded from H1(µ) to L1(µ) and from L∞(µ) to RBMO(µ)
is also bounded on Lp(µ) for all p ∈ (1, ∞).

Note that there are also many important operators in harmonic analysis which
are sublinear, such as the Hardy-Littlewood maximal operator, the maximal sin-
gular integral operator, the Marcinkiewicz integral and so on. Then it is natural
to ask if the interpolation theorem in [1] is true for sublinear operator in the
current setting (X , d, µ). The purpose of this paper is to generalize and improve
the interpolation result for linear operators in [1] to sublinear operators, which is
stated as follows.

Theorem 1.1. Let T be a sublinear operator that is bounded from L∞(µ) to
RBMO(µ) and from H1(µ) to L1,∞(µ). Then T extends boundedly to Lp(µ) for
every p ∈ (1, ∞).
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In Section 2, we collect preliminaries we need. In Section 3, for r ∈ (0, 1),
we first show that the maximal function M ]

r(f), which is a variant of the sharp
maximal function M ](f) in [1], is bounded from RBMO(µ) to L∞(µ), then we
establish a weak type estimate between the doubling maximal function N(f) and
M ](f), and we also establish a weak type estimate for Nr(f) with r ∈ (0, 1), a
variant of N(f). Using these results we establish Theorem 1.1. We remark that
the method for the proof of Theorem 1.1 is different from that of [1, Theorem 6.4].
Precisely, in the proof of [1, Theorem 6.4], the fact that the composite operator
M ] ◦ T of the sharp maximal function M ] and a linear operator T is a sublinear
operator was used. However, as far as we know, when T is sublinear, whether the
composite operator M ] ◦ T is a sublinear operator is unclear and so the proof of
[1, Theorem 6.4] is not available.

Throughout this paper, we denote by C a positive constant which is inde-
pendent of the main parameters involved but may vary from line to line. The
subscripts of a constant indicate the parameters it depends on. The notation
f . g means that there exists a constant C > 0 such that f ≤ Cg. Also, for a
µ-measurable set E, χE denotes its characteristic function.

2. Preliminaries

In this section, we will recall some necessary notions and notation and the
Calderón-Zygmund decomposition which was established in [1]. We begin with
the definition of upper doubling space in [8].

Definition 2.1. A metric measure space (X , d, µ) is called upper doubling if µ
is a Borel measure on X and there exist a dominating function λ : X × (0, ∞)→
(0, ∞) and a positive constant Cλ such that for each x ∈ X , r → λ(x, r) is
non-decreasing, and for all x ∈ X and r ∈ (0, ∞),

µ(B(x, r)) ≤ λ(x, r) ≤ Cλλ(x, r/2).

Remark 2.2. (i) Obviously, a space of homogeneous type is a special case of the
upper doubling spaces, where one can take the dominating function λ(x, r) ≡
µ(B(x, r)). Moreover, let µ be a non-negative Radon measure on Rn which only
satisfies the polynomial growth condition (1.2). By taking λ(x, r) ≡ Crκ, we see
that (Rn, | · |, µ) is also an upper doubling measure space.

(ii) It was proved in [10] that there exists a dominating function λ̃ related to λ

satisfying the property that there exists a positive constant Cλ̃ such that λ̃ ≤ λ,
Cλ̃ ≤ Cλ, and for all x, y ∈ X with d(x, y) ≤ r,

λ̃(x, r) ≤ Cλ̃λ̃(y, r). (2.1)

Based on this, in this paper, we always assume that the dominating function λ
also satisfies (2.1).

Throughout the whole paper, we also always assume that the underlying metric
space (X , d) satisfies the following geometrically doubling condition introduced
in [8].
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Definition 2.3. A metric space (X , d) is called geometrically doubling if there
exists some N0 ∈ N+ ≡ {1, 2, · · · } such that for any ball B(x, r) ⊂ X , there
exists a finite ball covering {B(xi, r/2)}i of B(x, r) such that the cardinality of
this covering is at most N0.

The following coefficients δ(B, S) for all balls B and S were introduced in [8]
as analogues of Tolsa’s numbers KQ,R in [16]; see also [10].

Definition 2.4. For all balls B ⊂ S, let

δ(B, S) ≡
∫
(2S)\B

dµ(x)

λ(cB, d(x, cB))
.

where and in that follows, for a ball B ≡ B(cB, rB) and ρ ∈ (0, ∞), ρB ≡
B(cB, ρrB).

In what follows, for each p ∈ (0,∞), Lploc (µ) denotes the set of all functions f
such that |f |p is µ-locally integrable.

Definition 2.5. Let η ∈ (1,∞) and p ∈ (0,∞). A function f ∈ Lploc(µ) is said
to be in the space RBMOp

η(µ) if there exist a non-negative constant C and a
complex number fB for any ball B such that for all balls B,

1

µ(ηB)

∫
B

|f(y)− fB|p dµ(y) ≤ Cp

and that for all balls B ⊂ S,

|fB − fS| ≤ C[1 + δ(B, S)].

Moreover, the RBMOp
η(µ) norm of f is defined to be the minimal constant C as

above and denoted by ‖f‖RBMOpη(µ).

When p = 1, we write RBMO1
η(µ) simply by RBMO(µ), which was introduced

by Hytönen in [8]. Moreover, the spaces RBMOp
η(µ) and RBMO(µ) coincide with

equivalent norms, which is the special case of [7, Corollary 2.1].

Proposition 2.6. Let η ∈ (1,∞) and p ∈ (0,∞). The spaces RBMOp
η(µ) and

RBMO(µ) coincide with equivalent norms.

Remark 2.7. It was proved in [8, Lemma 4.6] that the space RBMO(µ) is inde-
pendent of the choice of η. By this and Proposition 2.6, it is obvious that the
space RBMOp

η(µ) is independent of the choice of η.

We now recall the definition of the atomic Hardy space introduced in [10]; see
also [1].

Definition 2.8. Let ρ ∈ (1,∞) and p ∈ (1, ∞]. A function b ∈ L1(µ) is called a
(p, 1)λ-atomic block if

(i) there exists some ball B such that supp (b) ⊂ B;
(ii)

∫
X b(x) dµ(x) = 0;
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(iii) for j = 1, 2, there exist functions aj supported on balls Bj ⊂ B and
λj ∈ C such that b = λ1a1 + λ2a2, and

‖aj‖Lp(µ) ≤ [µ(ρBj)]
1/p−1[1 + δ(Bj, B)]−1.

Moreover, let
|b|H1, p

atb (µ)
≡ |λ1|+ |λ2|.

A function f ∈ L1(µ) is said to belong to the atomic Hardy space H1, p
atb (µ) if

there exist (p, 1)λ-atomic blocks {bj}j∈N such that f =
∑∞

j=1 bj and

∞∑
j=1

|bj|H1, p
atb (µ)

<∞.

The norm of f in H1, p
atb (µ) is defined by

‖f‖H1, p
atb (µ)

≡ inf

{∑
j

|bj|H1, p
atb (µ)

}
,

where the infimum is taken over all the possible decompositions of f as above.

Remark 2.9. It was proved in [10] that for each p ∈ (1, ∞], the atomic Hardy
space H1, p

atb (µ) is independent of the choice of ρ, and that for all p ∈ (1, ∞),

the spaces H1, p
atb (µ) and H1,∞

atb (µ) coincide with equivalent norms. Thus, in the

following, we denote H1, p
atb (µ) simply by H1(µ).

At the end of this section, we recall the (α, β)-doubling property of some balls
and the Calderón-Zygmund decomposition established by Anh and Duong [1,
Theorem 6.3].

Given α, β ∈ (1, ∞), a ball B ⊂ X is called (α, β)-doubling if µ(αB) ≤ βµ(B).
It was proved in [8] that if a metric measure space (X , d, µ) is upper doubling

and β > C
log2 α
λ ≡ αν , then for every ball B ⊂ X , there exists some j ∈ Z+ ≡

N ∪ {0} such that αjB is (α, β)-doubling. Moreover, let (X , d) be geometrically
doubling, β > αn with n ≡ log2N0 and µ a Borel measure on X which is finite on
bounded sets. Hytönen [8] also showed that for µ-almost every x ∈ X , there exist
arbitrarily small (α, β)-doubling balls centered at x. Furthermore, the radius of
these balls may be chosen to be of the form α−jr for j ∈ N and any preassigned

number r ∈ (0, ∞). Throughout this paper, for any α ∈ (1, ∞) and ball B, B̃α

denotes the smallest (α, βα)-doubling ball of the form αjB with j ∈ Z+, where

βα ≡ max
{
α3n, α3ν

}
+ 30n + 30ν = α3max{n, ν} + 30n + 30ν . (2.2)

Lemma 2.10. Let p ∈ [1, ∞), f ∈ Lp(µ) and ` ∈ (0,∞) (` > `0 if µ(X ) < ∞,
where `0 ≡ γ0‖f‖L1(µ)/µ(X ) and γ0 is any fixed positive constant satisfying that

γ0 > max{C3 log2 6
λ , 63n}, Cλ is as in (2.1) and n = log2N0). Then

(i) there exists an almost disjoint family {6Bj}j of balls such that {Bj}j is
pairwise disjoint,

1

µ(62Bj)

∫
Bj

|f(x)|p dµ(x) >
`p

γ0
for all j,
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1

µ(62ηBj)

∫
ηBj

|f(x)|p dµ(x) ≤ `p

γ0
for all j and all η > 2,

and

|f(x)| ≤ ` for µ− almost every x ∈ X \ (∪j6Bj);

(ii) for each j, let Sj be a (3×62, C
log2(3×62)+1
λ )-doubling ball concentric with Bj

satisfying that rSj > 62rBj , and ωj ≡ χ6Bj/(
∑

k χ6Bk). Then there exists a family
{ϕj}j of functions such that for each j, supp (ϕj) ⊂ Sj, ϕj has a constant sign
on Sj and ∫

X
ϕj(x) dµ(x) =

∫
6Bj

f(x)ωj(x) dµ(x),

∑
j

|ϕj(x)| ≤ γ` for µ− almost every x ∈ X ,

where γ is some positive constant depending only on (X , µ), and there exists a
positive constant C, independent of f , ` and j, such that

‖ϕj‖L∞(µ)µ(Sj) ≤ C

∫
X
|f(x)ωj(x)| dµ(x),

and if p ∈ (1, ∞),{∫
Sj

|ϕj(x)|p dµ(x)

}1/p

[µ(Sj)]
1/p′ ≤ C

`p−1

∫
X
|f(x)ωj(x)|p dµ(x);

(iii) if for any j, choosing Sj in (ii) to be the smallest (3 × 62, C
log2(3×62)+1
λ )-

doubling ball of (3× 62)Bj, then h ≡
∑

j(fωj − ϕj) ∈ H
1, p
atb (µ) and there exists a

positive constant C, independent of f and `, such that

‖h‖H1, p
atb (µ)

≤ C

`p−1
‖f‖pLp(µ).

3. Proof Theorem 1.1

To prove Theorem 1.1, we also need some maximal functions in [8, 1] as follows.
Let f ∈ L1

loc (µ) and x ∈ X . The doubling Hardy-Littlewood maximal function
N(f)(x) and the sharp maximal function M ](f)(x) are respectively defined by
setting,

N(f)(x) ≡ sup
B3x

B(6, β6)−doubling

1

µ(B)

∫
B

|f(y)| dµ(y),

and

M ](f)(x) ≡ sup
B3x

1

µ(5B)

∫
B

|f(y)−mB̃6(f)| dµ(y)

+ sup
x∈B⊂S

B, S(6, β6)−doubling

|mB(f)−mS(f)|
1 + δ(B, S)

,
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where for any f ∈ L1
loc (µ) and ball B, mB(f) means its average over B, namely,

mB(f) ≡ 1
µ(B)

∫
B
f(x) dµ(x). It was showed in [9, Lemma 2.3] that for any p ∈

[1, ∞), Nf is bounded from Lp(µ) to Lp,∞(µ).

Lemma 3.1. Let f ∈ RBMO(µ), r ∈ (0, 1) and M ]
r(f) ≡ [M ](|f |r)]1/r. Then we

have M ]
rf ∈ L∞(µ), and moreover,

‖M ]
rf‖L∞(µ) . ‖f‖RBMO(µ).

Proof. From Remark 2.7, we deduce that for any ball B,∣∣fB̃6 −mB̃6(f)
∣∣ ≤ 1

µ(B̃6)

∫
B̃6

∣∣f(x)− fB̃6

∣∣ dµ(x) . ‖f‖RBMO(µ).

On the other hand, by Proposition 2.6 and Remark 2.7, we see that

‖f‖RBMO(µ) ∼ ‖f‖RBMOr5(µ)
.

From these facts, it follows that

1

µ(5B)

∫
B

∣∣|f(x)|r −mB̃6(|f |r)
∣∣ dµ(x)

≤ 1

µ(5B)

∫
B

[∣∣|f(x)|r −
∣∣mB̃6(f)

∣∣r∣∣+
∣∣∣∣mB̃6(f)

∣∣r −mB̃6(|f |r)
∣∣] dµ(x)

.
1

µ(5B)

∫
B

|f(x)− fB|r dµ(x) +
∣∣fB − fB̃6

∣∣r +
∣∣fB̃6 −mB̃6(f)

∣∣r
+

1

µ(B̃6)

∫
B̃6

∣∣f(x)− fB̃6

∣∣r dµ(x)

.
[
1 + δ

(
B, B̃6

)]r
‖f‖rRBMO(µ) . ‖f‖rRBMO(µ),

where the last inequality follows from the fact that δ(B, B̃6) . 1, which holds by
[10, Lemma 2.1].

On the other hand, for any (6, β6)-doubling balls B ⊂ S,

|mB(|f |r)−mS(|f |r)| ≤ |mB(|f |r)− |fB|r|+ ||fB|r − |fS|r|+ ||fS|r −mS(|f |r)|
≤ mB(|f − fB|r) + |fB − fS|r +mS(|f − fS|r)
. [1 + δ(B, S)]r‖f‖rRBMO(µ).

Combining these two inequalities finishes the proof of Lemma 3.1. �

Lemma 3.2. Let p ∈ [1, ∞) and f ∈ L1
loc(µ) such that

∫
X f(x) dµ(x) = 0 if

µ(X ) <∞. If for any R > 0,

sup
0<`<R

`pµ({x ∈ X : N(f)(x) > `}) <∞,

we then have

sup
`>0

`pµ({x ∈ X : N(f)(x) > `}) . sup
`>0

`pµ
({
x ∈ X : M ](f)(x) > `

})
.
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Proof. Recall the λ-good inequality in [1] that for some fixed constant ν ∈ (0, 1)
and all ε ∈ (0,∞), there exists some δ > 0 such that for any ` > 0,

µ
({
x ∈ X : N(f)(x) > (1 + ε)`, M ](f)(x) ≤ δ`

})
≤ νµ({x ∈ X : N(f)(x) > `}).

From this, it then follows that for R large enough and any ε > 0,

sup
0<`<R

`pµ({x ∈ X : N(f)(x) > `})

≤ sup
0<`<R

[(1 + ε)`]pµ({x ∈ X : N(f)(x) > (1 + ε)`})

≤ ν(1 + ε)p sup
0<`<R

`pµ({x ∈ X : N(f)(x) > `})

+ (1 + ε)p sup
`>0

`pµ
({
x ∈ X : M ](f)(x) > δ`

})
.

Choosing ε small enough such that ν(1 + ε)p < 1, our assumption then implies
that

sup
0<`<R

`pµ({x ∈ X : N(f)(x) > `}) . sup
`>0

`pµ
({
x ∈ X : M ](f)(x) > `

})
.

Letting R→∞ then leads to the conclusion, which completes the proof of Lemma
3.2. �

Lemma 3.3. Let r ∈ (0, 1) and Nr(f) ≡ [N(|f |r)]1/r. Then for any p ∈ [1, ∞),
there exists a positive constant C, depending on r, such that for suitable function
f and any ` > 0,

µ({x ∈ X : Nr(f)(x) > `}) ≤ C`−p sup
τ≥`

τ pµ({x ∈ X : |f(x)| > τ}).

Proof. For each fixed ` > 0 and function f , decompose f as

f(x) = f(x)χ{x∈X : |f(x)|≤`}(x) + f(x)χ{x∈X : |f(x)|>`} ≡ f1(x) + f2(x).

By the boundedness of N form Lp(µ) to Lp,∞(µ), we obtain that

µ({x ∈ X : Nr(f)(x) > 21/r`}) ≤ µ({x ∈ X : N(|f2|r)(x) > `r})

. `−rp
∫
X
|f2(x)|rp dµ(x)

. µ({x ∈ X : |f(x)| > `})

+ `−rp
∫ ∞
`

τ rp−1µ({x ∈ X : |f(x)| > τ}) dτ

. µ({x ∈ X : |f(x)| > `})
+ `−p sup

τ>`
τ pµ({x ∈ X : |f(x)| > τ}),

which implies our desired result. �

Proof of Theorem 1.1. By the Marcinkiewicz interpolation theorem, we only need
to prove that for all f ∈ Lp(µ) with p ∈ (1, ∞) and ` > 0,

µ({x ∈ X : |Tf(x)| > `}) . `−p‖f‖pLp(µ). (3.1)
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We further consider the following two cases.
Case (i) µ(X ) =∞. Let L∞b (µ) be the space of bounded functions with bounded

supports and

L∞b, 0(µ) ≡
{
f ∈ L∞b (µ) :

∫
X
f(x) dµ(x) = 0

}
.

Then in this case, L∞b, 0(µ) is dense in Lp(µ) for all p ∈ (1,∞). Let r ∈ (0, 1) and

Nr(g) ≡ [N(|g|r)]1/r for any g ∈ Lrloc(µ). Notice that |Tf | ≤ Nr(Tf) µ-almost
everywhere on X . Then by a standard density argument, to prove (3.1), it suffices
to prove that for all f ∈ L∞b, 0(µ) and p ∈ (1, ∞),

sup
`>0

`pµ ({x ∈ X : Nr(Tf)(x) > `}) . ‖f‖pLp(µ). (3.2)

For each fixed ` > 0, applying Lemma 2.10, we obtain that f = g + h, where
h is as Lemma 2.10 and g ≡ f − h, such that

‖g‖L∞(µ) . `, h ∈ H1(µ) (3.3)

and
‖h‖H1(µ) . `1−p‖f‖pLp(µ). (3.4)

For each r ∈ (0, 1), define M ]
r(f) ≡ {M ](|f |r)}1/r. Then, (3.3) together with

the boundedness of T from L∞(µ) to RBMO(µ) and the proof of Lemma 3.1
shows that the function M ]

r(Tg) is bounded by a multiple of `. Hence, if c0 is a
sufficiently large constant, we have{

x ∈ X : M ]
r(Tg)(x) > c0`

}
= ∅. (3.5)

On the other hand, since both f and h belong to H1(µ), we see that g ∈ H1(µ)
and

‖g‖H1(µ) ≤ ‖f‖H1(µ) + ‖h‖H1(µ) . ‖f‖H1(µ) + `1−p‖f‖pLp(µ).
By this together with the boundedness of T from H1(µ) to L1,∞(µ) and Lemma
3.3, we have that for any p ∈ (1, ∞) and R > 0,

sup
0<`<R

`pµ ({x ∈ X : Nr(Tg)(x) > `}) . sup
0<`<R

`p−1 sup
τ≥`

τµ({x ∈ X : |Tg(x)| > τ})

<∞.
From this, (3.5), Lemma 3.2 and the fact that Nr ◦ T is quasi-linear, we deduce

that there exists a positive constant C̃ such that

sup
`>0

`pµ
({
x ∈ X : Nr(Tf)(x) > C̃c0`

})
≤ sup

`>0
`pµ ({x ∈ X : Nr(Tg)(x) > c0`})

+ sup
`>0

`pµ ({x ∈ X : Nr(Th)(x) > c0`})

. sup
`>0

`pµ
({
x ∈ X : M ]

r(Tg)(x) > c0`
})

+ sup
`>0

`pµ ({x ∈ X : Nr(Th)(x) > c0`})

. sup
`>0

`pµ ({x ∈ X : Nr(Th)(x) > `}) . (3.6)
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From the boundedness of N from L1(µ) to L1,∞(µ) and the boundedness of T
from H1(µ) to L1,∞(µ), it follows that

µ({x ∈ X : Nr(Th)(x) > `})

≤ µ

({
x ∈ X : N

(
|Th|rχ

{x∈X : |(Th)(x)|>`/2
1
r }

)
>
`r

2

})
. `−r

∫
X

∣∣∣(Th)(x)χ
{x∈X : |(Th)(x)|>`/2

1
r }

(x)
∣∣∣r dµ(x)

. `−rµ
({
x ∈ X : |(Th)(x)| > `/2

1
r

})∫ `/2
1
r

0

sr−1 ds

+ `−r
∫ ∞
`/2

1
r

sr−1µ({x ∈ X : |(Th)(x)| > s}) ds

. µ
({
x ∈ X : |(Th)(x)| > `/2

1
r

})
+

1

`
sup

s≥`/2
1
r

sµ({x ∈ X : |(Th)(x)| > s})

.
‖h‖H1(µ)

`
. `−p‖f‖pLp(µ),

which together with (3.6) yields (3.2).
Case (ii) µ(X ) < ∞. In this case, assume that f ∈ L∞b (µ). Notice that if

` ∈ (0, `0], where `0 is as in Lemma 2.10, then (3.1) holds trivially. Thus, we only
have to consider the case when ` > `0. Let r ∈ (0, 1), Nr(f) be as in Lemma 3.3
and M ]

r as in Case (i). For each fixed ` > `0, applying Lemma 2.10, we obtain
that f = g + h with g and h satisfying (3.3) and (3.4), which together with the
boundedness of T from L∞(µ) to RBMO(µ) and the proof of Lemma 3.1 yields
(3.5) for M ]

r(Tg). We now claim that

F ≡ 1

µ(X )

∫
X
|Tg(x)|r dµ(x) . `r, (3.7)

where the constant depends on µ(X ) and r. In fact, since µ(X ) <∞, we regard
X as a ball. Then g0 ≡ g − 1

µ(X )

∫
X g(x) dµ(x) ∈ H1(µ). On the other hand,

|T1|r ∈ RBMO(µ) because of the fact that T1 ∈ RBMO(µ) and Lemma 3.1.
This together with µ(X ) <∞ implies that

∫
X
|T1(x)|r dµ(x) <∞.
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Then by the boundedness of T from H1(µ) to L1,∞(µ) and (3.3), we have∫
X
|Tg(x)|r dµ(x) ≤

∫
X

{
|Tg0(x)|r +

∣∣∣∣T [ 1

µ(X )

∫
X
g(y) dµ(y)

]
(x)

∣∣∣∣r} dµ(x)

. r

∫ ‖g0‖H1(µ)/µ(X )

0

tr−1µ ({x ∈ X : |Tg0(x)| > t}) dt

+ r

∫ ∞
‖g0‖H1(µ)/µ(X )

tr−1µ ({x ∈ X : |Tg0(x)| > t}) dt+ `r

. µ(X )

∫ ‖g0‖H1(µ)/µ(X )

0

tr−1 dt

+ ‖g0‖H1(µ)

∫ ∞
‖g0‖H1(µ)/µ(X )

tr−2 dt+ `r

. [µ(X )]1−r‖g0‖rH1(µ) + `r . `r,

which implies (3.7).
Observe that

∫
X (|Tg|r − F) dµ(x) = 0 and for any R > 0,

sup
0<`<R

`pµ ({x ∈ X : N(|Tg|r − F)(x) > `}) ≤ Rpµ(X ) <∞.

From this together with Lemma 3.2, M ]
r(F) = 0, (3.7) and an argument similar

to that used in Case (i), we conclude that there exists a positive constant c̃ such
that

sup
`>`0

`pµ ({x ∈ X : Nr(Tf)(x) > c̃c0`})

≤ sup
`>`0

`pµ ({x ∈ X : N(|Tg|r − F)(x) > (c0`)
r})

+ sup
`>`0

`pµ ({x ∈ X : Nr(Th)(x) > c0`})

. sup
`>0

`pµ
({
x ∈ X : M ]

r(Tg)(x) > c0`
})

+ sup
`>0

`pµ ({x ∈ X : Nr(Th)(x) > c0`})

. sup
`>0

`pµ ({x ∈ X : Nr(Th)(x) > `}) . ‖f‖pLp(µ),

where in the first inequality we choose c0 large enough such that F ≤ (c0`)
r. This

completes the proof of Theorem 1.1.
�
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