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Abstract. In this paper, we prove that if a finite disjoint union of translates⋃n
k=1{fk(x− γ)}γ∈Γk

in Lp(Rd) (1 < p <∞) is a p′-Bessel sequence for some
1 < p′ < ∞, then the disjoint union Γ =

⋃n
k=1 Γk has finite upper Beurling

density, and that if
⋃n
k=1{fk(x− γ)}γ∈Γk

is a (Cq)-system with 1/p+ 1/q = 1,
then Γ has infinite upper Beurling density. Thus, no finite disjoint union of
translates in Lp(Rd) can form a p′-Bessel (Cq)-system for any 1 < p′ < ∞.
Furthermore, by using techniques from the geometry of Banach spaces, we
obtain that, for 1 < p ≤ 2, no finite disjoint union of translates in Lp(Rd) can
form an unconditional basis.

1. Introduction

Given 1 < p < ∞ and γ ∈ Rd, we define the translation operator Tγ on
Lp(Rd) by (Tγf)(x) = f(x − γ) for all x ∈ Rd. If Γ ⊂ Rd, then the collection
of translations of f ∈ Lp(Rd) along Γ is defined to be Tp(f,Γ) = {Tγf}γ∈Γ. Our
main focus shall be on the upper Beurling density of such Γ, the disjoint union⋃n
k=1 Γk, given that

⋃n
k=1 Tp(fk,Γk) has some additional structure in Lp(Rd). The

“additional structure” takes two forms:
⋃n
k=1 Tp(fk,Γk) is a p′-Bessel sequence or

is a (Cq)-system.
The nature of Tp(f,Γ) has been studied in a number of papers [21, 2, 10, 19],

mainly using techniques of harmonic analysis. Our techniques will come partially
from the geometry of Banach spaces. Recall that, in 1992, Olson and Zalik [20]
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proved that there do not exist any Riesz bases for L2(R) generated by T2(f,Γ).
Then Christensen [6] conjectured that there are no frames for L2(R) of the form⋃n
k=1 T2(fk,Γk). In 1999, Christensen, Deng and Heil [11] proved this conjecture

by studying density of frames. For more density theorems, please see the research
survey [12]. Recently, Odell, Sari, Schlumprecht and Zheng [18] used techniques
largely from the geometry of Banach spaces to consider the closed subspace of
Lp(R) generated by translates of one element in Lp(R).

In Section 2, we extend the concept of (Cq)-system from Hilbert spaces to
reflexive Banach spaces and give our basic Lemma 3.3 and examples in Lp(Rd).

In section 3, by using techniques in [11, 18], we prove that if
⋃n
k=1 Tp(fk,Γk) in

Lp(Rd) (1 < p <∞) is a p′-Bessel sequence for some 1 < p′ <∞, then the disjoint
union Γ =

⋃n
k=1 Γk has finite upper Beurling density, and that if

⋃n
k=1 Tp(fk,Γk)

is a (Cq)-system with 1/p + 1/q = 1, then Γ has infinite upper Beurling density.
Thus, no collection

⋃n
k=1 Tp(fk,Γk) of pure translates can form a p′-Bessel (Cq)-

system in Lp(Rd) for any 1 < p′ < ∞. This extends the Christensen/Deng/Heil
density result in [11] from classical (Hilbert) frames in L2(Rd) to more general
p′-Bessel (Cq)-systems in Lp(Rd).

In the last section. by using techniques from the geometry of Banach spaces, we
obtain that there is no unconditional basis of Lp(Rd) of the form

⋃n
k=1 Tp(fk,Γk)

for 1 < p ≤ 2. It partially extends the latest work [18] on uniformly separated
translates of one element in Lp(R). The extension is to higher dimensions, to
multiple generating functions, and to completely arbitrary sets of translates.

2. Preliminaries and notation

In 2001, Aldroubi, Sun and Tang [3] introduced the concept of p-frame in
Lp(R), which is a generalization of classical (Hilbert) frames [9, 4, 7] and can be
naturally extended to Banach spaces [8, 5].

Definition 2.1. Let X be a separable Banach space and 1 < p < ∞. A family
{fk}∞k=1 ⊂ X is a p-frame for X∗ if there exist constants A,B > 0 such that

A‖h‖p ≤
∞∑
k=1

|〈h, fk〉|p ≤ B‖h‖p for all h ∈ X∗.

The number A and B are called the lower and upper p-frame bounds. The
sentence {fk}∞k=1 is a p-Bessel sequence if the right-hand side inequality holds.
We say that {fk}∞k=1 is a Bessel sequence if it is a 2-Bessel sequence.

In 2007, S. Nitzan and A. Olevskii introduced the concept of (Cq)-system in
Hilbert spaces [15, 16, 17]. It is a weaker form of the frame-type condition, which
is a relaxed version of this inequality:

A‖f‖2 ≤
∞∑
k=1

|〈f, fk〉|2 for all f ∈ H.

Now we extend this useful definition of (Cq)-system to reflexive Banach spaces.

Definition 2.2. Let X be a separable reflexive Banach space and 1 < q <∞ be
a fixed number. We say that a sequence of {fk}∞k=1 ⊂ X is a (Cq)-system in X
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with constant C > 0 (complete with `q control over the coefficients) if for every
f ∈ X and ε > 0, there exists a linear combination g =

∑
akfk such that

‖f − g‖X < ε and
(∑

|an|q
)1/q

≤ C‖f‖X , (2.1)

where C = C(q) is a positive constant not depending on f .

Remark 2.3. By Proposition 4.2 in Section 4, given p, q ∈ (1,∞) with 1/p+1/q =
1, we have that: if 1 < p ≤ 2, then every seminormalized unconditional basis of
Lp(Rd) is a q-Bessel (C2)-system; if 2 ≤ p < ∞, then every seminormalized
unconditional basis of Lp(Rd) is a Bessel (Cp)-system.

We define some types of sequences in Rd and upper Beurling density [11, 7].

Definition 2.4. Let Γ = {γi}i∈I ⊂ Rd.

(i) A point γ ∈ Rd is an accumulation point for Γ if every open ball in Rd

centered at γ contains infinitely many γk.
(ii) Γ is δ-uniformly separated if δ = infi 6=j |γi − γj| > 0. The number δ is the

separation constant.
(iii) Γ is relatively uniformly separated if it is a finite union of uniformly sep-

arated sequences Γk. That is to say that I can be partitioned into finite
disjoint sets I1, ..., In such that each sequence Γk = {γi}i∈Ik is δk-uniformly
separated for some δk > 0.

For h > 0 and x ∈ Rd, we define cube Qh(x) by

Qh(x) =
d∏
i=1

[xi − h/2, xi + h/2), where x = (x1, ..., xd).

When x = 0, we use Qh instead of Qh(0) for simplicity. Let Γ = {γi}i∈I ⊂ Rd.
For each h > 0, let ν+

Γ (h) denote the largest number of points from Γ that lie in
any cube Qh(x), i.e.,

ν+
Γ (h) = sup

x∈Rd

#(Γ ∩Qh(x)).

The upper Beurling density of Γ is defined by

D+(Γ) = lim sup
h→∞

ν+
Γ (h)

hd
.

Lemma 2.5. Let Γ = {γi}i∈I be a sequence in Rd. Then the following statements
are equivalent.

(i) D+(Γ) <∞.
(ii) Γ is relatively uniformly separated.

(iii) For some (and therefore every) h > 0, there is a natural number Nh such
that each cube Qh(hn), n ∈ Zd, contains at most Nh points from Λ. That
is,

Nh = sup
n∈Zd

#(Λ ∩Qh(hn)) <∞.
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3. Main results

First we need the following basic lemma.

Lemma 3.1. Let Γ be a sequence in Rd, and 1 < p, q < ∞ with 1/p + 1/q = 1.

Assume that f ∈ Lp(Rd), f̃ ∈ Lq(Rd) and 〈f, f̃〉 6= 0. If Γ is not relatively

uniformly separated, then, for any 0 < ε < |〈f, f̃〉|, we have

sup
β∈Rd

#{γ ∈ Γ : |〈Tγf, Tβ f̃〉| > ε} =∞.

Proof. Consider the function x 7→ 〈Txf, f̃〉 for all x ∈ Rd. Since the function is

continuous, for any 0 < ε < |〈f, f̃〉| there is a cube Qh for some h > 0 such that

inf
x∈Qh

|〈Txf, f̃〉| > ε.

Consider an arbitrary N ∈ N, by Lemma 2.5, there is a cube Qh(β) for some
β ∈ Rd, which contains at least N elements from Γ. Then for any γ ∈ Qh(β),
γ − β ∈ Qh, we have

|〈Tγf, Tβ f̃〉| = |〈Tγ−βf, f̃〉| > ε.

It follows that

#
{
γ ∈ Γ : |〈Tγf, Tβ f̃〉| > ε

}
≥ #

(
Γ ∩Qh(β)

)
≥ N.

Since N ∈ N is arbitrary, the conclusion follows. �

For translate of one element, we get the following result.

Proposition 3.2. Let 1 < p <∞, f be a nonzero function in Lp(Rd), and Γ be
a sequence in Rd. If Tp(f,Γ) is a p′-Bessel sequence for some 1 < p′ < ∞, then
Γ is relatively uniformly separated.

Proof. Assume that Γ is not relatively uniformly separated. Then for any N ∈ N,
choose ε such that 0 < ε < ‖f‖p. By Hahn-Banach Theorem, there is an f̃ ∈
Lq(Rd) with ‖f̃‖q = 1 such that 〈f, f̃〉 = ‖f‖p > ε. Then, by Lemma 3.1, there
exists β ∈ Rd such that

#
{
γ ∈ Γ : |〈Tγf, Tβ f̃〉| > ε

}
≥ N.

Let ΓN = {γ ∈ Γ : |〈Tγf, Tβ f̃〉| > ε}. Then, we have∑
γ∈Γ

|〈Tγf, Tβ f̃〉|p
′ ≥

∑
γ∈ΓN

|〈Tγf, Tβ f̃〉|p
′
> Nεp

′
.

Since N ∈ N is arbitrary and ‖Tβ f̃‖q = ‖f̃‖q is fixed, Tp(f,Γ) is not a p′-
Bessel sequence, which leads to a contradiction. Thus Γ is relatively uniformly
separated. �

The following equivalent form extends Lemma 1 in [15] by using a standard
duality argument in Banach spaces.
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Lemma 3.3. Let X be a separable reflexive Banach space and 1 < p, q <∞ with
1/p + 1/q = 1. A system {fn} ⊂ X is a (Cq)-system in X with constant K > 0
if and only if

1

K
‖h‖ ≤

( ∞∑
n=1

|〈h, fn〉|p
)1/p

for all h ∈ X∗.

Proof. For sufficiency, suppose that {fn} is not a (Cq)-system in X with constant
K > 0. Let

A :=
{
g =

∑
anfn :

(∑
|an|q

)1/q ≤ K
}

be the set of finite linear combination and C be the closure of A in X. It is easy to
prove that C is a closed convex subset of X. By assumption, C does not contain
the closed unit ball B of X. That is, there exists an f ∈ X with ‖f‖ ≤ 1,
and f is not in C. By the Hahn-Banach theorem, there is an h ∈ X∗ such that
|〈h, f〉| = 1 and supg∈C |〈h, g〉| < 1. Hence, for sufficiently small ε > 0, we have
supg∈C |〈h, g〉| < 1− ε. This implies for any M ∈ N,( M∑

n=1

|〈h, fn〉|p
)1/p

= sup
(
∑M

n=1 |αn|q)1/q≤1

|
M∑
n=1

〈h, fn〉αn|

=
1

K
sup

(
∑M

n=1 |αn|q)1/q≤K
|〈h,

M∑
n=1

αnfn〉|

=
1

K
sup
g∈C
|〈h, g〉|

<
1

K
(1− ε).

By the arbitrary of M, we have( ∞∑
n=1

|〈h, fn〉|p
)1/p

≤ 1

K
(1− ε) < 1

K
=

1

K
|〈h, f〉| ≤ 1

K
‖h‖,

which leads to a contradiction.
For necessity, let {fn} be a (Cq)-system with constant K > 0 in X. For every

h ∈ X∗ and ε > 0, there exists an f ∈ X, ‖f‖ = 1, and |〈h, f〉| = ‖h‖. Choose a
linear combination g =

∑
anfn such that ‖f − g‖ < ε and(∑

|an|q
)1/q ≤ K‖f‖ = K.

Then

‖h‖ = |〈h, f〉|
≤ |〈h, f − g〉|+ |〈h, g〉|
≤ ε‖h‖+

∑
|an||〈h, fn〉|

≤ ε‖h‖+
(∑

|an|q
)1/q(∑

|〈h, fn〉|p
)1/p

≤ ε‖h‖+K
(∑

|〈h, fn〉|p
)1/p

.
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That is,

1− ε
K
‖h‖ ≤

(∑
|〈h, fn〉|p

)1/p

(h ∈ X∗, ε > 0).

Since ε is arbitrarily small, take ε→ 0, we complete the proof. �

The following result is elementary but very useful.

Lemma 3.4. Let 1 < p < ∞, f ∈ Lp(Rd), and Γ be a sequence in Rd. If Γ
is relatively uniformly separated, then for all cubes Qh(x), for any x ∈ Rd and
h > 0, we have

(i)
∑

γ∈Γ ‖χQh(x)Tγf‖pp <∞. (ii)
∑

γ∈Γ ‖χQh(x)Tγf‖pp → 0, as h→ 0.

Proof. (i) Since Γ is relatively uniformly separated, it is a disjoint finite union of
δk-separated sequences Γk for δk > 0 with k = 1, ..., n. Let δ = min

1≤k≤n
δk > 0 be

the relatively separated constant and choose 0 < ε < δ/
√
d. Because any cube

Qh(x) is bounded, it must be contained in Q2Nε for some N ∈ N. Thus, it is
enough to prove that

∑
γ∈Γ ‖χQ2Nε

Tγf‖pp <∞ for all N ∈ N. For any x ∈ Rd and
h > 0, let

Q+
h (x) = x+

d∏
j=1

[0, h) =
d∏
j=1

[xj, xj + h).

Then

∑
γ∈Γ

‖χQ2Nε
Tγf‖pp =

n∑
k=1

∑
γ∈Γk

‖χQ2Nε
Tγf‖pp

=
n∑
k=1

∑
γ∈Γk

∑
a∈Q2N∩Zd

‖χQ+
ε (εa)Tγf‖

p
p

=
n∑
k=1

∑
a∈Q2N∩Zd

∑
γ∈Γk

‖χQ+
ε (εa)Tγf‖

p
p

=
n∑
k=1

∑
a∈Q2N∩Zd

∑
γ∈Γk

‖χQ+
ε (εa)−γf‖

p
p

=
n∑
k=1

∑
a∈Q2N∩Zd

∑
γ∈Γk

∫
Q+

ε (εa)−γ
|f(x)|p dx.

Since diam
(
Q+
ε (εa)

)
=
√
dε < δ for any a ∈ Q2N ∩ Zd, we get

Q+
ε (εa)− γ = Q+

ε (εa− γ)
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are mutually disjoint for γ ∈ Γk. Thus∑
γ∈Γ

‖χQ2Nε
Tγf‖pp =

n∑
k=1

∑
a∈Q2N∩Zd

∑
γ∈Γk

∫
Q+

ε (εa)−γ
|f(x)|p dx (3.1)

≤
n∑
k=1

∑
a∈Q2N∩Zd

‖f‖pp

= n(2N)d‖f‖pp
< ∞.

(ii) For each k = 1, ..., n, a ∈ Q2N ∩ Zd and fixed x ∈ Rd, we have

χQ+
ε (εa)−Γk

|f(x)|p → 0 as ε→ 0,

here Q+
ε (εa)− Γk =

⋃
γ∈Γk

Q+
ε (εa)− γ. Since

χQ+
ε (εa)−Γk

|f(x)|p ≤ |f(x)|p,
by the Lebesgue Dominated Convergence Theorem, it follows that

lim
ε→0

∑
γ∈Γk

∫
Q+

ε (εa)−γ
|f(x)|p dx = lim

ε→0

∫
Q+

ε (εa)−Γk

|f(x)|p dx

= lim
ε→0Rd

∫
Rd

χQ+
ε (εa)−Γk

|f(x)|p dx

= 0.

Thus by (3.1),

lim
ε→0

∑
γ∈Γ

‖χQ2Nε
Tγf‖pp = lim

ε→0

n∑
k=1

∑
a∈Q2N∩Zd

∑
γ∈Γk

∫
Q+

ε (εa)−γ
|f(x)|p dx

=
n∑
k=1

∑
a∈Q2N∩Zd

lim
ε→0

∑
γ∈Γk

∫
Q+

ε (εa)−γ
|f(x)|p dx

= 0.

Thus, we obtain that if Γ is relatively uniformly separated, then for any N ∈ N,

lim
ε→0

∑
γ∈Γ

‖χQ2Nε
Tγf‖pp = 0.

Since for all x ∈ Rd, the translation Γ − x = {γ − x : γ ∈ Γ} of Γ is relatively
uniformly separated, then

lim
h→0

∑
γ∈Γ

‖χQh(x)Tγf‖pp = lim
h→0

∑
γ∈Γ

‖χQh
Tγ−xf‖pp = lim

h→0

∑
γ∈Γ−x

‖χQh
Tγf‖pp = 0.

Now the conclusion follows. �

Now we prove our main result.

Theorem 3.5. Let 1 < p, q < ∞ with 1/p + 1/q = 1 and n, d ∈ N. For each
k = 1, ..., n, choose a nonzero function fk ∈ Lp(Rd) and an arbitrary sequence
Γk ⊂ Rd. Let Γ be the disjoint union of Γ1, ...,Γn.
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(i) If for some 1 < p′ <∞,
⋃n
k=1 Tp(fk,Γk) is a p′-Bessel sequence, then

D+(Γ) <∞.

(ii) If
⋃n
k=1 Tp(fk,Γk) is a (Cq)-system, then D+(Γ) =∞.

In particular, there is no p′-Bessel (Cq)-system in Lp(Rd) of the form
n⋃
k=1

Tp(fk,Γk).

Proof. (i) Suppose that, for some 1 < p′ < ∞,
⋃n
k=1 Tp(fk,Γk) is a p′-Bessel

sequence. It is equivalent to that each Tp(fk,Γk) is a p′-Bessel sequence for
Lq(Rd). Then, by Proposition 3.2, each Γk is relatively uniformly separated.
By Lemma 2.5, Γk has finite upper Beurling density for each 1 ≤ k ≤ n, i.e.
D+(Γk) < +∞. Then by definition we have

ν+
Γ (h) = sup

x∈Rd

#(Γ ∩Qh(x))

= sup
x∈Rd

#(∪nk=1(Γk ∩Qh(x)))

≤
n∑
k=1

sup
x∈Rd

#(Γk ∩Qh(x))

=
n∑
k=1

ν+
Γk

(h).

It follows that

D+(Γ) = lim sup
h→∞

ν+
Γ (h)

hd

≤ lim sup
h→∞

∑n
k=1 ν

+
Γk

(h)

hd

≤
n∑
k=1

lim sup
h→∞

ν+
Γk

(h)

hd

=
n∑
k=1

D+(Γk)

< +∞. (3.2)

Thus, Γ has finite upper Beurling density.
(ii) Since Γ is the disjoint union of sequences Γk, then, by formula (3.2), we

have D+(Γ) <∞ if and only if D+(Γk) <∞ for each k = 1, ..., n. Assume that Γ
has finite upper Beurling density. By Lemma 2.5, we know that Γk is relatively
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uniformly separated. Now consider the cube Q2h =
∏d

j=1[−h, h) for h > 0. Then

n∑
k=1

∑
γ∈Γk

|〈χQ2h
, Tγfk〉|p =

n∑
k=1

∑
γ∈Γk

|〈χQ2h
, χQ2h

Tγfk〉|p

≤
n∑
k=1

∑
γ∈Γk

‖χQ2h
‖pq‖χQ2h

Tγfk‖pp

≤ ‖χQ2h
‖pq

n∑
k=1

∑
γ∈Γk

‖χQ2h
Tγfk‖pp.

By Lemma 3.4, we have for each k = 1, ..., n,∑
γ∈Γk

‖χQ2h
Tγfk‖pp → 0 as h→ 0.

Thus, by Lemma 3.3, it is easy to see that
⋃
k T (fk,Γk) is not a (Cq)-system.

Thus, we complete the proof. �

Remark 3.6. (i) The result due to Christensen, Deng and Heil [11] is a special
case of Theorem 3.5 for p = p′ = 2.

(ii) As a consequence of Theorem 3.5, for no function g ∈ Lp(Rd) and no con-
stants a, b > 0, p′ > 1 can be a collection of functions of the form {TnaEmbg}n∈Z,m=1,...,M

a p′-Bessel (Cq)-system in Lp(Rd), where the modulation operator Emb on Lp(Rd)
is defined by

(Embf)(x) = e2πimbxf(x).

However, Hilbert frames of the infinite type {TnaEmbg}m,n∈Z exist in L2(R) (every
Hilbert frame is a Bessel (C2)-system). For more information on Gabor frames
and density theorems, please see [7, 12].

4. Nonexistence of unconditional bases of translates in Lp(Rd)

In this section, we will prove that there doesn’t exist any unconditional basis
of the form

⋃n
k=1 Tp(fk,Γk) in Lp(Rd) for 1 < p ≤ 2. We use standard Banach

space notations as may be found in [13, 14]. Background material on bases,
unconditional bases and such can be found there. For the benefit of those less
familiar with these notions we recall some definitions and facts.

A biorthogonal system is a sequence {xn, fn} ⊂ X ×X∗ where fn(xm) = δnm.
{xn} ⊂ X is a (Schauder) basis for X if for all x ∈ X, there exists a unique

sequence of scalars {an} so that x =
∑∞

n=1 anxn. This is equivalent to saying that
all xn 6= 0, span{xn} = X and for some K < ∞, all m < l in N and all scalars
{an}ln=1, ∥∥∥∥∥

m∑
n=1

anxn

∥∥∥∥∥ ≤ K

∥∥∥∥∥
l∑

n=1

anxn

∥∥∥∥∥ .
The smallest such K is the basis constant of {xn}.
{xn} is an unconditional basis for X if for all x ∈ X, there exists a unique

sequence of scalars {an} so that x =
∑∞

n=1 anxn and the convergence is uncondi-
tional. i.e. x =

∑∞
n=1 aπ(n)xπ(n) for all permutations π of N.
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If {xn} is an unconditional basis for the Banach space X and θ = {θn}∞n=1

is a sequence of ±1’s, define Sθ : X → X by Sθ(
∑
αnxn) =

∑
θnαnxn. The

supremum over all such ‖Sθ‖ is finite, and is called the unconditional constant of
the basis [13].

The following lemma is easy to prove, which we leave to interested readers.

Lemma 4.1. Let X be a separable reflexive Banach space with {xn, fn} ⊂ X×X∗.
Assume that {xn, fn} is a biorthogonal system, that is, 〈xn, fm〉 = δnm for n,m ∈
N. Then {xn} is a seminormalized unconditional basis of X if and only if {fn}
is a seminormalized unconditional basis of X∗.

Recall the following known inequalities in Lp-space [1]. For 1 < p < ∞, there
exist constants Ap, Bp > 0 such that, if {fk}∞k=1 is a normalized C-unconditional
basic sequence in Lp(Rd), then

(CAp)
−1
( ∞∑
k=1

|ak|2
)1/2 ≤

∥∥ ∞∑
k=1

akfk
∥∥
p
≤ C

( ∞∑
k=1

|ak|p
)1/p

, if 1 < p ≤ 2, (4.1)

C−1
( ∞∑
k=1

|ak|p
)1/p ≤

∥∥ ∞∑
k=1

akfk
∥∥
p
≤ CBp

( ∞∑
k=1

|ak|2
)1/2

, if 2 ≤ p <∞. (4.2)

Proposition 4.2. Given p, q ∈ (1,∞) with 1/p+ 1/q = 1. Then

(i) If 1 < p ≤ 2, then every seminormalized unconditional basis of Lp(Rd) is
a q-Bessel (C2)-system.

(ii) If 2 ≤ p < ∞, then every seminormalized unconditional basis of Lp(Rd)
is a Bessel (Cp)-system.

Proof. Let {fi} be a seminormalized unconditional basis of Lp(Rd), and {f̃i} ⊂
Lq(Rd) be the biorthogonal functionals of {fi}. Then, by Lemma 4.1, {f̃i} is a

seminormalized C-unconditional basis of Lq(Rd). Let C1 = inf ‖f̃i‖p and C2 =

sup ‖f̃i‖q.
We first prove (i). Since 1 < p ≤ 2, we have 2 ≤ q < ∞. By inequality (4.2),

for all f̃ ∈ Lq(Rd),(∑
|〈f̃ , fi〉|q

)1/q
=

(∑ 1

‖f̃i‖qq
|〈f̃ , ‖f̃i‖qfi〉|q

)1/q

≤ 1

C1

(∑
|〈f̃ , ‖f̃i‖qfi〉|q

)1/q

≤ C

C1

∥∥∥∑〈f̃ , ‖f̃i‖qfi〉 f̃i

‖f̃i‖q

∥∥∥
q

=
C

C1

∥∥∑〈f̃ , fi〉f̃i∥∥q
=

C

C1

‖f̃‖q.
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Moreover, for the lower 2-frame bound, we have(∑
|〈f̃ , fi〉|2

)1/2
=

(∑ 1

‖f̃i‖2
q

|〈f̃ , ‖f̃i‖qfi〉|2
)1/2

≥ 1

C2

(∑
|〈f̃ , ‖f̃i‖qfi〉|2)1/2

≥ 1

BqCC2

∥∥∥∑〈f̃ , ‖f̃i‖qfi〉 f̃i

‖f̃i‖q

∥∥∥
q

=
1

BqCC2

∥∥∑〈f̃ , fi〉f̃i∥∥q
=

1

BqCC2

‖f̃‖2
q.

Now we prove (ii). Similarly, by inequality (4.1), for all f̃ ∈ Lq(Rd), we get
that (∑

|〈f̃ , fi〉|2
)1/2 ≤ CAq

C1

‖f̃‖q.

For the lower q-frame bound, we have(∑
|〈f̃ , fi〉|q

)1/q ≥ 1

CC2

‖f̃‖q.

Thus, we complete the proof. �

The following is the main result in this section.

Theorem 4.3. Let 1 < p ≤ 2 and n, d ∈ N. For each k = 1, · · · , n, choose
a nonzero function fk ∈ Lp(Rd) and an arbitrary sequence Γk ⊂ Rd. Let Γ
be the disjoint union of Γ1, · · · ,Γn. Then

⋃n
k=1 Tp(fk,Γk) can at most be an

unconditional basis for a proper subspace of Lp(Rd).
Equivalently, there is no unconditional basis of Lp(Rd) of the form

⋃n
k=1 Tp(fk,Γk).

Proof. If
⋃n
k=1 Tp(fk,Γk) is an unconditional basis of Lp(Rd), then, by Proposition

4.2, it is a q-Bessel (C2)-system for Lp(Rd). Since 1 < p ≤ 2, 2 ≤ q < ∞ with
1/p + 1/q = 1, we have (

∑
|an|q)1/q ≤ (

∑
|an|2)1/2. Then, by (2.1) in Definition

2.2,
⋃n
k=1 Tp(fk,Γk) is a q-Bessel (Cq)-system for the whole Lp(Rd). It leads to a

contradiction by Theorem 3.5. �
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