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Abstract. In this paper, we introduce a new hybrid projection algorithm
based on the shrinking projection methods for two hemi-relatively nonexpan-
sive mappings. Using the new algorithm, we prove some strong convergence
theorems for finding a common element in the fixed points set of two hemi-
relatively nonexpansive mappings, the solutions set of a variational inequality
and the solutions set of an equilibrium problem in a uniformly convex and
uniformly smooth Banach space. Furthermore, we apply our results to finding
zeros of maximal monotone operators. Our results extend and improve the
recent ones announced by Li [J. Math. Anal. Appl. 295 (2004) 115–126],
Fan [J. Math. Anal. Appl. 337 (2008) 1041–1047], Liu [J. Glob. Optim. 46
(2010) 319–329], Kamraksa and Wangkeeree [J. Appl. Math. Comput. DOI:
10.1007/s12190-010-0427-2] and many others.

1. Introduction

Let E be a Banach space and E∗ be the dual space of E. Let C be a nonempty
closed convex subset of E. Let J be the normalized duality mapping from E into
2E∗

defined by

Jx = {f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2}, ∀x ∈ E,
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where 〈·, ·〉 denotes the generalized duality pairing.

The duality mapping J has the following properties:

(1) If E is smooth, then J is single-valued;

(2) If E is strictly convex, then J is one-to-one;

(3) If E is reflexive, then J is surjective;

(4) If E is uniformly smooth, then J is uniformly norm-to-norm continuous
on each bounded subset of E;

(5) If E∗ is uniformly convex, then J is uniformly continuous on bounded
subsets of E and J is singe-valued and also one-to-one(see [6, 12, 23, 30]).

Let A : C → E∗ be an operator. We consider the following variational inequal-
ity: Find x ∈ C such that

〈Ax, y − x〉 ≥ 0, ∀y ∈ C. (1.1)

A point x0 ∈ C is called a solution of the variational inequality (1.1) if
〈Ax0, y− x0〉 ≥ 0. The solutions set of the variational inequality (1.1) is denoted
by V I(A, C). The variational inequality (1.1) has been intensively considered
due to its various applications in operations research, economic equilibrium and
engineering design. When A has some monotonicity, many iterative methods for
solving the variational inequality (1.1) have been developed (see [1, 2, 3, 4, 7, 8]).

Let C is a nonempty closed and convex subset of a Hilbert space H and PC :
H → C be the metric projection of H onto C, then PC is nonexpansive, that is,

‖PCx− PCy‖ ≤ ‖x− y‖, ∀x, y ∈ H.

This fact actually characterizes Hilbert spaces, however, it is not available in
more general Banach spaces. In this connection, Alber [1] recently introduced a
generalized projection operator ΠC in a Banach space E which is an analogue of
the metric projection in Hilbert spaces.

Recently, applying the generalized projection operator in uniformly convex and
uniformly smooth Banach spaces, Li [16] established the following Mann type
iterative scheme for solving some variational inequalities without assuming the
monotonicity of A in compact subset of Banach spaces.

Theorem 1.1. [16] Let E be a uniformly convex and uniformly smooth Banach
space and C be a compact convex subset of E. Let A : C → E∗ be a continuous
mapping on C such that

〈Ax− ξ, J−1(Jx− (Ax− ξ))〉 ≥ 0, ∀x ∈ C,

where ξ ∈ E∗. For any x0 ∈ C, define the Mann type iteration scheme as follows:

xn+1 = (1− αn)xn + αnΠC(Jxn − (Axn − ξ)), ∀n ≥ 1,

where the sequence {αn} satisfies the following conditions:
(a) 0 ≤ αn ≤ 1 for all n ∈ N ;
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(b) Σ∞n=1αn(1− αn) = ∞.
Then the variational inequality 〈Ax− ξ, y−x〉 ≥ 0 for all y ∈ C (when ξ = 0, the
variational inequality (1.1) has a solution x∗ ∈ C and there exists a subsequence
{ni} ⊂ {n} such that

xni
→ x∗ (i →∞).

In addition, Fan [11] established some existence results of solutions and the
convergence of the Mann type iterative scheme for the variational inequality (1.1)
in a noncompact subset of a Banach space and proved the following theorem.

Theorem 1.2. [11] Let E be a uniformly convex and uniformly smooth Banach
space and C be a compact convex subset of E. Suppose that there exists a positive
number β such that

〈Ax, J−1(Jx− βAx)〉 ≥ 0, ∀x ∈ C,

and J − βA : C → E∗ is compact. if

〈Ax, y〉 ≤ 0, ∀x ∈ C, y ∈ V I(A, C),

then the variational inequality (1.1) has a solution x∗ ∈ C and the sequence {xn}
defined by the following iteration scheme:

xn+1 = (1− αn)xn + αnΠC(Jxn − βAxn), ∀n ≥ 1,

where the sequence {αn} satisfies that 0 < a ≤ αn ≤ b < 1 for all n ≥ 1
(a, b ∈ (0, 1] with a < b), converges strongly a point to x∗ ∈ C.

Motivated by Li [16] and Fan [11], Liu [17] introduced the iterative sequence
for approximating a common element of the fixed points set of a relatively weak
nonexpansive mapping defined by Kohasaka and Takahashi [15] and the solutions
set of the variational inequality in a noncompact subset of Banach spaces without
assuming the compactness of the operator J−βA. More precisely, Liu [17] proved
the following theorems:

Theorem 1.3. [17] Let E be a uniformly convex and uniformly smooth Banach
space and C be a nonempty, closed convex subset of E. Suppose that there exists
a positive number β such that

〈Ax, J−1(Jx− βAx)〉 ≥ 0, ∀x ∈ C, (1.2)

and

〈Ax, y〉 ≤ 0, ∀x ∈ C, y ∈ V I(A, C), (1.3)

then V I(A, C) is closed and convex.

Theorem 1.4. [17] Let E be a uniformly convex and uniformly smooth Banach
space and C be a nonempty closed convex subset of E. Assume that A is a
continuous operator of C into E∗ satisfying the conditions (1.2) and (1.3) and S :
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C → C is a relatively weak nonexpansive mapping with F := F (S)∩ V I(A, C) 6=
∅. Then the sequence {xn} generated by the following iterative scheme:

x0 ∈ C chosen arbitrarily,

zn = ΠC(αnJxn + (1− αn)JSxn),

yn = J−1(δnJxn + (1− δn)JΠC(Jzn − βAzn)),

C0 = {z ∈ C : φ(z, y0) ≤ φ(z, x0)},
Cn = {z ∈ Cn−1 ∩Qn−1 : φ(z, yn) ≤ φ(z, xn)},
Q0 = C,

Qn = {z ∈ Cn−1 ∩Qn−1 : 〈Jx0 − Jxn, xn − z〉 ≥ 0},
xn+1 = ΠCn∩QnJx0, ∀n ≥ 1,

where the sequences {αn} and {δn} satisfy the following conditions:

0 ≤ δn < 1, lim sup
n→∞

δ < 1, 0 < αn < 1, lim inf
n→∞

αn(1− α) > 0.

Then the sequence {xn} converges strongly to a point ΠF (S)∩V I(A,C)Jx0.

Let f : C×C → R be a bifunction. The equilibrium problem for f is as follows:
Find x̂ ∈ C such that

f(x̂, y) ≥ 0, ∀y ∈ C. (1.4)

The set of solutions of the problem (1.4) is denoted by EP (f).

Equilibrium problems, which were introduced in [5] in 1994, have had a great
impact and influence in the development of several branches of pure and applied
sciences. It has been shown that equilibrium problem theory provides a novel and
unified treatment of a wide class of problems which arise in economics, finance,
physics, image reconstruction, ecology, transportation, network, elasticity and
optimization. Numerous problems in physics, optimization and economics reduce
to finding a solution of the problem (1.4). Some methods have been proposed to
solve the equilibrium problem in a Hilbert space. See [5, 10, 20].

Very recently, Kamraksa and Wangkeeree [14] motivated and inspired by Li
[16], Fan [11] and Liu [17] introduce a hybrid projection algorithm based on the
shrinking projection method for two relatively weak nonexpansive mappings, a
variational inequality and an equilibrium problem in Banach spaces as follows:

Theorem 1.5. [14] Let E be a uniformly convex and uniformly smooth Banach
space and C be a nonempty closed convex subset of E. Let f be a bifunction from
C × C to R satisfying (B1) − (B4) in section 2. Assume that A is a continuous
operator of C into E∗ satisfying the conditions (1.2) and (1.3) and S, T : C → C
are two relatively and weakly nonexpansive mappings with F := F (S) ∩ F (T ) ∩
V I(A, C) ∩ EP (f) 6= ∅. Let {xn} be the sequence generated by the following
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iterative scheme:

x0 = x ∈ C chosen arbitrarily,

zn = ΠC(αnJxn + βnJTxn + γnJSxn),

yn = J∗(δnJxn + (1− δn)JΠC(Jzn − βAzn)),

un ∈ C such that f(un, y) + 1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)},
C0 = C,

xn+1 = ΠCn+1Jx, ∀n ≤ 0,

where the sequences {αn}, {βn}, {γn}, {γn} and {λn} in [0, 1] satisfy the following
restrictions:

(a) αn + βn + γn = 1;
(b) 0 ≤ δn < 1 and lim supn→∞ δn < 1;
(c) {rn} ⊂ [a,∞) for some a > 0;
(d) lim infn→∞ αnβn > 0 and lim infn→∞ αnγn > 0.

Then the sequence {xn} converges strongly to a point ΠF Jx.

Motivated by the results mentioned above, we introduce a new hybrid projec-
tion algorithm based on the shrinking projection method for two hemi-relatively
nonexpansive mappings. Using the new algorithm, we prove some strong con-
vergence theorem which approximate a common element in the fixed points set
of two hemi-relatively nonexpansive mappings, the solutions set of a variational
inequality and the solutions set of the equilibrium problem in a uniformly convex
and uniformly smooth Banach space. Our results extend and improve the recent
ones announced by Li [16], Fan [11], Liu [17], Kamraksa and Wangkeeree [14] and
many others.

2. Preliminaries

A Banach space E is said to be strictly convex if x+y
2

< 1 for all x, y ∈ E with
‖x‖ = ‖y‖ = 1 and x 6= y. It is said to be uniformly convex if limn→∞ ‖xn−yn‖ =
0 for any two sequences {xn} and {yn} in E such that ‖xn‖ = ‖yn‖ = 1 and
lim→∞ ‖xn+yn

2
‖ = 1.

Let UE = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. Then the Banach space
E is said to be smooth provided

lim
t→0

‖x + ty‖ − ‖x‖
t

(2.1)

exists for each x, y ∈ UE. It is also said to be uniformly smooth if the limit (2.1)
is attained uniformly for x, y ∈ UE.

It is well known that, if E is uniformly smooth, then J is uniformly norm-to-
norm continuous on each bounded subset of E and, if E is uniformly smooth if
and only if E∗ is uniformly convex.

A Banach space E is said to have the Kadec-Klee property if, for a sequence
{xn} of E satisfying that xn ⇀ x ∈ E and ‖xn‖ → ‖x‖, xn → x.
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It is known that, if E is uniformly convex, then E has the Kadec-Klee property
(see [30, 9, 31] for more details).

Let C be a closed convex subset of E and T be a mapping from C into itself. A
point p in C is said to be an asymptotic fixed point of T if C contains a sequence
{xn} which converges weakly to p such that the strong limn→∞(xn − Txn) = 0.

The set of asymptotic fixed points of T is denoted by F̂ (T ).

A mapping T from C into itself is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.

The mapping T is said to be relatively nonexpansive [18, 19, 13] if

F̂ (T ) = F (T ) 6= ∅, φ(p, Tx) ≤ φ(p, x), ∀x ∈ C, p ∈ F (T ).

The asymptotic behavior of a relatively nonexpansive mapping was studied in
[18, 19, 13]. A point p ∈ C is called a strong asymptotic fixed point of T if C
contains a sequence {xn} which converges strongly to p such that limn→∞(xn −
Txn) = 0. The set of strong asymptotic fixed points of T is denoted by F̃ (T ).

A mapping T from C into itself is said to be relatively and weakly nonexpansive
if

F̃ (T ) = F (T ) 6= ∅, φ(p, Tx) ≤ φ(p, x), ∀x ∈ C, p ∈ F (T ).

The mapping T is said to be hemi-relatively nonexpansive if

F (T ) 6= ∅, φ(p, Tx) ≤ φ(p, x), ∀x ∈ C, p ∈ F (T ).

It is obvious that a relatively nonexpansive mapping is a relatively and weakly
nonexpansive mapping and, further, a relatively and weakly nonexpansive map-
ping is a hemi-relatively nonexpansive mapping, but the converses are not true
as in the following example:

Example 2.1. [28] Let E be any smooth Banach space and x0 6= 0 be any
element of E. We define a mapping T : E → E as follows: For all n ≥ 1,

T (x) =

{
(1

2
+ 1

2n )x0, if x = (1
2

+ 1
2n )x0,

−x, if x 6= (1
2

+ 1
2n )x0.

Then T is a hemi-relatively nonexpansive mapping, but it is not relatively non-
expansive mapping.

Next, we give some important examples which are hemi-relatively nonexpan-
sive.

Example 2.2. [21] Let E be a strictly convex reflexive smooth Banach space.
Let A be a maximal monotone operator of E into E∗ and Jr be the resolvent for
A with r > 0. Then Jr = (J +rA)−1J is a hemi-relatively nonexpansive mapping
from E onto D(A) with F (Jr) = A−10.

Remark 2.3. There are other examples of hemi-relatively nonexpansive mappings
and the generalized projections (or projections) and others (see [21]).
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In [12, 4], Alber introduced the functional V : E∗ × E → R defined by

V (φ, x) = ‖φ‖2 − 2〈φ, x〉+ ‖x‖2,

where φ ∈ E∗ and x ∈ E. It is easy to see that

V (φ, x) ≥ (‖φ‖ − ‖x‖)2

and so the functional V : E∗ × E → R+ is nonnegative.

In order to prove our results in the next section, we present several definitions
and lemmas.

Definition 2.4. [13] If E be a uniformly convex and uniformly smooth Banach
space, then the generalized projection ΠC : E∗ → C is a mapping that assigns
an arbitrary point φ ∈ E∗ to the minimum point of the functional V (φ, x), i.e., a
solution to the minimization problem

V (φ, ΠC(φ)) = inf
y∈C

V (φ, y).

Li [16] proved that the generalized projection operator ΠC : E∗ → C is contin-
uous if E is a reflexive, strictly convex and smooth Banach space.

Consider the function φ : E × E → R is defined by

φ(x, y) = V (Jy, x), ∀x, y ∈ E.

The following properties of the operator ΠC and V are useful for our paper
(see, for example, [1, 16]):

(A1) V : E∗ × E → R is continuous;
(A2) V (φ, x) = 0 if and only if φ = Jx;
(A3) V (JΠC(φ), x) ≤ V (φ, x) for all φ ∈ E∗ and x ∈ E;
(A4) The operator ΠC is J fixed at each point x ∈ E∗ and x ∈ E;
(A5) If E is smooth, then, for any given φ ∈ E∗ and x ∈ C, x ∈ ΠC(φ) if and

only if

〈φ− Jx, x− y〉 ≥ 0, ∀y ∈ C;

(A6) The operator ΠC : E∗ → c is single valued if and only if E is strictly
convex;

(A7) If E is smooth, then, for any given point φ ∈ E∗ and x ∈ ΠC(φ), the
following inequality holds:

V (Jx, y) ≤ V (φ, y)− V (φ, x), ∀y ∈ C;

(A8) v(φ,X) is convex with respect to φ when x is fixed and with respect to x
when φ is fixed;

(A9) If E is reflexive, then, for any point φ ∈ E∗, ΠC(φ) is a nonempty closed
convex and bounded subset of C.

Using some properties of the generalized projection operator ΠC , Alber [1]
proved the following theorem:

Lemma 2.5. [1] Let E be a strictly convex reflexive smooth Banach space. Let
A be an arbitrary operator from a Banach space E to E∗ and β be an arbitrary
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fixed positive number. Then x ∈ C ⊂ E is a solution of the variational inequality
(1.1) if and only if x is a solution of the following operator equation in E:

x = ΠC(Jx− βAx).

Lemma 2.6. [13] Let E be a uniformly convex smooth Banach space and {yn},
{zn} be two sequences in E such that either {yn} or {zn} is bounded. If we have
limn→∞ φ(yn, zn) = 0, then limn→∞ ‖yn − zn‖ = 0.

Lemma 2.7. [7] Let E be a uniformly convex and uniformly smooth Banach
space. We have

‖φ + Φ‖2 ≤ ‖φ‖2 + 2〈Φ, J(φ + Φ)〉, ∀φ, Φ ∈ E∗.

From Lemma 1.9 in Qin et al. [22], the following lemma can be obtained
immediately:

Lemma 2.8. Let E be a uniformly convex Banach space, s > 0 be a positive
number and Bs(0) be a closed ball of E. Then there exists a continuous, strictly
increasing and convex function g : [0,∞) → [0,∞) with g(0) = 0 such that

‖ΣN
i=1(αixi)‖2 ≤ ΣN

i=1(αi‖xi‖2)− αiαjg(‖xi − xj‖) (2.2)

for all x1, x2, · · · , xN ∈ Bs(0) = {x ∈ E : ‖x‖ ≤ s}, i 6= j for all i, j ∈
{1, 2, · · · , N} and α1, α2, · · · , αN ∈ [0, 1] such that ΣN

i=1αi = 1.

For solving the equilibrium problem, let us assume that a bifunction f satisfies
the following conditions:

(B1) f(x, x) = 0 for all x ∈ C;
(B2) f is monotone, that is, f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;
(B3) For all x, y, z ∈ C,

lim sup
t↓0

f(tz + (1− t)x, y) ≤ f(x, y);

(B4) For all x ∈ C, f(x, ·) is convex and lower semicontinuous.

For example, let A be a continuous and monotone operator of C into E∗ and
define

f(x, y) = 〈Ax, y − x〉, ∀x, y ∈ C.

Then f satisfies (B1)-(B4).

Lemma 2.9. [5] Let C be a closed and convex subset of a smooth, strictly convex
and reflexive Banach spaces E, f be a bifunction from C ×C to R satisfying the
conditions (B1)-(B4) and let r > 0, x ∈ E. Then there exists z ∈ C such that

f(z, y) +
1

r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C.

Lemma 2.10. [32] Let C be a closed and convex subset of a uniformly smooth,
strictly convex and reflexive Banach spaces E, f be a bifunction from C×C to R
satisfying the conditions (B1)-(B4). For all r > 0 and x ∈ E, define the mapping

Trx = {z ∈ C : f(z, y) +
1

r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C}.
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Then the following hold:
(C1) Tr is single-valued;
(C2) Tr is a firmly nonexpansive-type mapping, that is, for all x, y ∈ E,

〈Trx− Try, JTrx− JTry〉 ≤ 〈Trx− Try, Jx− Jy〉;
(C3) F (Tr) = F̂ (Tr) = EP (f);
(C4) EP (f) is closed and convex.

Lemma 2.11. [32] Let C be a closed convex subset of a smooth, strictly convex
and reflexive Banach space E, let f be a bifunction from C × C to R satisfying
(B1)− (B4) and let r > 0. Then, for x ∈ E and q ∈ F (Tr),

φ(q, Trx) + φ(Trx, x) ≤ φ(q, x)

Lemma 2.12. [17] If E is a reflexive, strictly convex and smooth Banach space,
then ΠC = J−1.

Lemma 2.13. [28] Let E be a strictly convex and smooth real Banach space, C
be a closed convex subset of E and T be a hemi-relatively nonexpansive mapping
from C into itself. Then F (T ) is closed and convex.

Recall that an operator T in Banach space is said to be closed if xn → x and
Txn → y implies Tx = y.

3. Main results

Now, we give our mail results in this paper.

Theorem 3.1. Let E be a uniformly convex and uniformly smooth Banach space
and C be a nonempty closed convex subset of E. Let f be a bifunction from
C × C to R satisfying the conditions (B1)-(B4). Assume that A is a continuous
operator of C into E∗ satisfying the conditions (1.2) and (1.3) and S, T : C → C
are two closed hemi-relatively nonexpansive mappings with F := F (S) ∩ F (T ) ∩
V I(A, C)∩EP (f) 6= ∅. Let {xn} be a sequence generated by the following iterative
scheme:

x0 ∈ C chosen arbitrarily,

zn = ΠC(αnJx0 + βnJxn + γnJTxn + δnJSxn),

yn = J−1(λnJxn + (1− λn)JΠC(Jzn − βAzn)),

un ∈ C such that f(un, y) + 1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ (1− λn)αnφ(z, x0)

+[1− (1− λn)αn]φ(z, xn)},
C0 = C,

xn+1 = ΠCn+1Jx0, ∀n ≥ 1,

where {αn}, {βn}, {γn}, {δn} and {λn} are the sequences in [0, 1] with the fol-
lowing restrictions:

(a) αn + βn + γn + δn = 1;
(b) 0 ≤ λn < 1 and lim supn→∞ λn < 1;
(c) {rn} ⊂ [a,∞) for some a > 0;
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(d) limn→∞ αn = 0, lim infn→∞ βnγn > 0 and lim infn→∞ βnδn > 0.
Then the sequence {xn} converges strongly to a point ΠF Jx0, where ΠF is the
generalized projection from C onto F .

Proof. We divide the proof into five steps.
Step (1): ΠF Jx0 and ΠCn+1Jx0 are well defined.

From Lemma 2.13, we know that F (T ) and F (S) are closed and convex and so
F (T ) ∩ F (S) is closed and convex. From Theorem 1.3, it follows that V I(A, C)
is closed and convex. From Lemma 2.10(C4), we also know that EP (f) is closed
and convex. Hence F is a nonempty closed and convex subset of C. Therefore,
ΠF Jx0 is well defined.

Next, we show that Cn is closed and convex for all n ≥ 0. From the definitions
of Cn, it is obvious that Cn is closed for all n ≥ 0.

Next, we prove that Cn is convex for all n ≥ 0. Since

φ(z, un) ≤ (1− λn)αnφ(z, x0) + [1− (1− λn)αn]φ(z, xn)

is equivalent to the following:

2〈z, θnJx0 + (1− θn)Jxn − Jun〉 ≤ (1− θn)‖x0‖2 + (1− θn)‖xn‖2,

where θn = (1 − λn)αn. It is easy to see that Cn is convex for all n ≥ 0. Thus,
for all n ≥ 0, Cn is closed and convex and so ΠCn+1Jx0 is well defined.

Step (2): F ⊂ Cn for all n ≥ 0.

Observe that F ⊂ C0 = C is obvious. Suppose that F ⊂ Ck for some k ∈ N.
Let w ∈ F ⊂ Ck. Then, from the definition of φ and V , the property (A3) of V ,
Lemma 2.7, the conditions (1.2) and (1.3), it follows that

φ(w, ΠC(Jzn − βAzn)) = V (JΠC(Jzn − βAzn), w)

≤ V (Jzn − βAzn, w)

= ‖Jzn − βAzn‖2 − 2〈Jzn − βAzn, w〉+ ‖w‖2

≤ ‖Jzn‖2 − 2β〈Azn, J
−1(Jzn − βAzn)〉 (3.1)

− 2〈Jzn − βAzn, w〉+ ‖w‖2

≤ ‖Jzn‖2 − 2〈Jzn, w〉+ ‖w‖2

= φ(w, zn), ∀n ≥ 0.

From Lemma 2.10, we see that Trn is a hemi-relatively nonexpansive mapping.
Therefore, by the properties (A3) and (A8) of the operator V and (3.1), we obtain

φ(w, uk) = φ(w, Trk
yk)

≤ φ(w, yk)

= V (Jyk, w)

≤ λkV (Jxk, w) + (1− λk)V (JΠC(Jzk − βAzk), w)
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= λkφ(w, xk) + (1− λk)φ(w, ΠC(Jzk − βAzk))

= λkφ(w, xk) + (1− λk)φ(w, zk))

= λkφ(w, xk) + (1− λk)V (Jzk, w))

= λkφ(w, xk) + (1− λk)V (αkJx0 + βkJxk + γkJTxk + δkJSxk, w)

= λkφ(w, xk) + (1− λk)φ(w, J−1(αkJx0 + βkJxk + γkJTxk + δkJSxk))

= λkφ(w, xk) + (1− λk)[‖w‖2 − 2αk〈w, Jx0〉 − 2βk〈w, Jxk〉 − 2γk〈w, JTxk〉
− 2δk〈w, JSxk〉+ ‖αkJx0 + βkJxk + γkJTxk + δkJSxk‖2]

≤ λkφ(w, xk) + (1− λk)[‖w‖2 − 2αk〈w, Jx0〉 − 2βk〈w, Jxk〉 − 2γk〈w, JTxk〉
− 2δk〈w, JSxk〉+ ‖αkJx0 + βkJxk + γk‖JTxk‖2 + δk‖JSxk‖2]

= λkφ(w, xk) + (1− λk)[αkφ(w, x0) + βkφ(w, xk) (3.2)

+ γkφ(w, Txk) + δkφ(w, Sxk)]

≤ λkφ(w, xk) + (1− λk)[αkφ(w, x0) + βkφ(w, xk)

+ γkφ(w, xk) + δkφ(w, xk)]

= (1− λk)αkφ(w, x0) + λkφ(w, xn) + (1− λk)(1− αk)φ(w, xk)

= (1− λk)αkφ(w, x0) + [1− (1− λk)αk]φ(w, xk)

which shows that w ∈ Ck+1. This implies that F ⊂ Cn for all n ≥ 0.

Step (3): {xn} is a Cauchy sequence.

Since xn = ΠCnJx0 and F ⊂ Cn, we have V (Jx0, xn) ≤ V (Jx0, w) for all
w ∈ F. Therefore, {V (Jx0, xn)} is bounded and, moreover, from the definition
of V , it follows that {xn} is bounded. Since xn+1 = ΠCn+1Jx0 ∈ Cn+1 and
xn = ΠCnJx0, we have

V (Jx0, xn) ≤ V (Jx0, xn+1), ∀n ≥ 0.

Hence it follows that {V (Jx0, xn)} is nondecreasing and so limn→∞ V (Jx0, xn)
exists. By the construction of Cn, we have that Cm ⊂ Cn and xm = ΠCmJx0 ∈ Cn

for any positive integer m ≥ n. From the property (A3), we have

V (Jxn, xm) ≤ V (Jx0, xm)− V (Jx0, xn)

for all n ≥ 0 and any positive integer m ≥ n. This implies that

V (Jxn, xm) → 0 (n, m →∞).

The definition of φ implies that

φ(xm, xn) → 0 (n,m →∞).

Applying Lemma 2.6, we obtain

‖xm − xn‖ → 0 (n,m →∞).

Hence {xn} is a Cauchy sequence. In view of the completeness of a Banach space
E and the closeness of C, it follows that

lim
n→∞

xn = p

for some p ∈ C.
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Step (4): p ∈ F.

First, we show that p ∈ F (S) ∩ F (T ). In fact, from (3.3), we obtain that

lim
n→∞

φ(xn+1, xn) = 0 (3.3)

and, since {xn} is a Cauchy sequence in E, we have

lim
n→∞

‖xn+1 − xn‖ = 0.

Note that xn+1 = ΠCn+1Jx0 ∈ Cn+1 and so

φ(xn+1, un) ≤ (1− λn)αnφ(xn+1, x0) + [1− (1− λn)αn]φ(xn+1,xn).

By limn→∞ αn = 0 and (3.3), it follows that

lim
n→∞

φ(xn+1, un) ≤ lim
n→∞

φ(xn+1, xn)

= 0

and so

lim
n→∞

φ(xn+1, un) = 0.

Using Lemma 2.6, it follows that

lim
n→∞

‖xn+1 − un‖ = 0. (3.4)

Combining 2.12 and (3.4), we obtain

lim
n→∞

‖xn − un‖ = 0 (3.5)

and hence it follows that

lim
n→∞

un = lim
n→∞

xn = p. (3.6)

On the other hand, since J is uniformly norm-to-norm continuous on bounded
sets, one has

lim
n→∞

‖Jxn − Jun‖ = 0. (3.7)

Since {xn} is bounded, {Jxn}, {JTxn} and {JSxn} are also bounded. Since E is
a uniformly smooth Banach space, one knows that E∗ is a uniformly convex Ba-
nach space. Let r = supn≥0{‖Jxn‖, ‖JTxn‖, ‖JSxn‖}. Therefore, from Lemma
2.8, it follows that there exists a continuous strictly increasing convex function
g : [0,∞) → [0,∞) satisfying g(0) = 0 and the inequality (2.2). It follows from
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the property (A3) of the operator V , (3.1) and the definition of S and T that

φ(w, zn) = V (Jzn, w)

≤ V (αnJx0 + βnJxn + γnJTxn + δnJSxn, w)

= φ(w, J−1(αnJx0 + βnJxn + γnJTxn + δnJSxn))

= ‖w‖2 − 2αn〈w, Jx0〉 − 2βn〈w, Jxn〉 − 2γn〈w, JTxn〉 − 2δn〈w, JSxn〉
+ ‖αnJx0 + βnJxn + γnJTxn + δnJSxn‖2

≤ ‖w‖2 − 2αn〈w, Jx0〉 − 2βn〈w, Jxn〉 − 2γn〈w, JTxn〉 − 2δn〈w, JSxn〉
+ αn‖Jx0‖2 + βn‖Jxn‖2 + γn‖JTxn‖2 + δn‖JSxn‖2 (3.8)

− βnγng(‖JTxn − Jxn‖)
= αnφ(w, x0) + βnφ(w, xn) + γnφ(w, Txn) + δnφ(w, Sxn)

− βnγng(‖JTxn − Jxn‖)
≤ αnφ(w, x0) + βnφ(w, xn) + γnφ(w, xn) + δnφ(w, xn)

− βnγng(‖JTxn − Jxn‖)
= αnφ(w, x0) + (1− αn)φ(w, xn)− βnγng(‖JTxn − Jxn‖).

From the property (A8) of the operator V , (3.1) and (3.8), we obtain

φ(w, un) = φ(w, Trnyn) ≤ φ(w, yn) = V (Jyn, w)

≤ λnV (Jxn, w) + (1− λn)V (JΠC(Jzn − βAzn), w)

= λnφ(w, xn) + (1− λn)φ(w, ΠC(Jzn − βAzn))

= λnφ(w, xn) + (1− λn)φ(w, zn))

≤ λnφ(w, xn) + (1− λn)[αnφ(w, x0) + (1− αn)φ(w, xn)

− βnγng(‖JTxn − Jxn‖)]
= αn(1− λn)φ(w, x0) + [1− αn(1− λn)]φ(w, xn)

− (1− λn)βnγng(‖JTxn − Jxn‖).

Therefore, we have

(1− λn)βnγng(‖JTxn − Jxn‖) ≤ θnφ(w, x0) + (1− θn)φ(w, xn) (3.9)

− φ(w, un),

where θn = αn(1− λn).
On the other hand, we have

φ(w, xn)− φ(w, un) = 2〈Jun − Jxn, w〉+ ‖xn‖2 − ‖un‖2

≤ 2〈Jun − Jxn, p〉+ (‖xn‖ − ‖un‖)(‖xn‖+ ‖un‖)
≤ 2‖Jun − Jxn‖‖w‖+ ‖xn − un‖(‖xn‖+ ‖un‖)

It follows from (3.4) and (3.7) that

lim
n→∞

(φ(w, xn)− φ(w, un)) = 0. (3.10)
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By the assumptions lim supn→∞ λn < 1, limn→∞ αn = 0, lim infn→∞ βnγn > 0,
(3.8) and (3.9), we have

lim
n→∞

g(‖JTxn − Jxn‖) = 0.

It follows from the property of g that

lim
n→∞

‖JTxn − Jxn‖ = 0. (3.11)

Since J−1 is also uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

‖xn − Txn‖ = lim
n→∞

‖J−1JTxn − J−1Jxn‖ = 0. (3.12)

Similarly, we can apply the condition lim infn→∞ βnδn > 0 to get

lim
n→∞

‖xn − Sxn‖ = 0. (3.13)

Since limn→∞ xn = p and the mappings T, S are closed, we know that p is a fixed
point of T and S, that is, p = Tp and p = Sp.

Secondly, we show that p ∈ EP (f). In fact, from (3.2), we know that

φ(w, yn) ≤ (1− λn)αnφ(w, x0) + [1− (1− λn)αn]φ(w, xn).

In view of un = Trnyn and Lemma 2.11, one has

φ(un, yn)

= φ(Trnyn, yn) ≤ φ(w, yn)− φ(w, Trnyn)

≤ (1− λn)αnφ(w, x0) + [1− (1− λn)αn]φ(w, xn)− φ(w, Trnyn)

= (1− λn)αnφ(w, x0) + [1− (1− λn)αn]φ(w, xn)− φ(w, un).

In view of limn→∞ αn = 0 and (3.10), we obtain

lim
n→∞

φ(un, yn) = 0.

Applying Lemma 2.6, we obtain

lim
n→∞

‖un − yn‖ = 0. (3.14)

Since J is a uniformly norm-to-norm continuous on bounded sets, one has

lim
n→∞

‖Jun − Jyn‖ = 0.

From the assumption that rn ≥ a, one has

lim
n→∞

‖Jun − Jyn‖
rn

= 0.

Observing that un = Trnyn, one obtains

f(un, y) +
1

rn

〈y − un, Jun − Jy〉 ≥ 0, ∀y ∈ C.

From (B2), one get

‖y − un‖
‖Jun − Jyn‖

rn

≥ 1

rn

〈y − un, Jun − Jyn〉 ≥ −f(un, y)

≥ f(y, un), ∀y ∈ C.
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Taking n →∞ in the above inequality, it follows from (B4) and (3.6) that

f(y, p) ≤ 0, ∀y ∈ C.

For all 0 < t < 1 and y ∈ C, define yt = ty + (1 − t)p. Note that y, p ∈ C, one
obtains yt ∈ C, which yields that f(yt, p) ≤ 0. It follows from B1 that

0 = f(yt, yt) ≤ tf(yt, y) + (1− t)f(yt, p) ≤ tf(yt, y),

that is

f(yt, y) ≥ 0.

Let t ↓ 0. From (B3), we obtain f(p, y) ≥ 0 for all y ∈ C, which imply that
p ∈ EP (f).

Finally, we show that p ∈ V I(A, C). In fact, by (3.5) and (3.14), we have

lim
n→∞

‖xn − yn‖ = 0.

Since J is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

‖Jyn − Jxn‖ = 0.

Since ‖Jyn− Jxn‖ = (1−λn)‖JΠC(Jzn−βAzn)− Jxn‖ and lim supn→∞ λn < 1,
we obtain

lim
n→∞

‖JΠC(Jzn − βAzn)− Jxn‖ = 0. (3.15)

Since J−1 is also uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

‖ΠC(Jzn − βAzn)− xn‖ = lim
n→∞

‖J−1JΠC(Jzn − βAzn)− J−1Jxn‖

= 0.

On the other hand, from Lemma 2.11, we compute that

φ(xn, Txn) ≤ φ(w, xn)− φ(w, Txn)

= 2〈Jxn − JTxn, w〉+ ‖xn‖2 − ‖Txn‖2

≤ 2〈Jxn − JTxn, w〉+ (‖xn‖ − ‖Txn‖)(‖xn‖+ ‖Txn‖)
≤ 2‖Jxn − JTxn‖‖w‖+ (‖xn − Txn‖)(‖xn‖+ ‖Txn‖).

By (3.11) and (3.12), take n →∞ in the above inequality, we have

lim
n→∞

φ(xn, Txn) = 0.

Similarly, we can also obtain

lim
n→∞

φ(xn, Sxn) = 0. (3.16)
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From the properties (A2) and (A3) of the operator V , we derive that

φ(xn, zn) = V (Jzn, xn)

≤ V (αnJx0 + βnJxn + γnJTxn + δnJSxn, xn)

= ‖xn‖2 − 2αn〈xn, Jx0〉 − 2βn〈xn, Jxn〉
− 2γn〈xn, JTxn〉 − 2δn〈xn, JSxn〉
+ ‖αnJx0 + βnJxn + γnJTxn + δnJSxn‖2

≤ ‖xn‖2 − 2αn〈xn, Jx0〉 − 2βn〈xn, Jxn〉
− 2γn〈xn, JTxn〉 − 2δn〈xn, JSxn〉
+ αn‖Jx0‖2 + βn‖Jxn‖2 + γn‖JTxn‖2 + δn‖JSxn‖2

= αnφ(xn, x0) + βnφ(xn, xn) + γnφ(xn, Txn) + δnφ(xn, Sxn).

By the continuity of the function φ, limn→∞ αn = 0, (3.12), (3.13) and the close-
ness property of the mappings S and T , we have

lim
n→∞

φ(xn, zn) = 0.

From Lemma 2.6, we have

lim
n→∞

‖xn − zn‖ = 0.

In view of (3.15) and (3.16), we get

‖ΠC(Jzn − βAzn)− zn‖ ≤ ‖ΠC(Jzn − βAzn)− xn‖+ ‖xn − zn‖
→ 0 (n →∞).

Since limn→∞ xn = p and (3.16), it follows that limn→∞ zn = p. By the continuity
of the operator J , A and ΠC , we obtain

lim
n→∞

‖ΠC(Jzn − βAzn)− ΠC(Jp− βAp)‖ = 0.

Note that

‖ΠC(Jzn − βAzn)− p)‖ ≤ ‖ΠC(Jzn − βAzn)− zn‖+ ‖zn − p‖
→ 0 (n →∞).

Hence it follows from the uniqueness of the limit that p = ΠC(Jp− βAp). From
Lemma 2.5, we have p ∈ V I(A, C) and so p ∈ F.

Step (5): p = ΠF Jx0.

Since p ∈ F , from the property (A3) of the operator ΠC , we have

V (JΠF Jx0, p) + V (Jx0, ΠF Jx0) ≤ V (Jx0, p). (3.17)

On the other hand, since xn+1 = ΠCn+1Jx0 and F ⊂ Cn+1 for all n ≥ 0, it
follows from the property (A7) of the operator ΠC that

V (Jxx+1, ΠF Jx0) + V (Jx0, xn+1) ≤ V (Jx0, ΠF Jx0). (3.18)

Furthermore, by the continuity of the operator V , we get

lim
n→∞

V (Jx0, xn+1) = V (Jx0, p). (3.19)
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Combining (3.17), (3.18) with (3.19), we obtain

V (Jx0, p) = V (Jx0, ΠF Jx0).

Therefore, it follows from the uniqueness of ΠF Jx0 that p = ΠF Jx0. This com-
pletes the proof. �

Remark 3.2. Theorem 3.1 improves Theorem 3.1 of Liu [17], Theorem 3.1 of
Kamraksa and Wangkeeree [14] in the following senses:

(1) The iteration algorithm (3.1) of Theorem 3.1 is more general than the
one given in Liu [17], Kamraksa and Wangkeeree [14] and, further, the algorithm
(3.1) of Theorem 3.1 in Liu [17] is related to two problems, that is, the fixed point
and variational inequality problems, but our algorithm in Theorem 3.1 is related
to 3 problems, that is, the fixed point, variational inequality and equilibrium
problems.

(2) If The class of hemi-relatively nonexpansive mappings is more general than
the class of relatively weak nonexpansive mappings used in Kamraksa and Wang-
keeree [14].

Remark 3.3. As in Remark 3.1 of Liu [17], Theorem 3.1 also improve Theorem
3.3 in Li [16] and Theorem 3.1 in Fan [11].

If we only consider one hemi-relatively nonexpansive mapping, then the follow-
ing result is obtained directly by Theorem 3.1:

Corollary 3.4. Let E be a uniformly convex and uniformly smooth Banach space
and C be a nonempty closed convex subset of E. Let f be a bifunction from C×C
to R satisfying the conditions (B1)-(B4). Assume that A is a continuous operator
of C into E∗ satisfying the conditions (1.2) and (1.3) and T : C → C is closed
hemi-relatively nonexpansive mapping with F := F (T ) ∩ V I(A, C) ∩EP (f) 6= ∅.
Let {xn} be the sequence generated by the following iterative scheme:

x0 ∈ C chosen arbitrarily,

zn = ΠC(αnJx0 + βnJxn + γnJTxn),

yn = J−1(λnJxn + (1− λn)JΠC(Jzn − βAzn)),

un ∈ C such that f(un, y) + 1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ (1− λn)αnφ(z, x0)

+[1− (1− λn)αn]φ(z, xn)},
C0 = C,

xn+1 = ΠCn+1Jx0, ∀n ≥ 1,

(3.20)

where {αn}, {βn}, {γn} and {λn} are the sequences in [0, 1] with the following
restrictions:

(a) αn + βn + γn = 1;
(b) 0 ≤ λn < 1 and lim supn→∞ λn < 1;
(c) {rn} ⊂ [a,∞) for some a > 0;
(d) limn→∞ αn = 0, lim infn→∞ βnγn > 0.
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Then the sequence {xn} converges strongly to a point ΠF Jx0, where ΠF is the
generalized projection from C onto F .

When αn ≡ 0 in (3.20), The following result can be directly obtained by Corol-
lary 3.4:

Corollary 3.5. Let E be a uniformly convex and uniformly smooth Banach space
and C be a nonempty closed convex subset of E. Let f be a bifunction from C×C
to R satisfying the conditions (B1)-(B4). Assume that A is a continuous operator
of C into E∗ satisfying the conditions (1.2) and (1.3) and T : C → C is closed
hemi-relatively nonexpansive mapping with F : F (T ) ∩ V I(A, C) ∩ EP (f) 6= ∅.
Let {xn} be the sequence generated by the following iterative scheme:

x0 ∈ C chosen arbitrarily,

zn = ΠC(βnJxn + γnJTxn),

yn = J−1(λnJxn + (1− λn)JΠC(Jzn − βAzn)),

un ∈ C such that f(un, y) + 1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)},
C0 = C,

xn+1 = ΠCn+1Jx0, ∀n ≥ 1,

where {βn}, {γn} and {λn} are the sequences in [0, 1] with the following restric-
tions:

(a) βn + γn = 1;
(b) 0 ≤ λn < 1 and lim supn→∞ λn < 1;
(c) {rn} ⊂ [a,∞) for some a > 0;
(d) lim infn→∞ βnγn > 0.

Then the sequence {xn} converges strongly to a point ΠF Jx0, where ΠF is the
generalized projection from C onto F .

If we consider two relatively weak nonexpansive mappings, then the following
result can be also obtained by Theorem 3.1:

Corollary 3.6. Let E be a uniformly convex and uniformly smooth Banach space
and C be a nonempty closed convex subset of E. Let f be a bifunction from C×C
to R satisfying the conditions (B1)-(B4). Assume that A is a continuous operator
of C into E∗ satisfying the conditions (1.2) and (1.3) and S, T : C → C are two
relatively and weakly nonexpansive mappings with F := F (S)∩F (T )∩V I(A, C)∩
EP (f) 6= ∅. Let {xn} be the sequence generated by the following iterative scheme:

x0 ∈ C chosen arbitrarily,

zn = ΠC(αnJx0 + βnJxn + γnJTxn + δnJSxn),

yn = J−1(λnJxn + (1− λn)JΠC(Jzn − βAzn)),

un ∈ C such that f(un, y) + 1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ (1− λn)αnφ(z, x0) + [1− (1− λn)αn]φ(z, xn)},
C0 = C,

xn+1 = ΠCn+1Jx0, ∀n ≥ 1,
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where {αn}, {βn}, {γn}, {δn} and {λn} are the sequences in [0, 1] with the fol-
lowing restrictions:

(a) αn + βn + γn + δn = 1;
(b) 0 ≤ λn < 1 and lim supn→∞ λn < 1;
(c) {rn} ⊂ [a,∞) for some a > 0;
(d) limn→∞ αn = 0, lim infn→∞ βnγn > 0 and lim infn→∞ βnδn > 0.

Then the sequence {xn} converges strongly to a point ΠF Jx0, where ΠF is the
generalized projection from C onto F .

When αn ≡ 0 in the Theorem 3.1, we obtain the following modified Mann type
hybrid projection algorithm:

Corollary 3.7. Let E be a uniformly convex and uniformly smooth Banach space
and C be a nonempty closed convex subset of E. Let f be a bifunction from C×C
to R satisfying the conditions (B1)-(B4). Assume that A is a continuous operator
of C into E∗ satisfying the conditions (1.2) and (1.3) and S, T : C → C are two
closed hemi-relatively nonexpansive mappings with F := F (S)∩F (T )∩V I(A, C)∩
EP (f) 6= ∅. Let {xn} be the sequence generated by the following iterative scheme:

x0 ∈ C chosen arbitrarily,

zn = ΠC(βnJxn + γnJTxn + δnJSxn),

yn = J−1(λnJxn + (1− λn)JΠC(Jzn − βAzn)),

un ∈ C such that f(un, y) + 1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)},
C0 = C,

xn+1 = ΠCn+1Jx0, ∀n ≥ 1,

where {βn}, {γn}, {δn} and {λn} are the sequences in [0, 1] with the following
restrictions:

(a) βn + γn + δn = 1;
(b) 0 ≤ λn < 1 and lim supn→∞ λn < 1;
(c) {rn} ⊂ [a,∞) for some a > 0;
(d) lim infn→∞ βnγn > 0 and lim infn→∞ βnδn > 0.

Then the sequence {xn} converges strongly to a point ΠF Jx0, where ΠF is the
generalized projection from C onto F .

4. Applications to maximal monotone operators

In this section, we apply the our above results to prove some strong convergence
theorem concerning maximal monotone operators in a Banach space E.

Let B̄ be a multi-valued operator from E to E∗ with domain D(B̄) = {z ∈ E :
B̄z 6= ∅} and range R(B̄) = {z ∈ E : z ∈ D(B̄)}. An operator B̄ is said to be
monotone if

〈x1 − x2, y1 − y2〉 ≥ 0
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for all x1, x2 ∈ D(B̄) and y1 ∈ B̄x1, y2 ∈ B̄x2. A monotone operator B̄ is said to
be maximal if it’s graph G(B̄) = {(x, y) : y ∈ B̄x} is not properly contained in
the graph of any other monotone operator.

It is well known that, if B̄ is a maximal monotone operator, then B̄−10 is closed
and convex.

The following result is also well known.

Lemma 4.1. [26] Let E be a reflexive, strictly convex and smooth Banach space
and B̄ be a monotone operator from E to E∗. Then B̄ is maximal if and only if
R(J + rB̄) = E∗ for all r > 0.

Let E be a reflexive, strictly convex and smooth Banach space and B̄ be a
maximal monotone operator from E to E∗. Using Lemma 4.1 and the strict
convexity of E, it follows that, for all r > 0 and x ∈ E, there exists a unique
xr ∈ D(B̄) such that

Jx ∈ Jxr + rB̄xr.

If Jrx = xr, then we can define a single valued mapping Jr : E → D(B̄) by
Jr = (J + rB̄)−1J and such a Jr is called the resolvent of B̄. We know that
B̄−10 = F (Jr) for all r > 0 (see [30, 31] for more details).

The following lemma plays an important role in our next theorem:

Lemma 4.2. [29] Let E be a uniformly convex and uniformly smooth Banach
space, B̄ be a maximal monotone operator from E to E∗ and Jr be a resolvent of
B̄. Then Jr is closed hemi-relatively nonexpansive mapping.

We consider the problem of strong convergence concerning maximal monotone
operators in a Banach space. Such a problem has been also studied in [15, 13,
24, 25, 27]. Using Theorem 3.1, we obtain the following result:

Theorem 4.3. Let E be a uniformly convex and uniformly smooth Banach space
and C be a nonempty closed convex subset of E. Let f be a bifunction from C×C
to R satisfying the conditions (B1)-(B4). Assume that A is a continuous operator
of C into E∗ satisfying the conditions (1.2) and (1.3), B̄1, B̄2 : C → C are two
maximal monotone operator from E to E∗, J B̄1

r and J B̄2
r are two resolvents of B̄1

and B̄2 with F := B̄−1
1 0∩B̄−1

2 0∩V I(A, C)∩EP (f) 6= ∅. Let {xn} be the sequence
generated by the following iterative scheme:

x0 ∈ C chosen arbitrarily,

zn = ΠC(αnJx0 + βnJxn + γnJJ B̄1
r xn + δnJJ B̄2

r xn),

yn = J−1(λnJxn + (1− λn)JΠC(Jzn − βAzn)),

un ∈ C such that f(un, y) + 1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ (1− λn)αnφ(z, x0)

+[1− (1− λn)αn]φ(z, xn)},
C0 = C,

xn+1 = ΠCn+1Jx0, ∀n ≥ 1,

(4.1)
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where {αn}, {βn}, {γn}, {δn} and {λn} are the sequences in [0, 1] with the fol-
lowing restrictions:

(a) αn + βn + γn + δn = 1;
(b) 0 ≤ λn < 1 and lim supn→∞ λn < 1;
(c) {rn} ⊂ [a,∞) for some a > 0;
(d) limn→∞ αn = 0, lim infn→∞ βnγn > 0 and lim infn→∞ βnδn > 0.

Then the sequence {xn} converges strongly to a point ΠF Jx0, where ΠF is the
generalized projection from C onto F .

Proof. From Lemma 4.2, we know that J B̄1
r and J B̄1

r are two closed hemi-relatively
nonexpansive mappings. Furthermore, applying Theorem 3.1, we can obtain that
the sequence {xn} converges strongly to a point ΠF Jx0. �

Considering λn ≡ 0 in (4.1), we can directly obtain the following corollary by
applying Theorem 4.3:

Corollary 4.4. Let E be a uniformly convex and uniformly smooth Banach space
and C be a nonempty closed convex subset of E. Let f be a bifunction from C×C
to R satisfying the conditions (B1)-(B4). Assume that A is a continuous operator
of C into E∗ satisfying the conditions (1.2) and (1.3), B̄1, B̄2 : C → C are two
maximal monotone operator from E to E∗, JB1

r and JB2
r are two resolvents of B̄1

and B̄2 with F := B̄−1
1 0∩B̄−1

2 0∩V I(A, C)∩EP (f) 6= ∅. Let {xn} be the sequence
generated by the following iterative scheme:

x0 ∈ C chosen arbitrarily,

zn = ΠC(αnJx0 + βnJxn + γnJJ B̄1
r xn + δnJJ B̄2

r xn),

yn = ΠC(Jzn − βAzn)),

un ∈ C such that f(un, y) + 1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ αnφ(z, x0) + (1− αn)φ(z, xn)},
C0 = C,

xn+1 = ΠCn+1Jx0, ∀n ≥ 1,

where {αn}, {βn}, {γn} and {δn} are the sequences in [0, 1] with the following
restrictions:

(a) αn + βn + γn + δn = 1;
(b) {rn} ⊂ [a,∞) for some a > 0;
(c) limn→∞ αn = 0, lim infn→∞ βnγn > 0 and lim infn→∞ βnδn > 0.

Then the sequence {xn} converges strongly to a point ΠF Jx0, where ΠF is the
generalized projection from C onto F .

When {αn} ≡ 0 in 4.2, we can obtain the new modified Mann iteration for the
variational inequality (1.1), the equilibrium problem (1.4) and zeros of maximal
monotone operators as follows:

Corollary 4.5. Let E be a uniformly convex and uniformly smooth Banach space
and C be a nonempty closed convex subset of E. Let f be a bifunction from C×C
to R satisfying the conditions (B1)-(B4). Assume that A is a continuous operator
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of C into E∗ satisfying the conditions (1.2) and (1.3), B̄1, B̄2 : C → C are two
maximal monotone operator from E to E∗, J B̄1

r and J B̄2
r are two resolvents of B̄1

and B̄2 with F := B̄−1
1 0∩B̄−1

2 0∩V I(A, C)∩EP (f) 6= ∅. Let {xn} be the sequence
generated by the following iterative scheme:

x0 ∈ C chosen arbitrarily,

zn = ΠC(βnJxn + γnJJ B̄1
r xn + δnJJ B̄2

r xn),

yn = ΠC(Jzn − βAzn)),

un ∈ C such that f(un, y) + 1
rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)},
C0 = C,

xn+1 = ΠCn+1Jx0, ∀n ≥ 1,

where {βn}, {γn} and {δn} are the sequences in [0, 1] with the following restric-
tions:

(a) βn + γn + δn = 1;
(b) {rn} ⊂ [a,∞) for some a > 0;
(c) lim infn→∞ βnγn > 0 and lim infn→∞ βnδn > 0.

Then the sequence {xn} converges strongly to a point ΠF Jx0, where ΠF is the
generalized projection from C onto F .
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