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Abstract. In this paper we extend the notion of quasi-multipliers to the dual
of a Banach algebra A whose second dual has a mixed identity. We consider
algebras satisfying weaker condition than Arens regularity. Among others we
prove that for an Arens regular Banach algebra which has a bounded approx-
imate identity the space QMr(A∗) of all bilinear and separately continuous
right quasi-multipliers of A∗ is isometrically isomorphic to A∗∗. We discuss the
strict topology on QMr(A∗) and apply our results to C∗−algebras and to the
group algebra of a compact group.

1. Introduction

The notion of a quasi-multiplier is a generalization of the notion of a multiplier
on a Banach algebra and was introduced by Akemann and Pedersen [1] for C∗-
algebras. McKennon [15] extended the definition to a general complex Banach
algebra A with a bounded approximate identity (b.a.i., for brevity) as follows. A
bilinear mapping m : A× A→ A is a quasi-multiplier on A if

m(ab, cd) = am(b, c) d (a, b, c, d ∈ A).

Let QM (A) denote the set of all separately continuous quasi-multipliers onA. It is
showed in [15] that QM (A) is a Banach space for the norm ‖m‖ = sup{‖m(a, b)‖;
a, b ∈ A, ‖a‖ = ‖b‖ = 1}. For some classical Banach algebras, the Banach space
of quasi-multipliers may be identified with some other known space or algebras.
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For instance, by [15, Corollary of Theorem 22], one can identify QM (L1(G)),
where G is a locally compact Hausdorff group, with the measure algebra M(G).

After McKennon’s seminal paper the theory of quasi-multipliers on Banach
algebras was developed further by Vasudevan and Goel and Takahasi[18], Va-
sudevan and Goel [17], Kassem and Rowlands [8], Lin [12, 13, 14], Dearden [5],
Argün and Rowlands [2], Grosser [7], and Yilmaz and Rowlands [20]. Recently
quasimultipliers have been studied in the context of operator spaces by Kaneda
and Paulsen [10] and Kaneda [9].

In [7] and [2, p. 235] the notion of quasi-multiplier is extended to the dual of a
Banach algebra and concrete representations of the space QM(A∗) has been given
in the case of the algebra K0(X) of all approximable operators on a Banach space
X. The aim of this paper is to present a few new statements on quasi-multipliers
of the dual A∗ of a Banach algebra A whose second dual has a mixed identity.
Before we state our main results the basic notation is introduced. We mainly
adopt the notations from the monograph [4]. The reader is referred to this book
for some results used in this paper, as well.

For a Banach space X, let X∗ be its topological dual. The pairing between X
and X∗ is denoted by 〈·, ·〉. We always consider X naturally embedded into X∗∗

through the mapping π, which is given by 〈π(x), ξ〉 = 〈ξ, x〉 (x ∈ X, ξ ∈ X∗).
Let A be a Banach algebra. It is well known that on the second dual A∗∗ there

are two algebra multiplications called the first and the second Arens product,
respectively. Since in the paper we use mainly the first Arens product, we recall
its definition. Let a ∈ A, ξ ∈ A∗, and F, G ∈ A∗∗ be arbitrary. Then one defines
ξ · a and G · ξ as 〈ξ · a, b〉 = 〈ξ, ab〉 and 〈G · ξ, b〉 = 〈G, ξ · b〉, where b ∈ A is
arbitrary. Now, the first Arens product of F and G is an element F ◦ G in A∗∗

which is given by 〈F ◦ G, ξ〉 = 〈F,G · ξ〉, where ξ ∈ A∗ is arbitrary. The second
Arens product, which we denote by ◦′, is defined in a similar way.

The space A∗∗ equipped with the first (or second) Arens product is a Banach
algebra and A is a subalgebra of it. It is said that A is Arens regular if the
equality F ◦G = F ◦′ G holds for all F, G ∈ A∗∗. For example, every C∗-algebra
is Arens regular, see [3]. Note however that F ◦ a = F ◦′ a and a ◦ F = a ◦′ F
hold for any a ∈ A and F ∈ A∗∗.

By A∗A we denote the subspace {ξ · a; ξ ∈ A∗, a ∈ A} of A∗. Similarly,
AA∗ = {a · ξ; a ∈ A, ξ ∈ A∗}. If A∗A = A∗, then we say that A∗ factors on the
left. Similarly, A∗ factors on the right if AA∗ = A∗. Ülger [16] has proved that if
A is Arens regular and has a b.a.i., then A∗ factors on both sides.

An element E in the second dual A∗∗ is said to be a mixed identity if it is a
right identity for the first and a left identity for the second Arens product. By
[4, Proposition 2.6.21], an element E ∈ A∗∗ is a mixed identity if and only if
E · ξ = ξ = ξ · E, for every ξ ∈ A∗. Note that A∗∗ has a mixed identity if and
only if A has a b.a.i.
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2. Main results

Let A be a complex Banach algebra. Assume that A∗∗ is endowed with the
first Arens product and A∗ is a Banach A∗∗-bimodule in the natural way. The
following is an extension of a definition given in [7].

Definition 2.1. A bilinear mappingm : A∗×A∗∗ → A∗ is a right quasi-multiplier
of A∗ if

m(F · ξ,G) = F ·m(ξ,G) and m(ξ,G ◦ F ) = m(ξ,G) · F (2.1)

hold for arbitrary ξ ∈ A∗ and F, G ∈ A∗∗.
Similarly, a bilinear mapping m′ : A∗∗ × A∗ → A∗ is a left quasi-multiplier of

A∗ if

m′(F ◦G, ξ) = F ·m′(G, ξ) and m′(G, ξ · F ) = m′(G, ξ) · F
hold for arbitrary ξ ∈ A∗ and F, G ∈ A∗∗.

Although in our investigation we do not assume Arens regularity, we usually
have to assume that the given algebra satisfies the following weaker condition.
We say that a Banach algebra A satisfies condition (K) if

(F · ξ) ·G = F · (ξ ·G) (F, G ∈ A∗∗, ξ ∈ A∗).

Of course, every Arens regular Banach algebra satisfies condition (K). However,
the class of Banach algebras satisfying (K) is larger. It contains, for instance,
every Banach algebra A which is an ideal in its second dual. Namely, for arbitrary
F, G ∈ A∗∗ and ξ ∈ A∗, we have

〈(F · ξ) ·G, a〉 = 〈π(a), (F · ξ) ·G〉 = 〈G ◦′ π(a), F · ξ〉 = 〈(G ◦′ π(a)) ◦ F, ξ〉
= 〈G ◦′ (π(a) ◦ F ), ξ〉 = 〈π(a) ◦ F, ξ ·G〉 = 〈F · (ξ ·G), a〉 (a ∈ A).

Thus, the class of algebras satisfying the condition (K) is strictly larger than
the class of Arens regular algebras. Note however that a unital Banach algebra
satisfies condition (K) if and only if it is Arens regular. Indeed, if 1 is the identity
for A, then π(1) is the identity for (A∗∗, ◦) and (A∗∗, ◦′). Assume that A satisfies
the condition (K). For arbitrary F,G ∈ A∗∗ and ξ ∈ A∗, one has

〈F ◦G, ξ〉 = 〈F,G · ξ〉 = 〈F ◦′ π(1), G · ξ〉 = 〈π(1), (G · ξ) · F 〉
= 〈π(1), G · (ξ · F )〉 = 〈π(1) ◦G, ξ · F 〉 = 〈G, ξ · F 〉 = 〈F ◦′ G, ξ〉,

which means that the condition (K) implies Arens regularity.
If A is a Banach algebra satisfying condition (K) and A∗∗ has a mixed identity,

then a map m : A∗ × A∗∗ → A∗ is a quasi-multiplier of A∗ if and only if

m(F · ξ,G ◦H) = F ·m(f,G) ·H (2.2)

holds for arbitrary F, G, H ∈ A∗∗ and ξ ∈ A∗. Indeed, it is obvious that every
bilinear mapping satisfying (2.1) satisfies (2.2) as well. On the other hand, if m
satisfies (2.2) and E is a mixed identity for A∗∗, then one has

m(F · ξ,G) = m(F · ξ,G ◦ E) = F ·m(ξ,G) · E = F ·m(ξ,G).

Similarly, m(ξ,G ◦H) = m(ξ,G) ·H.
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Let QMr(A
∗) be the set of all bilinear and separately continuous right quasi-

multipliers of A∗. It is obvious that QMr(A
∗) is a linear space. Moreover, it is a

Banach space with respect to the norm

||m|| = sup{||m(ξ, F )||; ξ ∈ A∗, F ∈ A∗∗, ||ξ|| ≤ 1, ||F || ≤ 1}.

Of course, the same holds for QMl(A
∗), the set of all bilinear and separately

continuous left quasi-multipliers of A∗.

Proposition 2.2. Let A be a Banach algebra satisfying condition (K). Then
QMr(A

∗) is a Banach A∗∗-bimodule in a natural way.

Proof. Let m ∈ QMr(A
∗) and H ∈ A∗∗ be arbitrary. Define H ∗m and m ∗H as

H ∗ m(ξ,G) = m(ξ · H,G) and m ∗ H(ξ,G) = m(ξ,H ◦ G), where ξ ∈ A∗ and
G ∈ A∗∗ are arbitrary. Since equalities

H ∗m(F · ξ,G) = m
(
(F · ξ) ·H,G

)
= m

(
F · (ξ ·H), G

)
= F ·m(ξ ·H,G) = F ·

(
H ∗m(ξ,G)

)
and

H ∗m(ξ,G ◦ F ) = m(ξ ·H,G ◦ F ) =
(
H ∗m(ξ,G)

)
· F

hold for all ξ ∈ A∗ and F, G ∈ A∗∗ we conclude that H ∗m is a quasi-multiplier.
The boundedness of H ∗m follows from ‖m(ξ ·H,G)‖ ≤ ‖m‖‖ξ‖‖H‖‖G‖. Thus,
H ∗m ∈ QMr(A

∗). A similar reasoning gives m ∗H ∈ QMr(A
∗).

It is easily seen that equalities (H1 ◦H2) ∗m = H1 ∗ (H2 ∗m), m ∗ (H1 ◦H2) =
(m∗H1)∗H2, and (H1 ∗m)∗H2 = H1 ∗ (m∗H2) hold for arbitrary m ∈ QMr(A

∗)
and H1, H2 ∈ A∗∗. �

For some Banach algebras A, there is a natural multiplication on the dual A∗.
The following observation is related to Proposition 2.2. If A∗ is a Banach algebra
with multiplication � which is compatible with the A∗∗-bimodule structure of A∗

in the sense that F · (ξ �η) = (F ·ξ)�η holds for arbitrary ξ, η ∈ A∗ and F ∈ A∗∗.
Then QMr(A

∗) has a natural structure of a left Banach A∗-module. Namely, the
product η ?m of η ∈ A∗ and m ∈ QMr(A

∗) is given by η ?m(ξ, F ) = m(ξ � η, F ),
where η, ξ ∈ A∗ and F ∈ A∗∗ are arbitrary.

Let A be a general Banach algebra. Then a map T : A∗ → A∗ is called a right
multiplier of A∗ if

T (F · ξ) = F · T (ξ),

for all ξ ∈ A∗, F ∈ A∗∗. With Mr(A
∗) we denote the space of all bounded linear

right multipliers on A∗. It is obvious that for each F ∈ A∗∗ the right multiplication
operator RF ξ = ξ ·F is a right multiplier on A∗. If A∗∗ has a mixed identity, then
each bounded linear right multiplier on A∗ is a right multiplication operator.
Indeed, let E be a mixed identity for A∗∗ and T ∈ Mr(A

∗) be arbitrary. Then
equalities

〈Tξ, a〉 = 〈E ◦ a, Tξ〉 = 〈E, T (a · ξ)〉 = 〈RT ∗(E)ξ, a〉
hold for all a ∈ A and ξ ∈ A∗, which means T = RT ∗(E).
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Theorem 2.3. If A∗∗ has a mixed identity, then

ρT (ξ, F ) = (Tξ) · F (T ∈ Mr(A
∗), ξ ∈ A∗, F ∈ A∗∗)

defines an injective linear map ρ : Mr(A
∗) → QMr(A

∗) with norm ‖ρ‖ ≤ 1.
Moreover, ρ is onto if A∗∗ has an identity. If A∗∗ has a mixed identity with norm
one, then ρ is an isometry.

Proof. Let T ∈ Mr(A
∗) be arbitrary. It is obvious that ρT is a bilinear map

from A∗ × A∗∗ to A∗ and that it is bounded with ‖T‖. For a ∈ A, ξ ∈ A∗, and
F, G ∈ A∗∗, we have

ρT (F · ξ,G) = T (F · ξ) ·G = (F · Tξ) ·G = F · (Tξ ·G) = F · ρT (ξ,G)

and
ρT (ξ,G ◦ F ) = (Tξ) · (G ◦ F ) = (Tξ ·G) · F = ρT (ξ,G) · F.

Thus, ρT ∈ QMr(A
∗). It follows from the definition that ρ : Mr(A

∗) → QMr(A
∗)

is linear. Obviously, ‖ρT‖ ≤ ‖T‖, which gives ‖ρ‖ ≤ 1. Let E ∈ A∗∗ be a mixed
identity. If ρT = 0, then we have (Tξ) ·E = 0 for every ξ ∈ A∗ and consequently
T = 0. Assume that E is an identity for A∗∗. Let m ∈ QMr(A

∗) be arbitrary. It
is easily seen that Tξ = m(ξ, E) (ξ ∈ A∗) defines a bounded right multiplier of
A∗. Since equalities ρT (ξ, F ) = (Tξ) · F = m(ξ, E) · F = m(ξ, E ◦ F ) = m(ξ, F )
hold for all ξ ∈ A∗ and F ∈ A∗∗ we conclude that ρ is onto.

At the end assume that E is mixed identity for A∗∗ of norm one. Let T ∈
Mr(A

∗) and ε > 0 be arbitrary. If ξ ∈ A∗ is such that ‖ξ‖ ≤ 1 and ‖T‖−ε < ‖Tξ‖,
then

‖ρT‖ ≥ ‖ρT (ξ, E)‖ = ‖Tξ‖ > ‖T‖ − ε.

Thus, ρ is an isometry. �

Corollary 2.4. If A is a C∗-algebra, then ρ is an isometrical isomorphism from
Mr(A

∗) onto QMr(A
∗).

Proof. It is well known that every C∗-algebra is Arens regular and has b.a.i. Thus,
A satisfies condition (K) and its second dual A∗∗ is unital. �

If A is a Banach algebra satisfying condition (K) and A∗∗ has an identity, then
Theorem 2.3 allows a natural definition of multiplication in QMr(A

∗). Namely,
for arbitrary m1, m2 ∈ QMr(A

∗), let T1, T2 ∈ Mr(A
∗) be uniquely determined

multipliers satisfying m1 = ρT1 and m2 = ρT2 . Then

m1 ◦ρ m2 = ρT1 ◦ρ ρT2 := ρT2T1

gives a well defined multiplication. It is easy to see that QMr(A
∗) is a unital

Banach algebra.
Note that QMl(A

∗) as well has a natural multiplication if A is a Banach algebra
satisfying condition (K) and A∗∗ has a mixed identity. Indeed, let Ml(A

∗) be the
space of all bounded left multipliers on A∗, i.e., bounded linear operators T on
A∗ satisfying T (ξ · F ) = Tξ · F , for all ξ ∈ A∗ and F ∈ A∗∗. A similar reasoning
as in Theorem 2.3 shows that the mapping λ : Ml(A

∗) → QMl(A
∗), which is

defined by

λS(F, ξ) = F · Sξ (S ∈ Ml(A
∗), ξ ∈ A∗, F ∈ A∗∗),



QUASI-MULTIPLIERS 11

is a linear bijection. Thus, a natural multiplication on QMl(A
∗) is given by

λS1 ◦λ λS2 := λS1S2 .
If A is a Banach algebra such that A∗∗ has an identity, say E, of norm one,

then one can identify QMr(A
∗) by Mr(A

∗) and QMl(A
∗) by Ml(A

∗). Since right
multipliers on A∗ are precisely right multiplication operators with elements in
A∗∗ and left multipliers are left multiplication operators with same elements we
conclude that if A∗∗ has an identity of norm one, then Banach algebras QMr(A

∗)
and QMl(A

∗) are isomorphic.

Theorem 2.5. Let A be a Banach algebra satisfying condition (K) and A∗∗ has
an identity E. Assume A∗ factors on the right. Then there exists an isomorphism
of A∗∗ onto QMr(A

∗).

Proof. Define a map ψ : A∗∗ → QMr(A
∗) by ψ(H) = ρRH

, where RH is the
right multiplication operator on A∗ determined by H ∈ A∗∗. Then, for arbitrary
ξ ∈ A∗, F ∈ A∗∗,

ψ(H)(ξ, F ) = (ξ ·H) · F.
We check only the multiplicativity of ψ since the linearity and continuity are
evident. Let H1, H2 ∈ A∗∗. By Theorem 2.3, there exist T1, T2 ∈ Mr(A

∗) such
that ψ(H1) = ρT1 and ψ(H2) = ρT2 . Hence, for arbitrary ξ ∈ A∗, F ∈ A∗∗, we
have

T1(ξ) · F = (ξ ·H1) · F and T2(ξ) · F = (ξ ·H2) · F.
It follows

(ψ(H1) ◦ρ ψ(H2))(ξ, F ) = ρT2T1(ξ, F ) = T2(T1(ξ)) ◦ F = T1ξ · (H2 ◦ F )

= ξ · (H1 ◦H2 ◦ F ) = ψ(H1 ◦H2)(ξ, F ),

which means ψ is a homomorphism.
Assume that ψ(H) = 0 for H ∈ A∗∗. Since the mapping ρ is one to one RH = 0.

Hence, for each ξ ∈ A∗, one has ξ ◦H = 0. Since, by the assumption, A∗ factors
on the right, we conclude H = 0. Thus, ψ is one to one. Homomorphism ψ is
onto, as well. Namely, if m ∈ QMr(A

∗), then there exist T ∈ Mr(A
∗) such that

m = ρT = ρRT∗(E)
= ψ(T ∗(E)). �

The previous theorem holds, for instance, for every Arens regular Banach al-
gebra with a b.a.i., in particular for every C∗-algebra.

Let H be a Hilbert space and let A = K(H), the algebra of all compact opera-
tors on H. The dual of the space of compact operators is the space of all trace-class
operators, C1(H). The second dual of A is B(H). Since K(H) is a C∗-algebra we
have QMr(C1(H)) ∼= B(H).

Theorem 2.6. Let A be a Banach algebra satisfying condition (K) and assume
that A∗∗ has an identity E. If A∗∗ is Arens regular then QMr(A

∗) is Arens regular.

Proof. Let ψ be as in the proof of Theorem 2.5. Thus, it is an onto homo-
morphism. Of course, ψ∗∗ : (A∗∗)∗∗ → (QMr(A

∗))∗∗ has the same property,
as well. Let F̃ , G̃ ∈ (QMr(A

∗))∗∗. Then there exist F,G ∈ (A∗∗)∗∗ such that
ψ∗∗(F ) = F̃ , ψ∗∗(G) = G̃. Thus,

F̃ ◦ G̃ = ψ∗∗(F ) ◦ ψ∗∗(G) = ψ∗∗(F ◦G) = ψ∗∗(F ◦′ G) = F̃ ◦′ G̃. �
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Beside the norm topology there are two other useful topologies on QMr(A
∗).

The first is the strict topology β which is given by seminorms

m→ ‖m ∗ F‖ (F ∈ A∗∗, m ∈ QMr(A
∗)).

The second is the quasi-strict topology γ. It is given by seminorms

m→ ‖m(ξ, F )‖ (ξ ∈ A∗, F ∈ A∗∗, m ∈ QMr(A
∗)).

Let τ denote the topology on QMr(A
∗) generated by the norm.

If A∗∗ has a mixed identity, then γ ⊆ β ⊆ τ. Indeed, let a net {mα}α∈I ⊆
QMr(A

∗) converge tom ∈ QMr(A
∗) in the topology β and let ξ ∈ A∗ be arbitrary.

Since A∗∗ has a mixed identity the second dual A∗∗ is factorable. For arbitrary
F ∈ A∗∗, there exist G,H ∈ A∗∗ such that F = G◦H. It follows, by the definition
of the topology β, that ||mα ∗G−m ∗G|| → 0. Thus

||mα(ξ, F )−m(ξ, F )|| = ||mα(ξ,G ◦H)−m(ξ,G ◦H)||
= ||(mα ∗G)(ξ,H)− (m ∗G)(ξ,H)|| → 0,

which means that {mα}α∈I converges to m in the topology γ. It is obvious that
β ⊆ τ.

Theorem 2.7. Let A be a Banach algebra satisfying condition (K).
(i) The space (QMr(A

∗), γ) is complete.
(ii) If A∗∗ has a mixed identity of norm one, then (QMr(A

∗), β) is complete.

Proof. (i) Let {mα}α∈I be a γ-Cauchy net in QMr(A
∗). Then, for arbitrary ξ ∈ A∗

and F ∈ A∗∗, we have a Cauchy net {mα(ξ, F )}α∈I in the norm topology of A∗.
Let m(ξ, F ) = limαmα(ξ, F ). It is obvious that in this way we have defined
a bilinear mapping m on A∗ × A∗∗ satisfying condition (2.1). Also by uniform
boundedness principle ([11], p. 172 and [6], p. 489), m is separately continuous
and therefore m ∈ QMr(A

∗).
(ii) Let {mα}α∈I be a β−Cauchy net in QMr(A

∗). For each F ∈ A∗∗, the
mapping Tα

F : A∗ → A∗ which is given by Tα
F (ξ) = mα(ξ, F ) defines elements in

Mr(A
∗). It is easy to show that ρT α

F
= mα ◦F. It follows from the definition of the

β−topology that {ρT α
F
}α∈I is a Cauchy net in the norm of QMr(A

∗). By Theorem
2.3, ρ is isometry and therefore {Tα

F } is a Cauchy net in the norm of Mr(A
∗). By

the completeness of Mr(A
∗), there exists TF ∈Mr(A

∗) such that ||Tα
F −TF || → 0.

Since γ ⊆ β the net {mα}α∈I is a Cauchy net in γ topology. By the first part of
this theorem, (QMr(A

∗), γ) is complete. Hence there exist m ∈ QMr(A
∗) such

that
lim

α
mα(ξ, F ) = m(ξ, F ) for all ξ ∈ A∗ and F ∈ A∗∗.

For each G ∈ A∗∗,

ρTF
(ξ,G) = lim

α
ρT α

F
(ξ,G) = lim

α
(mα ◦ F )(ξ,G) = lim

α
mα(ξ, F ◦G)

= m(ξ, F ◦G) = m ◦ F (ξ,G).

It follows that

||mα ◦ F −m ◦ F || = ||ρT α
F
− ρTF

|| = ||Tα
F − TF || → 0,
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which implies thatm is the β−limit of the net {mα}α∈I , i.e., QMr(A
∗) is complete

in β topology. �

At the end we consider the group algebra of a compact group G. By [21],
L1(G) is Arens regular if and only if G is finite. However, since L1(G) is a two-
sided ideal in its second dual ([19]), it satisfies condition (K). Note that the dual
L1(G)∗ can be identified with L∞(G).

Let M(G) be the convolution algebra of all bounded regular measures on G.
Recall that the convolution product of f ∈ L1(G) and µ ∈M(G) is given by

f ∗ µ(x) =

∫
G

f(xy−1) dµ(y).

Of course, L∞(G) is a Banach L1(G)∗∗-bimodule. However, the space L∞(G)
has also a natural structure of a Banach M(G)-bimodule. The same holds for
L∞(G)∗ = L1(G)∗∗. We will denote all these module multiplications by ∗.

Proposition 2.8. Let G be a compact group and A = L1(G). Then the equation

(θµ(ξ, F ) := (ξ ∗ µ) ∗ F (µ ∈M(G), ξ ∈ L∞(G), F ∈ L1(G)∗∗)

defines a linear isomorphism between M(G) and a subspace of QMr(A
∗).

Proof. Note that by the definition of module action (ξ ∗ µ) ∗ F = ξ ∗ (µ ∗ F ).
From this and condition (K) we conclude that θµ ∈ QMr(L1(G)∗). Of course,
θ : M(G) → QMr(L1(G)∗) is a bounded linear map. We claim that θ is injective.
Indeed, suppose that θµ = 0. Then (ξ ∗ µ) ∗ F = 0 for all ξ ∈ L∞(G) and
F ∈ (L∞(G))∗. Since L1(G) has a b.a.i. it follows ξ ◦ µ = 0. In particular, for
each ξ ∈ C0(G), ξ ◦ µ = 0. Since the measure algebra M(G) is the dual of C0(G)
and it has a b.a.i., µ = 0, as required. �

Acknowledgements: The authors are very grateful to the referee for some
helpful comments and suggestions.
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