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ABSTRACT. In this paper we extend the notion of quasi-multipliers to the dual
of a Banach algebra A whose second dual has a mixed identity. We consider
algebras satisfying weaker condition than Arens regularity. Among others we
prove that for an Arens regular Banach algebra which has a bounded approx-
imate identity the space QM,(A*) of all bilinear and separately continuous
right quasi-multipliers of A* is isometrically isomorphic to A**. We discuss the
strict topology on QM,.(A*) and apply our results to C*—algebras and to the
group algebra of a compact group.

1. INTRODUCTION

The notion of a quasi-multiplier is a generalization of the notion of a multiplier
on a Banach algebra and was introduced by Akemann and Pedersen [I] for C*-
algebras. McKennon [15] extended the definition to a general complex Banach
algebra A with a bounded approximate identity (b.a.i., for brevity) as follows. A
bilinear mapping m : A x A — A is a quasi-multiplier on A if

m(ab, cd) = am(b,c)d (a,b,c,d € A).

Let QM (A) denote the set of all separately continuous quasi-multipliers on A. It is
showed in [15] that QM (A) is a Banach space for the norm ||m|| = sup{||m(a, b)||;
a,b € A,|la|| = ||b|]| = 1}. For some classical Banach algebras, the Banach space
of quasi-multipliers may be identified with some other known space or algebras.
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For instance, by [15, Corollary of Theorem 22], one can identify QM (L,(G)),
where G is a locally compact Hausdorff group, with the measure algebra M (G).

After McKennon’s seminal paper the theory of quasi-multipliers on Banach
algebras was developed further by Vasudevan and Goel and Takahasi[l&], Va-
sudevan and Goel [17], Kassem and Rowlands [8], Lin [12, 13, 11], Dearden [5],
Argiin and Rowlands [2], Grosser [7], and Yilmaz and Rowlands [20]. Recently
quasimultipliers have been studied in the context of operator spaces by Kaneda
and Paulsen [10] and Kaneda [9].

In [7] and [2, p. 235] the notion of quasi-multiplier is extended to the dual of a
Banach algebra and concrete representations of the space QM (A*) has been given
in the case of the algebra K(X) of all approximable operators on a Banach space
X. The aim of this paper is to present a few new statements on quasi-multipliers
of the dual A* of a Banach algebra A whose second dual has a mixed identity.
Before we state our main results the basic notation is introduced. We mainly
adopt the notations from the monograph [1]. The reader is referred to this book
for some results used in this paper, as well.

For a Banach space X, let X* be its topological dual. The pairing between X
and X* is denoted by (-, ). We always consider X naturally embedded into X**
through the mapping 7, which is given by (7(z),&) = (£, z) (z € X, £ € X*).

Let A be a Banach algebra. It is well known that on the second dual A** there
are two algebra multiplications called the first and the second Arens product,
respectively. Since in the paper we use mainly the first Arens product, we recall
its definition. Let a € A, £ € A*, and F, G € A™ be arbitrary. Then one defines
E-aand G-€ as (£-a,b) = (£ ab) and (G - £, b) = (G,€ - b), where b € A is
arbitrary. Now, the first Arens product of F' and G is an element F' o G in A™*
which is given by (F'o G,£) = (F,G - &), where { € A* is arbitrary. The second
Arens product, which we denote by o, is defined in a similar way.

The space A** equipped with the first (or second) Arens product is a Banach
algebra and A is a subalgebra of it. It is said that A is Arens regular if the
equality F'oG = F o' G holds for all I, G € A**. For example, every C*-algebra
is Arens regular, see [3]. Note however that FFfoa = Fo'aand ao FF =aod F
hold for any a € A and F' € A**.

By A*A we denote the subspace {£ - a; £ € A*, a € A} of A*. Similarly,
AA* ={a-& a€ A, £ € A*}. If A*A = A*, then we say that A* factors on the
left. Similarly, A* factors on the right if AA* = A*. Ulger [16] has proved that if
A is Arens regular and has a b.a.i., then A* factors on both sides.

An element E in the second dual A** is said to be a mixed identity if it is a
right identity for the first and a left identity for the second Arens product. By
[1, Proposition 2.6.21], an element £ € A™ is a mixed identity if and only if
E-&E=¢6=¢-F, for every £ € A*. Note that A* has a mixed identity if and
only if A has a b.a.i.
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2. MAIN RESULTS

Let A be a complex Banach algebra. Assume that A** is endowed with the
first Arens product and A* is a Banach A™*-bimodule in the natural way. The
following is an extension of a definition given in [7].

Definition 2.1. A bilinear mapping m : A*x A™ — A* is a right quasi-multiplier
of A* if
m(F-¢G)=F-m(& Q) and m(,Go F)=m(,,G)- F (2.1)

hold for arbitrary £ € A* and F, G € A*™.

Similarly, a bilinear mapping m' : A™ x A* — A* is a left quasi-multiplier of
A*if

m(FoG,&)=F-m'(G,€) and  m/(G,é F)=m/(G.E)-F

hold for arbitrary £ € A* and F, G € A*.

Although in our investigation we do not assume Arens regularity, we usually
have to assume that the given algebra satisfies the following weaker condition.
We say that a Banach algebra A satisfies condition (K) if

(F-€)-G=F-(6-G) (F, GeA”, £cA)

Of course, every Arens regular Banach algebra satisfies condition (K). However,
the class of Banach algebras satisfying (K) is larger. It contains, for instance,
every Banach algebra A which is an ideal in its second dual. Namely, for arbitrary
F, G e A and £ € A*, we have

(F'-€) -G a) = (n(a),(F-§) - G) = (G w(a), F- §) = ((G ' m(a)) o )

= (G (n(a)o F),&) = (m(a)o F.{ - G) =(F- (- G),a)  (a€A).

Thus, the class of algebras satisfying the condition (K) is strictly larger than
the class of Arens regular algebras. Note however that a unital Banach algebra
satisfies condition (K) if and only if it is Arens regular. Indeed, if 1 is the identity
for A, then (1) is the identity for (A**, o) and (A**, o). Assume that A satisfies
the condition (K'). For arbitrary F,G € A* and £ € A*, one has

(FoG,§=(F.G-§)=(Fn(1),G-&) = (n(1),(G-¢) - F)

=(r(1),G-({ F)) =(n(1) 0 G,{ F) =(G,{- F) = (I G, §),

which means that the condition (K') implies Arens regularity.

If A is a Banach algebra satisfying condition (K) and A** has a mixed identity,
then a map m : A* x A™ — A* is a quasi-multiplier of A* if and only if

m(F-&§GoH)=F-m(f,G)-H (2.2)

holds for arbitrary F, G, H € A* and £ € A*. Indeed, it is obvious that every
bilinear mapping satisfying (2.1) satisfies (2.2) as well. On the other hand, if m
satisfies (2.2) and F is a mixed identity for A**, then one has
Similarly, m(§,Go H) =m(§,G) - H.



QUASI-MULTIPLIERS 9

Let QM,(A*) be the set of all bilinear and separately continuous right quasi-
multipliers of A*. It is obvious that QM,.(A*) is a linear space. Moreover, it is a
Banach space with respect to the norm

[lm[| = sup{||m(¢, F)[|; &€ A", FeA™, [[g<1, [[F|]| <1}

Of course, the same holds for QM;(A*), the set of all bilinear and separately
continuous left quasi-multipliers of A*.

Proposition 2.2. Let A be a Banach algebra satisfying condition (K). Then
QM,(A*) is a Banach A**-bimodule in a natural way.

Proof. Let m € QM,.(A*) and H € A* be arbitrary. Define H xm and m x H as
Hsxm({,G) =m(-H,G) and m* H( G) = m(§, H o G), where £ € A* and
G € A** are arbitrary. Since equalities

Hxm(F-&G)=m((F-£)-HG)=m(F-(¢ H),G)
=F-m(-HG)=F-(H*m(Q))

and
H+m({,GoF)=m(¢-H,GoF)=(H*m(G))-F

hold for all £ € A* and F, G € A* we conclude that H *xm is a quasi-multiplier.
The boundedness of H xm follows from |m(£- H,G)|| < ||m||||€||||H]|||G]|. Thus,
Hxm e QM,(A*). A similar reasoning gives m x H € QM,(A*).

It is easily seen that equalities (Hy o Hy)*m = Hyx (Hy*xm), mx* (Hy o Hy) =
(m* Hy)* Hy, and (Hy*m)* Hy = Hyx(mx* Hy) hold for arbitrary m € QM,.(A*)
and Hy, Hy € A™. O

For some Banach algebras A, there is a natural multiplication on the dual A*.
The following observation is related to Proposition 2.2. If A* is a Banach algebra
with multiplication ¢ which is compatible with the A**-bimodule structure of A*
in the sense that F'- ((on) = (F-&)on holds for arbitrary £, n € A* and F' € A*".
Then QM,(A*) has a natural structure of a left Banach A*-module. Namely, the
product nxm of n € A* and m € QM,(A*) is given by nxm(&, F) = m(on, F),
where n, £ € A* and F € A* are arbitrary.

Let A be a general Banach algebra. Then a map T : A* — A* is called a right

multiplier of A* if
T(F-¢§)=F-T(),
for all £ € A*, F € A™. With M,.(A*) we denote the space of all bounded linear
right multipliers on A*. It is obvious that for each F' € A*™* the right multiplication
operator Rp& = £ - F' is a right multiplier on A*. If A** has a mixed identity, then
each bounded linear right multiplier on A* is a right multiplication operator.
Indeed, let E' be a mixed identity for A* and T" € M,(A*) be arbitrary. Then
equalities
(T¢,a) = (E0a,T) = (E,T(a-§)) = (Rr(r)¢, a)

hold for all @ € A and §{ € A*, which means T' = Rp-(g).
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Theorem 2.3. If A* has a mized identity, then
:OT(faF) = (Tﬁ) - F (T € MT’(A*>7 §e A*v Fe A**)

defines an injective linear map p : M.(A*) — QM,.(A*) with norm ||p| < 1.
Moreover, p is onto if A has an identity. If A* has a mized identity with norm
one, then p is an isometry.

Proof. Let T' € M,(A*) be arbitrary. It is obvious that pr is a bilinear map
from A* x A* to A* and that it is bounded with |T||. For a € A, £ € A*, and
F, G € A", we have

pr(F-§G)=T(F-§) -G=(F-T¢) - G=F-(T¢-G) = F- pr(¢,G)

and
pr(§,GoF) = (T€)- (Go F) =(T¢-G)-F = pr(§,G) - F.

Thus, pr € QM,.(A*). It follows from the definition that p : M, (A*) — QM,(A*)
is linear. Obviously, ||pr|| < ||T||, which gives |[p|| < 1. Let E € A™ be a mixed
identity. If pr = 0, then we have (T€) - E = 0 for every { € A* and consequently
T = 0. Assume that E' is an identity for A**. Let m € QM,(A*) be arbitrary. It
is easily seen that T¢ = m(§, E) (€ € A*) defines a bounded right multiplier of
A*. Since equalities pp(&, F) = (T€) - F =m(§,E) - F=m(§,Eo F) =m(§, F)
hold for all £ € A* and F' € A** we conclude that p is onto.

At the end assume that E is mixed identity for A** of norm one. Let T €
M,.(A*) and € > 0 be arbitrary. If £ € A* issuch that ||£]| < 1 and ||T||—e < |T¢],
then

lprll = llpr (S, E)| = T€| > [T —&.

Thus, p is an isometry. O

Corollary 2.4. If A is a C*-algebra, then p is an isometrical isomorphism from
M,.(A*) onto QM,(A*).

Proof. 1t is well known that every C*-algebra is Arens regular and has b.a.i. Thus,
A satisfies condition (K) and its second dual A** is unital. O

If A is a Banach algebra satisfying condition (K) and A** has an identity, then
Theorem 2.3 allows a natural definition of multiplication in QM,(A*). Namely,
for arbitrary my, me € QM,(A*), let Ty, Ty € M,(A*) be uniquely determined
multipliers satisfying m; = py, and ms = pp,. Then

My Op M2 = P17y Op PTy ‘= PToTy
gives a well defined multiplication. It is easy to see that QM,(A*) is a unital
Banach algebra.

Note that QM;(A*) as well has a natural multiplication if A is a Banach algebra
satisfying condition (K) and A** has a mixed identity. Indeed, let M;(A*) be the
space of all bounded left multipliers on A*, i.e., bounded linear operators T on
A* satisfying T'( - F) =TE - F, for all £ € A* and F € A*. A similar reasoning
as in Theorem 2.3 shows that the mapping A\ : M;(A*) — QM;(A*), which is
defined by

As(F,§) =F-S¢ (SeM(A"), E€ A", FeA™),



QUASI-MULTIPLIERS 11

is a linear bijection. Thus, a natural multiplication on QM,;(A*) is given by
As, Oa Asy = Agys,-

If A is a Banach algebra such that A** has an identity, say E, of norm one,
then one can identify QM,(A*) by M, (A*) and QM;(A*) by M;(A*). Since right
multipliers on A* are precisely right multiplication operators with elements in
A* and left multipliers are left multiplication operators with same elements we
conclude that if A** has an identity of norm one, then Banach algebras QM, (A*)
and QM;(A*) are isomorphic.

Theorem 2.5. Let A be a Banach algebra satisfying condition (K) and A** has
an identity EZ. Assume A* factors on the right. Then there exists an isomorphism

of A* onto QM,(A*).

Proof. Define a map ¢ : A" — QM,(A*) by ¥(H) = pg,, where Ry is the
right multiplication operator on A* determined by H € A**. Then, for arbitrary
e A* F e A™,
VH)(EF)=(§-H) - F.

We check only the multiplicativity of ¢ since the linearity and continuity are
evident. Let Hy, Hy € A*. By Theorem 2.3, there exist 71,7y € M,(A*) such
that ¢ (Hy) = pr, and ¥(Hy) = pr,. Hence, for arbitrary £ € A* F € A™, we
have

T -F=( H)-F and T -F=({ Ha)- F.
It follows

(v (Hy) %p Y(H2))(E F) = pryn (6, F) = To(Th(§)) o F =T1§ - (Hy 0 F)
=¢- (HioHyo F) =9(Hy 0 Hy)(§, F),

which means 1 is a homomorphism.

Assume that ¢)(H) = 0 for H € A**. Since the mapping p is one to one Ry = 0.
Hence, for each £ € A*, one has £ o H = 0. Since, by the assumption, A* factors
on the right, we conclude H = 0. Thus, % is one to one. Homomorphism 1 is
onto, as well. Namely, if m € QM,(A*), then there exist T € M, (A*) such that

M= pr = iy, = V(T(E)). O

The previous theorem holds, for instance, for every Arens regular Banach al-
gebra with a b.a.i., in particular for every C*-algebra.

Let H be a Hilbert space and let A = K(H), the algebra of all compact opera-
tors on H. The dual of the space of compact operators is the space of all trace-class
operators, C1(H ). The second dual of A is B(H). Since K(H) is a C*-algebra we
have QM,.(Cy(H)) = B(H).

Theorem 2.6. Let A be a Banach algebra satisfying condition (K) and assume
that A** has an identity E. If A** is Arens reqular then QM,.(A*) is Arens reqular.

Proof. Let ¢ be as in the proof of Theorem 2.5. Thus, it is an onto homo-
morphism. Of course, ¥v** : (A™)* — (QM,(A*))* has the same property,
as well. Let F, G € (QM,(A*))**. Then there exist F,G € (A*)* such that
Y™ (F) = F, ¢**(G) = G. Thus,

FolG=y™(F)oy™(Q) =¢™(FoG)=¢~(Fd G)=Fdd. O
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Beside the norm topology there are two other useful topologies on QM,(A*).
The first is the strict topology § which is given by seminorms

m— |mxF||  (FeA”, me QM(A").
The second is the quasi-strict topology 7. It is given by seminorms
m— [[m(, F)| (€A, FeA™ me QM.(A7)).

Let 7 denote the topology on Q M, (A*) generated by the norm.

If A* has a mixed identity, then v C 5 C 7. Indeed, let a net {mq}acr C
QM,.(A*) converge to m € QM,(A*) in the topology [ and let £ € A* be arbitrary.
Since A** has a mixed identity the second dual A** is factorable. For arbitrary
F e A* there exist G, H € A* such that F' = G o H. It follows, by the definition
of the topology (3, that ||mq * G —m x G|| — 0. Thus

||ma(§7F) —m(f,F)H = ||m0¢(£7GOH) —m({,GoH)H
= [[(ma * G)(& H) = (m x G)(§, H)|| = 0,

which means that {m, }.c; converges to m in the topology . It is obvious that
pCr.

Theorem 2.7. Let A be a Banach algebra satisfying condition (K).
(i) The space (QM,(A*),~) is complete.
(i) If A** has a mized identity of norm one, then (QM,(A*),[3) is complete.

Proof. (i) Let {mq}acr be a y-Cauchy net in QM, (A*). Then, for arbitrary £ € A*
and F' € A, we have a Cauchy net {mq (&, F') }aer in the norm topology of A*.
Let m(&, F) = lim, my(§, F). It is obvious that in this way we have defined
a bilinear mapping m on A* x A* satisfying condition (2.1). Also by uniform
boundedness principle ([11], p. 172 and [0], p. 489), m is separately continuous
and therefore m € QM,(A*).

(ii) Let {ma}acr be a f—Cauchy net in QM,(A*). For each F' € A**, the
mapping T : A* — A* which is given by T3 (§) = ma(§, F) defines elements in
M, (A*). It is easy to show that pra = m, o F. It follows from the definition of the
f—topology that {pra }aer is a Cauchy net in the norm of @M, (A*). By Theorem
2.3, p is isometry and therefore {75} is a Cauchy net in the norm of M, (A*). By
the completeness of M, (A*), there exists Tr € M, (A*) such that ||Tg —Tr|| — O.
Since v C [ the net {mg,}aes is a Cauchy net in 7 topology. By the first part of
this theorem, (QM,(A*),~) is complete. Hence there exist m € QM,(A*) such
that

liénma(f,F) =m({,F) forall £€ A" and F € A™.

For each G € A**,
1, (6,G) = lim pry (6, G) = lim(ma o F) (€, G) = mma(, F o G)
=m({, FoG)=moF({ G).
It follows that
Ima o F —mo F|| = ||prg — pryl| = [T = Tr|| — 0,
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which implies that m is the G—limit of the net {mg }aer, i-€., @M, (A*) is complete
in 3 topology. O

At the end we consider the group algebra of a compact group G. By [21],
L,(G) is Arens regular if and only if G is finite. However, since L;(G) is a two-
sided ideal in its second dual ([19]), it satisfies condition (K'). Note that the dual
L1(G)* can be identified with L. (G).

Let M(G) be the convolution algebra of all bounded regular measures on G.
Recall that the convolution product of f € Li(G) and pu € M(G) is given by

/f:cy ) dpu(y).

Of course, Lo (G) is a Banach L;(G)**-bimodule. However, the space L. (G)
has also a natural structure of a Banach M (G)-bimodule. The same holds for
Loo(G)* = Li(G)™. We will denote all these module multiplications by .

Proposition 2.8. Let G be a compact group and A = L1(G). Then the equation
(0u(&F) = (Exp)« F (p€ M(G),§ € Lo(G), F € L1(G)™)
defines a linear isomorphism between M(G) and a subspace of QM,(A*).

Proof. Note that by the definition of module action (€ x ) x F' = & * (u * F).
From this and condition (K) we conclude that 6, € QM,(L(G)*). Of course,
0: M(G) — QM,.(L1(G)*) is a bounded linear map. We claim that 6 is injective.
Indeed, suppose that ¢, = 0. Then (§ x u) x ' = 0 for all { € Lo(G) and
F € (Loo(@G))*. Since Ly(G) has a b.a.i. it follows £ o u = 0. In particular, for
each £ € Cy(G), £ o u = 0. Since the measure algebra M (G) is the dual of Cy(G)
and it has a b.a.i., p = 0, as required. |
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