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Submitted by G. V. Milovanović

Abstract. Let Ω be a compact convex subset of Rd and let (Ln)n∈N be a
sequence of positive linear operators that map C(Ω) into itself. We establish
two Korovkin-type theorems in which the limit of the sequence of operators is
not necessarily the identity.

1. Introduction and Notation

Let C[a, b] be the linear space of all real-valued continuous functions on [a, b]
and let T be a linear operator which maps C[a, b] into itself. We say that T is
positive if for every non-negative f ∈ C[a, b], we have T [f ](x) ≥ 0 for all x ∈ [a, b].

In its simplest form, the theorem of Korovkin may be stated as follows.

Theorem A. Let (Ln)n∈N be a sequence of positive linear operators that map
C[0, 1] into itself. Suppose that the sequence (Ln[f ])n∈N converges to f uniformly
on [0, 1] for the three special functions ei : x 7→ xi, where i = 0, 1, 2. Then this
sequence converges to f uniformly on [0, 1] for every f ∈ C[0, 1].

This theorem became known mainly by the book of Korovkin [7]. Preliminary
forms with special classes of positive linear operators are due to Bohman [2] and
Korovkin [6].
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As soon as Theorem A is available, a proof of Weierstrass’ approximation the-
orem becomes very simple; see, e.g., Cheney [3] or Meinardus [8]. In addition,
Theorem A has various applications to approximation problems. For example,
it yields a simplified proof of Fejér’s result concerning approximation by means
of Hermite interpolation with derivatives controlled at the Chebyshev nodes; see
Cheney [3], where further applications along these lines will be found.

Because of its powerful applications, Korovkin’s result has been extended in
many directions. There is an extensive literature on Korovkin-type theorems,
which may have had a summit already about twentyfive years ago. In particu-
lar, there exist abstract results that cover many naturally arising concrete cases.
The contributions up to about 1994 are excellently documented in the book of
Altomare and Campiti [1].

The following more recent result by Wang Heping [9] seems to be not covered
by the results in [1].

Theorem B. Let (Ln)n∈N be a sequence of positive linear operators that map
C[0, 1] into itself and satisfy the following conditions:

(i) The sequence (Ln[e2])n∈N converges uniformly on [0, 1].
(ii) For every convex function f ∈ C[0, 1], and any x ∈ [0, 1], the sequence

(Ln[f ](x))n∈N is non-increasing.

Then there exists a linear operator L∞ on C[0, 1] such that Ln[f ] converges uni-
formly to L∞[f ] on [0, 1] for every f ∈ C[0, 1].

In this paper, we want to establish two multivariate Korovkin-type theorems,
one of them being an analogue of Theorem B.

We now make some agreements for the multivariate case. Throughout this
paper, let Ω be a convex compact subset of Rd. By C(Ω), we denote the class
of all real-valued continuous functions on Ω and by Ck(Ω) the subclass of all
functions that are k times differeniable in the following sense. For each x ∈ Ω
and any y ∈ Rd such that x + y ∈ Ω, the directional derivatives

Dj
yf(x) :=

dj

dtj
f(x + ty)

∣∣∣∣
t=0

(j = 0, . . . , k)

exist and depend continuously on x. When the directional derivative exists for y,
it can be extended to multiples by defining

Dj
λyf(x) := λjDj

yf(x) (λ ∈ R).

It is convenient to agree that C0(Ω) := C(Ω).
For f, g ∈ C(Ω), we write f ≤ g if f(x) ≤ g(x) for all x ∈ Ω. By ‖ · ‖Ω, we

denote the supremum norm on Ω, that is,

‖f‖Ω := sup
x∈Ω

|f(x)| .

When (gn)n∈N is a sequence of functions in C(Ω) and limn→∞ ‖g − gn‖Ω = 0,
or equivalently, limn→∞ gn(x) = g(x) uniformly for x ∈ Ω, we simply write
limn→∞ gn = g.

By ei, we denote the projection

ei : x = (x1, . . . , xd) 7−→ xi
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and write e := (e1, . . . , ed) for the identity on Rd, that is,

e(x1, . . . , xd) = (x1, . . . , xd).

The class of all linear operators that map C(Ω) into itself shall be denoted by
L(Ω). When L ∈ L(Ω) and

f = (f1, . . . , fd) ∈ C(Ω)d ,

where C(Ω)d is the Cartesian product of d copies of C(Ω), we define

L[f ] :=
(
L[f1], . . . , L[fd]

)
.

This way, L is extended to an operator

L : C(Ω)d −→ C(Ω)d.

Furthermore, we write ‖f‖2 for the mapping x 7→ ‖f(x)‖2, where ‖ · ‖ is the
Euclidean norm in Rd.

After these preparations, a multivariate Korovkin-type theorem which is closest
to Theorem A can be stated as follows.

Theorem C. Let (Ln)n∈N be a sequence of positive operators from L(Ω). Suppose
that

(i) lim
n→∞

Ln[1] = 1 ,

(ii) lim
n→∞

Ln[e] = e ,

(iii) lim
n→∞

Ln

[
‖e‖2

]
= ‖e‖2 .

Then limn→∞ Ln[f ] = f for every f ∈ C(Ω).

Theorem C is a special case of known results that are themselves consequences
of more abstract Korovkin-type theorems. For example, with Ω not necessarily
convex, Theorem C can be found in [4, p. 363, Corollary 3], and with any strictly
convex function u ∈ C(Ω) taking the role of ‖e‖2 in (iii), the result is in the book
of Altomare and Campiti [1, p. 234, Corollary 4.3.9]. While in these sources of
Theorem C, the limit of Ln in the hypotheses (i) and (ii) and in the conclusion is
always the identity, we want to establish an extension of Theorem C where this
need not be the case.

2. Statement of the Results

As a generalization of Theorem C, where the limit of the sequence (Ln)n∈N is
not necessarily the identity, we have the following result.

Theorem 2.1. Let (Ln)n∈N be a sequence of positive operators from L(Ω). Sup-
pose that

(i) lim
n→∞

Ln[1] = 1 ,

(ii) lim
n→∞

Ln[e] = ϕ ∈ C(Ω)d ,

(iii) lim
n→∞

Ln

[
‖e‖2

]
= ‖ϕ‖2 .
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Then limn→∞ Ln[f ] = f ◦ϕ for every f ∈ C(Ω).

This theorem may be interpreted as follows. If limn→∞ Ln[f ] exists for all affine
functions and for the Euclidean norm ‖e‖2 and if it reproduces these functions
under a co-ordinate transformation x 7→ ϕ(x), then the same holds for every
f ∈ C(Ω).

Now we turn to the announced multivariate analogue of Theorem B.

Theorem 2.2. Let (Ln)n∈N be a sequence of positive operators from L(Ω) satis-
fying the following conditions:

(i) The sequence (Ln[‖e‖2])n∈N converges uniformly on Ω.
(ii) For every convex function f ∈ C(Ω) and any x ∈ Ω, the sequence

(Ln[f ](x))n∈N is non-increasing.

Then there exists an operator L∞ ∈ L(Ω) such that limn→∞ Ln[f ] = L∞[f ] for
every f ∈ C(Ω).

3. Auxiliary Results

We shall need generalizations of the following results.

Proposition 3.1. Let L ∈ L(Ω) be a positive operator that reproduces affine
functions. Then f ≤ L[f ] for every convex function f ∈ C(Ω).

For the second result, we introduce a notation which will be used from now on.
If f ∈ C2(Ω), we defineD2f


Ω

:= sup
x∈Ω

sup
{∣∣D2

yf(x)
∣∣ : y ∈ Rd, ‖y‖ = 1

}
.

Proposition 3.2. Let L ∈ L(Ω) be a positive operator that reproduces affine
functions. Then

|L[f ]− f | ≤
D2f


Ω

2

(
L

[
‖e‖2

]
− ‖e‖2

)
for every f ∈ C2(Ω). Equality is attained for f = c‖e‖2 + P , where c ∈ R and P
is any affine function.

These propositions were derived and employed in a recent manuscript [5]. Here
we want to relax the hypothesis that L reproduces affine functions. The following
lemma contains Proposition 3.1 as a special case.

Lemma 3.3. Let L ∈ L(Ω) be a positive operator such that L[1] = 1. Then L[e]
maps Ω into itself and

f ◦ L[e] ≤ L[f ] (3.1)

for every convex function f ∈ C(Ω).

Proof. Assume that there exists a y ∈ Ω such that L[e](y) 6∈ Ω. Since Ω is a
closed convex set, there exists, by a familiar separation theorem (see, e.g., [10,
p. 65, Theorem 2.4.1]), a point x∗ ∈ Ω such that〈

L[e](y)− x∗, x− x∗
〉
≤ 0 (x ∈ Ω),
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where we have used the standard inner product in Euclidean spaces on the left-
hand side. Hence the function

φ : x 7−→
〈
L[e](y)− x∗, x− x∗

〉
is non-positive on Ω. Now we apply L to φ and evaluate the result at y. Since L
is a positive operator that reproduces constants, we find that

0 ≥ L[φ](y) =
〈
L[e](y)− x∗, L[e](y)− L[x∗](y)

〉
=

∥∥L[e](y)− x∗
∥∥2

.

Hence L[e](y) = x∗, which is a contradiction. This proves the first assertion.
Next we want to prove (3.1). Assume that there exists a convex function

f ∈ C(Ω) and a point y ∈ Ω such that

f
(
L[e](y)

)
> L[f ](y) . (3.2)

Now, consider the epigraph

E :=
{
(x, u) ∈ Rd+1 : x ∈ Ω, u ∈ R, u ≥ f(x)

}
of f , which is a closed convex set in Rd+1. Because of (3.2), the point(

L[e](y), L[f ](y)
)
∈ Rd+1

does not belong to E. By the aforementioned separation theorem, now used in
Rd+1, there exists a point (x∗, u∗) ∈ E such that

H(x, u) :=
〈 (

L[e](y), L[f ](y)
)
− (x∗, u∗) , (x, u)− (x∗, u∗)

〉
≤ 0

for all (x, u) ∈ E. Since (x, f(x)) ∈ E for x ∈ Ω, the function Φ : Ω → R,
defined by Φ(x) := H(x, f(x)), is non-positive on Ω. Applying L to Φ and
evaluating the result at y, we find that

0 ≥ L[Φ](y) =
∥∥ (

L[e](y), L[f ](y)
)
− (x∗, u∗)

∥∥2
,

which is a contradiction. This completes the proof. �

The next lemma is a generalization of Proposition 3.2.

Lemma 3.4. Let L ∈ L(Ω) be a positive operator such that L[1] = 1. If f ∈
C2(Ω), then ∣∣L[f ]− f ◦ L[e]

∣∣ ≤ D2f


Ω

2

(
L

[
‖e‖2

]
−

∥∥L[e]
∥∥2

)
. (3.3)

Equality is attained for f = c‖e‖2 +P , where c ∈ R and P is any affine function.

Proof. The functions

g± :=

D2f


Ω

2
‖e‖2 ± f

are convex for both choices of the sign. Applying Lemma 3.3, we find thatD2f


Ω

2

∥∥L[e]
∥∥2 ± f ◦ L[e] ≤

D2f


Ω

2
L

[
‖e‖2

]
± L[f ],

or equivalently,

∓
(
L[f ]− f ◦ L[e]

)
≤

D2f


Ω

2

(
L

[
‖e‖2

]
−

∥∥L[e]
∥∥2

)
,
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which shows that (3.3) holds.
The statement on the occurrence of equality is easily verified. �

4. Proofs of the Theorems

Proof of Theorem 2.1. Without loss of generality, we may assume that Ln[1] = 1
for all n ∈ N. Indeed, the operators

L̃n : f 7−→ Ln[f ]

Ln[1]

have this property and, because of (i),

lim
n→∞

L̃n[f ] = lim
n→∞

Ln[f ]

as soon as one of these limits exists.
Now, let f be any function from C(Ω). Under our assumptions on Ln, it follows

that
|Ln[f ]| ≤ Ln[|f |] ≤ Ln [‖f‖Ω] = ‖f‖Ω Ln[1] = ‖f‖Ω .

Obviously, when f = 1, equality is obtained throughout. Hence

sup
f 6=0

‖Ln[f ]‖Ω

‖f‖Ω

= 1 ,

which means that the sequence (Ln)n∈N is uniformly bounded by 1. Taking also
into account that C2(Ω) is dense in C(Ω), we see by employing the familiar the-
orem of Banach–Steinhaus that it suffices to prove the conclusion of the theorem
for f ∈ C2(Ω) only.

Under this additional assumption on f , Lemma 3.4 applies and yields∣∣Ln[f ]− f ◦ Ln[e]
∣∣ ≤ D2f


Ω

2

(
Ln

[
‖e‖2

]
−

∥∥Ln[e]
∥∥2

)
. (4.1)

Since ‖e‖2 is a continuous function, we deduce with the help of (ii) that

lim
n→∞

∥∥Ln[e]
∥∥2

=
∥∥∥ lim

n→∞
Ln[e]

∥∥∥2

= ‖ϕ‖2 .

Hence it follows from (4.1) and (iii) that

lim
n→∞

(
Ln[f ]− f ◦ Ln[e]

)
= 0 .

Finally, the continuity of f and (ii) imply

lim
n→∞

Ln[f ] = lim
n→∞

(
f ◦ Ln[e]

)
= f ◦

(
lim

n→∞
Ln[e]

)
= f ◦ϕ .

This completes the proof. �

Proof of Theorem 2.2. Let P be any affine function. Since P and −P are both
convex, it follows from the hypothesis (ii) that Ln[P ] = Ln+1[P ] for all n ∈ N.
In particular, Ln[1] = L1[1] and Ln[e] = L1[e] for all n ∈ N. Thus, if f is any
function from C(Ω), then

|Ln[f ]| ≤ Ln[|f |] ≤ Ln [‖f‖Ω] = ‖f‖Ω Ln[1] = ‖f‖Ω L1[1] .

This shows that the sequence (Ln)n∈N is uniformly bounded by L1[1].
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Now, let f ∈ C2(Ω) and consider the functions

g± :=

D2f


Ω

2
‖e‖2 ± f .

They are convex for both choices of the sign. Hence, for any n, k ∈ N, the
hypothesis (ii) implies that

Ln+k

[
g±

]
≤ Ln

[
g±

]
.

Substituting according to the definition of g±, using the linearity of the involved
operators and regrouping terms, we arrive at

∓
(
Ln[f ]− Ln+k[f ]

)
≤

D2f


Ω

2

(
Ln

[
‖e‖2

]
− Ln+k

[
‖e‖2

])
.

This shows that∥∥Ln[f ]− Ln+k[f ]
∥∥

Ω
≤

D2f


Ω

2

∥∥Ln

[
‖e‖2

]
− Ln+k

[
‖e‖2

]∥∥
Ω

.

Employing the hypothesis (i), we now conclude that (Ln[f ])n∈N is a Cauchy se-
quence in C(Ω). Since C(Ω) is complete, there exists a function f∞ ∈ C(Ω) such
that

lim
n→∞

Ln[f ] = f∞ . (4.2)

Although (4.2) has been obtained for f ∈ C2(Ω) only, it extends to all f ∈ C(Ω)
by the Banach–Steinhaus theorem. Hence we have a mapping L∞, say, such that

L∞ :

{
C(Ω) −→ C(Ω) ,

f 7−→ f∞ = limn→∞ Ln[f ] .

Clearly, this mapping is linear and so it belongs to L(Ω). �
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