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Abstract. In this note we discuss the convergence of greedy approximants
for trigonometric Fourier expansion in Lp(T), 1 ≤ p < 2.

1. Introduction

We study in this paper the following nonlinear method of summation of trigono-
metric Fourier series. Consider a periodic function f ∈ Lp(T), 1 ≤ p ≤ ∞,
(L∞(T) = C(T)), defined on the torus T. Let a number m ∈ N be given and Λm

be a set of k ∈ Z with the properties:

min
k∈Λm

|f̂(k)| ≥ max
k/∈Λm

|f̂(k)|, |Λm| = m,

where

f̂(k) := (2π)−1

∫
T
f(x)e−ikxdx

is a Fourier coefficient of f . We define

Gm(f) := SΛm(f) :=
∑

k∈Λm

f̂(k)eikx

and call it a m-th greedy approximant of f with regard to the trigonometric
system T := {eikx}k∈Z. Clearly, a m-th greedy approximant may not be unique.
In this paper we do not impose any extra restrictions on Λm.
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It has been proved in [1] for p < 2 and in [5] for p 6= 2 that there exists a
f ∈ Lp(T) such that {Gm(f)} does not converge in Lp. It was remarked in [6]
that the method from [5] gives a little more: 1) There exists a continuous function
f such that {Gm(f)} does not converge in Lp(T) for any p > 2; 2) There exists
a function f that belongs to any Lp(T), p < 2, such that {Gm(f)} does not
converge in measure. Thus the above negative results show that the condition
f ∈ Lp(T), p 6= 2, does not guarantee convergence of {Gm(f)} in the Lp-norm.
The main goal of this paper is to discuss additional (to f ∈ Lp) conditions on f
to guarantee that ‖f − Gm(f)‖p → 0 as m → ∞. Some results in this direction
have already been obtained in [2].

For a mapping α : W → W we denote αk its k-fold iteration: αk := α◦αk−1. In
[3] we studied quantitative versions of Cauchy’s convergence criterion for greedy
approximants and proved the following theorems.

Theorem 1.1. Let α : N → N be strictly increasing. Then the following condi-
tions are equivalent:

(a) for some k ∈ N and for any sufficiently large m ∈ N we have αk(m) > em;
(b) if f ∈ C(T) and∥∥Gα(m)(f)−Gm(f)

∥∥
∞ → 0 (m →∞)

then

‖f −Gm(f)‖∞ → 0 (m →∞).

Theorem 1.2. Let p = 2q, q ∈ N, be an even integer, δ > 0. Assume that
f ∈ Lp(T) and there exists a sequence of positive integers M(m) > m1+δ such
that

‖GM(m)(f)−Gm(f)‖p → 0 as m →∞.

Then we have

‖f −Gm(f)‖p → 0 as m →∞.

Theorem 1.3. For any p ∈ (2,∞) there exists a function f ∈ Lp(T) with diver-
gent in the Lp(T) sequence {Gm(f)} of greedy approximations with the following
property. For any sequence {M(m)} such that m ≤ M(m) ≤ m1+o(1) we have

‖GM(m)(f)−Gm(f)‖p → 0 (m → 0).

The proofs of Theorems 1.1 and 1.2 give also ”sequential” versions of those
results.

Theorem 1.4. Let {mj}j∈N be a strictly increasing sequence of positive integers.
Then the following conditions are equivalent:

(a) for some k ∈ N and for all j ∈ N we have mj+k > emj ;
(b) if f ∈ C(T) and∥∥Gmj+1

(f)−Gmj
(f)

∥∥
∞ → 0 (j →∞)

then ∥∥f −Gmj
(f)

∥∥
∞ → 0 (j →∞).



210 S.V. KONYAGIN

Theorem 1.5. Let p = 2q, q ∈ N, be an even integer, δ > 0. Assume that
f ∈ Lp(T) and there exists a sequence of positive integer {mj}j∈N such that
mj+1 > m1+δ

j for all j and∥∥Gmj+1
(f)−Gmj

(f)
∥∥

p
→ 0 (j →∞)

Then we have ∥∥f −Gmj
(f)

∥∥
p
→ 0 (j →∞).

2. Results

In this note we announce some results for the spaces Lp(T), 1 ≤ p < 2.

Theorem 2.1. Let α : N → N be strictly increasing such that for some k ∈ N
and for all m ∈ N we have αk(m) > em. Assume that 1 ≤ p < 2, f ∈ Lp(T), and∥∥Gα(m)(f)−Gm(f)

∥∥
p
→ 0 (m →∞).

Then

‖f −Gm(f)‖p → 0 (m →∞).

Theorem 2.2. Let 1 ≤ p < 2. Assume that f ∈ Lp(T) and there exist a sequence
of positive integer {mj}j∈N and a positive integer k such that mj+k > emj for all
j and ∥∥Gmj+1

(f)−Gmj
(f)

∥∥
p
→ 0 (j →∞)

Then we have ∥∥f −Gmj
(f)

∥∥
p
→ 0 (j →∞).

We can partially reverse Theorem 2.2 for p = 1.

Theorem 2.3. Let δ > 0, {mj}j∈N be a sequence of positive integers such that
log mj+1 > (log mj)

2+δ for all j and for any k the inequality mj+k < emj holds
for some j. Then there exists a function f ∈ L1(T) such that∥∥Gmj+1

(f)−Gmj
(f)

∥∥
1
→ 0 (j →∞)

but

sup
j
‖Gmj

(f)‖1 = ∞.

Probably, the condition log mj+1 > (log mj)
2+δ is not essential. However, we

expect that Theorem 2.2 for p > 1 and Theorem 2.1 are not sharp.
The proofs of Theorems 2.1 and 2.2 follow the technique of [3]. The proof of

Theorem 2.3 is based on [4].
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