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ABSTRACT. We prove the existence of a linear isometric correspondence be-
tween the Banach space of all symmetric orthogonal forms on a JB*-algebra
J and the Banach space of all purely Jordan generalized Jordan derivations
from J into J*. We also establish the existence of a similar linear isometric
correspondence between the Banach spaces of all anti-symmetric orthogonal
forms on 7, and of all Lie Jordan derivations from 7 into J*.

1. INTRODUCTION

Let ¢ and ¥ be functionals in the dual of a C*-algebra A. The assignment

defines a continuous bilinear form on A which also satisfies the following property:
given a,b € A with a L b (i.e. ab* = b*a = 0) we have V,,(a,b*) = 0. A
continuous bilinear form V' : Ax A — C is said to be orthogonal when V' (a,b) =0
for every a,b € Ay, with a L b (see [15, Definition 1.1]). A renowned and useful
theorem, due to S. Goldstein [15], gives the precise expression of every continuous
bilinear orthogonal form on a C*-algebra.
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Theorem 1.1. [15] Let V : A x A — C be a continuous orthogonal form on a
C*-algebra. Then there exist functionals p,v € A* satisfying that

Vi(a,b) = Vou(a,b) = p(aob) + ¢([a, b]),
for all a,b € A, where aob:= 1(ab+ ba), and |a,b] := 1(ab— ba). O

Henceforth, the term “form” will mean a “continuous bilinear form”. It should
be noted here that by the above Goldstein’s theorem, for every orthogonal form
V on a C*-algebra we also have V' (a, b*) = 0, for every a,b € A with a L b.

The applications of Goldstein’s theorem appear in many different contexts ([5,
17]). Quite recently, an extension of Goldstein’s theorem for commutative real
C*-algebras has been published in [14].

Making use of the weak amenability of every C*-algebra, U. Haagerup and
N.J. Laustsen gave a simplified proof of Goldstein’s theorem in [17]. In the
third section of the just quoted paper, and more concretely, in the proof of [17,
Proposition 3.5], the above mentioned authors pointed out that for every anti-
symmetric form V' on a C*-algebra A which is orthogonal on A,,, the mapping
D, :A— A* D, (a)(b) = V(a,b) (a,b € A) is a derivation. Reciprocally, the
weak amenability of A also implies that every derivation § from A into A* is
inner and hence of the form d(a) = adj,(a) = ¢a — a¢ for a functional ¢ € A*.
In particular, the form Vj(a,b) = d(a)(b) is anti-symmetric and orthogonal.

The above results are the starting point and motivation of the present note.
In the setting of C*-algebras we shall complete the above picture showing that
symmetric orthogonal forms on a C*-algebra A are in bijective correspondence
with the purely Jordan generalized derivations from A into A* (see Section 2
for definitions). However, the main goal of this note is to explore the orthogonal
forms on a JB*-algebra and the similarities and differences between the associative
setting of C*-algebras and the wider class of JB*-algebras.

In Section 2 we revisit the basic theory and results on Jordan modules and
derivations from the associative derivations on C*-algebras to Jordan derivations
on C*-algebras and JB*-algebras. The novelties presented in this section include
a new study about generalized Jordan derivations from a JB*-algebra J into a
Jordan Banach J-module in the line explored in [24], [1, §4], and [7, §3]. We
recall that, given a Jordan Banach [J-module X over a JB*-algebra, a generalized
Jordan derivation from J into X is a linear mapping G : J — X for which there
exists £ € X** satisfying

G(aob) =G(a)ob+aoG(b) — Uup(§),
for every a,b in J, where
Usp(z) = (aoz)ob+ (box)oa—(aob)ox (z e X™).

We show how the results on automatic continuity of Jordan derivations from a
JB*-algebra J into itself or into its dual, established by S. Hejazian, A. Niknam
[19] and B. Russo and the second author of this paper in [26], can be applied
to prove that every generalized Jordan derivation from J into J or into J* is
continuous (see Proposition 2.1).
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Section 3 contains the main results of the paper. In Proposition 3.8 we prove
that for every generalized Jordan derivation G : J — J*, where J is a JB*-
algebra, the form Vg : 7 x J — C, Vg(a,b) = G(a)(b) is orthogonal on the whole
J. We introduce the two new subclasses of purely Jordan generalized Jordan
derivations and Lie Jordan derivations. A generalized derivation G : J — J*
is said to be a purely Jordan generalized derivation if G(a)(b) = G(b)(a), for
every a,b € J; while a Lie Jordan derivation is a Jordan derivation D : J — J*
satisfying D(a)(b) = —D(b)(a), for all a,b € J.

Denote by OF(J) the Banach space of all symmetric orthogonal forms on
J, and by PJGDer(J,J*) the Banach space of all purely Jordan generalized
Jordan derivations from 7 into J*. The mappings

OF(J) = PIGDer(J,T*), PIGDex(J,T") = OF(T),

V'—)GV, G'_>Vc7

define two isometric linear bijections and are inverses of each other (cf. Theorem
3.6). Let now OF(J) and LieJDer(J,J*) denote the Banach spaces of all
anti-symmetric orthogonal forms on 7, and of all Lie Jordan derivations from J
into J*, respectively. The mappings

OF.s(J) = LieIDer(J,T"), LieJDer(T,T*) — OF.s(T),

Ve=D,, DV,

define two isometric linear bijections and are inverses of each other (see Theorem
3.13).

We culminate the paper with a short discussion which shows that, contrary
to what happens for anti-symmetric orthogonal forms on a C*-algebra, the anti-
symmetric orthogonal forms on a JB*-algebra are not determined by the inner
Jordan derivations from J into J* (see Remark 3.15). It seems unnecessary
to stress the high impact and deep repercussion of the theory of derivations on
C*-algebras and JB*-algebras; the results in this note add a new interest and
applications of Jordan derivations and generalized Jordan derivations on JB*-
algebras.

Throughout this paper, we habitually consider a Banach space X as a norm
closed subspace of X**. Given a closed subspace Y of X, we shall identify the
weak*-closure, in X**, of Y with Y™**.

2. DERIVATIONS AND GENERALIZED DERIVATIONS IN CORRESPONDENCE
WITH ORTHOGONAL FORMS

A derivation from a Banach algebra A into a Banach A-module X is a linear
map D : A — X satisfying D(ab) = D(a)b+aD(b), (a € A). A Jordan derivation
from A into X is a linear map D satisfying D(a?) = aD(a) + D(a)a, (a € A),
or equivalently, D(aob) = ao D(b) + D(a) o b (a,b € A), where a0 b = 22,
whenever a,b € A, or one of a,b is in A and the other is in X. Let x be an
element of X, the mapping adj, : A — X, a — adj,(a) := za— ax, is an example
of a derivation from A into X. A derivation D : A — X is said to be inner when
it can be written in the form D = adj, for some z € X.
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A well known result of S. Sakai (cf. [29, Theorem 4.1.6]) states that every
derivation on a von Neumann algebra is inner.

J.R. Ringrose proved in [28] that every derivation from a C*-algebra A into a
Banach A-bimodule is continuous.

A Banach algebra A is amenable if every bounded derivation from A into a
dual Banach A-bimodule is inner. Contributions of A. Connes and U. Haagerup
show that a C*-algebra is amenable if and only if it is nuclear ([11, 16]). The
class of weakly amenable Banach algebras is less restrictive. A Banach algebra
A is weakly amenable if every bounded derivation from A into A* is inner. U.
Haagerup proved that every C*-algebra B is weakly amenable, that is, for every
derivation D : B — B*, there exists ¢ € B* satisfying D(.) = adj,, ([16, Corollary
4.2]).

In [24] J. Li and Zh. Pan introduced a concept which generalizes the notion of
derivation and is more related to the Jordan structure underlying a C*-algebra.
We recall that a linear mapping G from a unital C*-algebra A to a (unital) Banach
A-bimodule X is called a generalized derivation in [24] whenever the identity

G(ab) = G(a)b+ aG(b) — aG(1)b

holds for every a,b in A. The non-unital case was studied in [I, §4], where a
generalized derivation from a Banach algebra A to a Banach A-bimodule X is
defined as a linear operator D : A — X for which there exists £ € X** satisfying

D(ab) = D(a)b+ aD(b) — a&b (a,b € A).

Given an element x in X, it is easy to see that the operator G, : A — X,
x +— Gz(a) := ax + xa, is a generalized derivation from A into X. Clearly, every
derivation from A into X is a generalized derivation. There are examples of
generalized derivations from a C*-algebra A into a Banach A-bimodule X which
are not derivations, for example G, : A — A is a generalized derivation which is
not a derivation when a* # —a (cf. [6, comments after Lemma 3]).

2.1. Jordan algebras and modules. We turn now our attention to Jordan
structures and derivations. We recall that a real (resp., complex) Jordan algebra
is a commutative algebra over the real (resp., complex) field which is not, in
general associative, but satisfies the Jordan identity:

(aob)oa®=ao(boad?). (2.1)

A normed Jordan algebra is a Jordan algebra J equipped with a norm, |||,
satisfying ||a o b|| < ||a|| [|0||, a,b € J. A Jordan Banach algebra is a normed
Jordan algebra whose norm is complete. A JB*-algebra is a complex Jordan
Banach algebra J equipped with an isometric algebra involution * satisfying
| {a,a*,a}|| = ||la|®, a € T (we recall that {a,a*,a} =2(aoa*)oa—a’oa*). A
real Jordan Banach algebra J satisfying

lall* = lla*]| and, [|a*]| < [la® + b*],

for every a,b € J is called a JB-algebra. JB-algebras are precisely the self adjoint
parts of JB*-algebras [9, page 174]. A JBW*-algebra is a JB*-algebra which is a
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dual Banach space (see [18, §4] for a detailed presentation with basic properties).

Every real or complex associative Banach algebra is a real or complex Jordan
Banach algebra with respect to the natural Jordan product a o b = %(ab + ba).

Let J be a Jordan algebra. A Jordan J-module is a vector space X, equipped
with a couple of bilinear products (a,z) — aox and (x,a) — z oa from J x X
to X, satisfying:

aorx==xz0a, a*o(roa)=(a’*ox)oa, and, (2.2)

2((xoa)ob)oa+xo(a’®ob)=2(xoa)o(aob)+ (xob)oa? (2.3)
for every a,b € J and x € X. When X is a Banach space and a Jordan [J-
module for which there exists M > 0 satisfying ||ja o z|| < M ||a|| ||z]|, we say
that X is a Jordan-Banach J-module. For example, every associative Banach A-
bimodule over a Banach algebra A is a Jordan-Banach A-module for the product
aox = 3(ax+za) (a € A, x € X). The dual, J*, of a Jordan Banach algebra J
is a Jordan-Banach J-module with respect to the product

(a0 @)(b) =p(acb), (2.4)
where a,b € J, p € J".

Given a Banach A-bimodule X over a C*-algebra A (respectively, a Jordan
Banach J-module over a JB*-algebra [J), it is very useful to consider X** as
a Banach A-bimodule or as a Banach A™-bimodule (respectively, as a Jordan
Banach J-module or as a Jordan Banach J**-module). The case of Banach
bimodules over C*-algebras is very well dealt with in the literature (see [12] or [7,
§3]), we recall here the basic facts: Let X, Y and Z be Banach spaces and let m :
X XY — Z be a bounded bilinear mapping. Defining m*(2’, z)(y) := 2'(m(z,y))
(x € X,y €Y,2 € Z*), we obtain a bounded bilinear mapping m* : Z*x X — Y*.
[terating the process, we define a mapping m*** : X** x Y** — Z**. The mapping
" = m** (2" y") is weak® to weak® continuous whenever we fix y” € Y**, and
the mapping 3" — m™*(x,y”) is weak® to weak® continuous for every z € X.
One can consider the transposed mapping m' : Y x X — Z, m'(y,z) = m(z,y)
and the extended mapping m™*** : X** x Y** — Z** In this case, the mapping
= mP* (2" y) is weak* to weak* continuous whenever we fix y € Y, and the
mapping 3" — m™** (2" y") is weak* to weak* continuous for every z” € X**.

In general, the mappings m™*** and m** do not coincide (cf. [2]). When
m**t = m*** we say that m is Arens regular. When m is Arens regular, its
(unique) third Arens transpose m** is separately weak* continuous (see [2, The-
orem 3.3]). It is well known that the product of every C*-algebra A is Arens
regular and the unique Arens extension of the product of A to A*™* x A** coin-
cides with the product of its enveloping von Neumann algebra (cf. [12, Corollary
3.2.37]). Combining [2, Theorem 3.3] with [18, Theorem 4.4.3], we can deduce
that the product of every JB*-algebra [J is Arens regular and the unique Arens
extension of the product of J to J** x J** coincides with the product of J**
given by [18, Theorem 4.4.3]. The literature contains some other results assuring

that certain bilinear operators are Arens regular. For example, if every operator
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from X into Y* is weakly compact and the same property holds for every operator
from Y into X*, then it follows from [4, Theorem 1] that every bounded bilinear
mapping m : X X Y — Z is Arens regular. It is known that every bounded
operator from a JB*-algebra into the dual of another JB*-algebra is weakly com-
pact (cf. [10, Corollary 3]), thus given a JB*-algebra J, every bilinear mapping
m:J x J — Z is Arens regular.

Let X be a Banach A-bimodule over a C*-algebra A. Let us denote by
mAXX = X, andmy: X X A — X,

the bilinear maps given by the corresponding module operations, that is, m(a, z) =
ax, and me(x,a) = xa, respectively. The third Arens bitransposes w** : A* x
X* — X and 73 0 X x A* — X*™* satisfy that 77**(a, z) defines a weak*
to weak® linear operator whenever we fix x € X™*, or whenever we fix a € A,
respectively, while 75**(z,a) defines a weak® to weak* linear operator whenever
we fix x € X, and a € A™, respectively. From now on, given a € A**, z € X**,
be J and y € Y**, we shall frequently write az = 7i**(a, 2), za = 75**(z,a), and
boy = 7n"*(b,y), respectively. Let (a,), and (z,) be nets in A and X, such that
ay —a € A, and z, — = € X**, in the respective weak* topologies. It follows
from the above properties that

7 (a,x) = li/I\n h;I;n axz,, and 73" (x,a) = liin liin T, (2.5)
in the weak® topology of X**. It follows from above properties that X** is a

Banach A**-bimodule for the above operations (cf. [12, Theorem 2.6.15(iii)]).

In the Jordan setting, we do not know of any reference asserting that the bidual
Y** of a Jordan Banach J-module Y over a JB*-algebra J is a Jordan Banach
J**-module, this is for the moment an open problem. However, in the particular
case of Y = J%, it is quite easy and natural to check that J*** is a Jordan Banach
J**-module with respect to the product defined in (2.4). That is, given ¢ € J***
and a € J**, let us define poa =aop € J** as the functional determined by

(poa)(y) :=¢laocy) (y € T).

2.2. Jordan derivations. Let X be a Jordan-Banach module over a Jordan
Banach algebra 7. A Jordan derivation from J into X is a linear map D : J —
X satisfying:
D(aob) = D(a)ob+ ao D(b).

Following standard notation, given z € X and a € J, the symbols L(a) and L(z)
will denote the mappings L(a) : X — X,z — L(a)(x) = aox and L(z) : J — X,
a+— L(x)(a) = aox. By a little abuse of notation, we also denote by L(a) the
operator on J defined by L(a)(b) = aob. Examples of Jordan derivations can be
given as follows: if we fix a € J and x € X, the mapping

[L(x), L(a)] = L(z)L(a) — L(a)L(z) : T — X, b~ [L(x), L(a)](b),
is a Jordan derivation. A derivation D : J — X that can be written in the form
D =3%"" (L(z;)L(a;) — L(a;) L(x;)), (z; € X, a; € J) is called inner.
In 1996, B.E. Johnson proved that every bounded Jordan derivation from a
C*-algebra A to a Banach A-bimodule is a derivation (cf. [22]). B. Russo and
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the second author of this paper showed that every Jordan derivation from a C*-
algebra A to a Banach A-bimodule or to a Jordan Banach A-module is continuous
(cf. [26, Corollary 17]). Actually every Jordan derivation from a JB*-algebra J
into J or into J* is continuous (cf. [19, Corollary 2.3] and also [26, Corollary
10]).

Contrary to Sakai’s theorem, which affirms that every derivation on a von
Neumann algebra is inner [29, Theorem 4.1.6], there exist examples of JBW*-
algebras admitting non-inner derivations (cf. [30, Theorem 3.5 and Example 3.7]).
Following [20], a JB*-algebra J is said to be Jordan weakly amenable, if every
(bounded) derivation from J into J* is inner. Another difference between C*-
algebras and JB*-algebras is that Jordan algebras do not exhibit a good behaviour
concerning Jordan weak amenability; for example L(H) and K (H) are not Jordan
weakly amenable when H is an infinite dimensional complex Hilbert space (cf.
[20, Lemmas 4.1 and 4.3]). Jordan weak amenability is deeply connected with
the more general notion of ternary weak amenability (see [20]). More interesting
results on ternary weak amenability were recently developed by R. Pluta and B.
Russo in [27].

Let us assume that J and X are unital. Following [6], a linear mapping
G : J — X will be called a generalised Jordan derivation whenever

Glaob) = Gla)o b+ a0 G(b) — UpyG(L),

for every a,b in J, where U, p(x) := (aoz)ob+ (box)oa—(aob)ox (v € J
or z € X). Following standard notation, given an element a in a JB*-algebra 7,
the mapping U, , is usually denoted by U,. Every generalized Jordan derivation
G:J — X with G(1) = 0 is a Jordan derivation. Every Jordan derivation from
J into X is a generalized derivation. For each z € X, the mapping L(z) : 7 — X
is a generalized derivation, and, as in the associative setting, there are examples of
generalized derivations which are not derivations (cf. [0, comments after Lemma
3]). In the not necessarily unital case, a linear mapping G : J — X will be called
a generalized Jordan derivation if there exists £ € X** satisfying

Glaob) =Gla)ob+aoG(b) = Uas(§), (2.6)

for every a,b in J (this definition was introduced in [I, §4] and in [7, §3]).

Let J be a JB*-algebra and let Y denote J or J*, regarded as a Jordan
Banach J-module. Suppose G : J — Y is a generalized derivation, and let
¢ € Y** denote the element for which (2.6) holds. As we have commented before,
L) : J — Y™ is a generalized Jordan derivation. If we regard G as a linear
mapping from 7 into Y**, it is not hard to check that G=G- L&) :TJ—-Y*™
is a Jordan derivation. Corollary 2.3 in [19] implies that @G is continuous. If, in
the setting of C*-algebras, we replace [19, Corollary 2.3] with [26, Corollary 17],
then the above arguments remain valid and yield:

Proposition 2.1. Fvery generalized Jordan derivation from a JB*-algebra J into
itself or into J* 1s continuous. Furthermore, every generalized derivation from a
C*-algebra A into a Banach A-bimodule is continuous. O
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A consequence of the result established by T. Ho, B. Russo and the second
author of this note in [20, Proposition 2.1] is that for every Jordan derivation D
from a JB*-algebra J into its dual, its bitranspose D** : J** — J*** is a Jordan
derivation and D**(J**) C J*. A similar technique gives:

Proposition 2.2. Let J be a JB-algebra or a JB*-algebra, and suppose that G :
J — J* is a generalized Jordan derivation (respectively, a Jordan derivation).
Then G** : J** — J** is a weak*-continuous generalized Jordan derivation
(respectively, Jordan derivation) satisfying G**(J**) C J*.

Proof. Suppose first that 7 is a JB-algebra. It is known that J = J +iJ can be
equipped with a structure of JB*-algebra such that Tw=JT (cf. [9, page 174]).
It is easy to check that, given a generalized Jordan derivation G : J — J*, the
mapping G : J — J*, G(a+ ib) = G(a) + iG(b) (a,b € J) defines a generalized
Jordan derivation on J , where, as usually, for ¢ € J*, we regard ¢ : J —C

as defined by ¢(a + ib) = @(a) +ip(b). We may therefore assume that J is a
JB*-algebra.

By Proposition 2.1, every generalized Jordan derivation G : J — J* is au-
tomatically continuous. Furthermore, since every bounded operator from a JB*-
algebra into the dual of another JB*-algebra is weakly compact (cf. [10, Corollary
3]), we deduce that G is weakly compact. It is well known that this is equivalent

Since G : J — J* is a generalized Jordan derivation, there exists £ € J***
satisfying

G(roy) =G(z)oy+x0oG(y) — Usy(8),
for every x,y in J. Let a and b be elements in J**. By Goldstine’s Theorem, we
can find two (bounded) nets (ay) and (b,) in J such that (a)) — a and (b,) — b
in the weak*-topology of J**. If we fix an element ¢ in J**, and we take a net
(pn) in J***, converging to some ¢ € J*** in the o(J***, J**)-topology, the net
(¢ 0 ¢) converges in the o(J**, J**)-topology to ¢ o c. The weak*-continuity of
the mapping G** implies that

G™(aoc) = W*—li}\n G(ayoc) = W*—li{ﬂ G(ay)oc+ayoG(c) — Uy, ()

=G"(a)oc+aoG(c)—U,.(§),

for every ¢ € J. This shows that G**(aoc) = G™*(a) oc+ ao G(c) — Uy (), for
every ¢ € J, a € J**. Therefore

G™(aob) = w*-1limG™(aob,) = w-lim G**(a) o b, + a o G(b,) — Uap, (&)
p p

=G (a)ob+ao G™(b) — Usp(§),

giving the desired conclusion. 0

Remark 2.3. Let G : J — J* be a generalized Jordan derivation, where J is a
JB*-algebra. Let £ € J** satisfy

Glaob) =G(a)ob+aoG(b) = Uap(E),



134 F.B. JAMJOOM, A.M. PERALTA, A.A. SIDDIQUI

for every a,b in J. The previous Proposition 2.2 assures that G** : J** — J***
is a weak*-continuous generalized Jordan derivation, G**(J**) C J*, and

G (aob) = G (a) 0+ a0 G () ~ Uus(e).

for every a, b in J**. In particular, G**(1) = £ € J*, and G is a Jordan derivation
if and only if G**(1) = 0.

3. ORTHOGONAL FORMS

In the non-associative setting of JB*-algebras, a Jordan version of Goldstein’s
theorem remains unexplored. In this section we shall study the structure of the
orthogonal forms on a JB*-algebra J. In this non-associative setting, the lacking
of a Jordan version of Goldstein’s theorem makes, a priori, unclear whether a
form on J which is orthogonal on J,, is orthogonal on the whole of 7. We
shall prove that symmetric orthogonal forms on a JB*-algebra J are in one to
one correspondence with the purely Jordan generalized Jordan derivations from
J into J* (see Theorem 3.6), while anti-symmetric orthogonal forms on J are
in one to one correspondence with the Lie Jordan derivations from J into J*
(see Theorem 3.13). These results, together with the existence of JB*-algebras
J which are not Jordan weakly amenable (i.e., they admit Jordan derivations
from J into J* which are not inner), show that a Jordan version of Goldstein’s
theorem for anti-symmetric orthogonal forms on a JB*-algebra is a hopeless task
(see Remark 3.15).

We introduce next the exact definitions. In a JB*-algebra J we consider the
following triple product

{a,b,c} = (aob*)oc+ (cob*)oa— (aoc)ob".

When equipped with this triple product and its norm, every JB*-algebra becomes
an element in the class of JB*-triples introduced by W. Kaup in [23]. The precise
definition of JB*-triples reads as follows: A JB*-triple is a complex Banach space
E equipped with a continuous triple product {-,-,-} : E X E' x E — E which is
linear and symmetric in the outer variables, conjugate linear in the middle one
and satisfies the following conditions:

(JB*-1) (Jordan identity) for a,b,x,y, z in F,
{a,b,{z,y,2}} = {{a,b,2},y, 2} — {z,{b,a,y}, 2} + {z,y,{a, b, 2} };

(JB*-2) L(a,a) : E — E is an hermitian (linear) operator with non-negative
spectrum, where L(a,b)(z) = {a,b, 2} with a,b,z € E;
(JB*-3) |[{x,z,z}| = ||z||® for all x € E.
We refer to the monographs [18], [9], and [8] for the basic background on JB*-
algebras and JB*-triples.

A JBW*-triple is a JB*-triple which is also a dual Banach space (with a unique
isometric predual [3]). It is known that the triple product of a JBW*-triple is
separately weak*-continuous [3]. A result due to S. Dineen establishes that the
second dual of a JB*-triple F is a JBW*-triple with a product extending that of
E (compare [9, Corollary 3.3.5]).
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An element e in a JB*-triple F is said to be a tripotent if {e,e,e} = e. Each
tripotent e in F gives raise to the so-called Peirce decomposition of E associated
to e, that is,

E = E2<€> ) El(e) I, EQ(@),

where for i = 0, 1,2, E;(e) is the £ eigenspace of L(e, e). The Peirce decomposition
satisfies certain rules known as Peirce arithmetic:

{Ei(e), Ej(e), Ex(e)} € Eijyn(e),
if i —j+k €{0,1,2} and is zero otherwise. In addition,
{Ex(e), Eo(e), E} = {Eo(e), Ex(¢), E} = 0.

The corresponding Peirce projections are denoted by P(e) : E — FEj(e), (i =
0,1,2). The Peirce space Es(e) is a JB*-algebra with product x e, y := {x,e,y}
and involution z* := {e,z,e}.

For each element x in a JB*-triple £, we shall denote z!!! := z, 2B := {2, z, 2},
and z?"t1 .= {x,a:,xp"*”}, (n € N). The symbol E, will stand for the JB*-
subtriple generated by the element x. It is known that £, is JB*-triple isomor-
phic (and hence isometric) to Cy(£2) for some locally compact Hausdorff space
Q) contained in (0, ||z||], such that Q U {0} is compact, where Cy(2) denotes the
Banach space of all complex-valued continuous functions vanishing at 0. It is also
known that we can find a triple isomorphism ¥ from E, onto Cy(£2), such that
U(x)(t) =t (t € Q) (cf. Corollary 1.15 in [23]).

Therefore, for each © € FE, there exists a unique element y € FE, satisfying
that {y,y,y} = z. The element y, denoted by x[%], is termed the cubic root of

(5]
x. We can inductively define, glan) = (:c[:wl*l ) *'n e N. The sequence (x[s%})

converges in the weak*-topology of E** to a tripotent denoted by r(x) and called
the range tripotent of x. The element r(x) is the smallest tripotent e € E** such
that x is positive in the JBW*-algebra E3*(e) (compare [13], Lemma 3.3).

Elements a, b in a JB*-algebra 7, or more generally, in a JB*-triple F, are said
to be orthogonal (denoted by a L b) when L(a,b) = 0, that is, the triple product
{a,b, c} vanishes for every ¢ € J or in E ([5]). An application of [5, Lemma 1]
assures that a L b if and only if one of the following statements holds:

{a,a,b} =0; a L r(b); r(a) L r(b);
E3*(r(a)) L E5*(r(0);  r(a) € Eg*(r(b));  a € Eg*(r(b)); (3.1)
be Ef*(r(a)); E, L E, {b,b,a} = 0.

The above equivalences imply, in particular, that the relation of being orthogonal
is a “local concept”, more precisely, a L bin J (respectively in E) if and only if
a L bin a JB*-subalgebra (respectively, JB*-subtriple) K containing a and b.

Suppose a L bin J, applying the above arguments we can always assume that
J is unital. In this case, a o b* = {a,b,1} = 0 and (ao0a*)ob— (aob)oa* =
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(aoa*)ob+(boa*)oa—(aob)oa* = 0, therefore aob* = 0 and (aoca*)ob = (aocb)oa*.
Actually the last two identities also imply that a L b. It follows that

albsaob”=0and (aoa”)ob=(aob)oa”. (3.2)
So, if a L b and c is another element in 7, we deduce, via Jordan identity, that
{U.(c),Uq(c),b} = {{a,c*,a},{a,c* a},b} = —{c*, a,{{a,c",a},a,b}}

+{{c",a,{a,c*,a}},a,b} + {{a,c",a},a,{c", a,b}} =0,
which shows that U,(c) L b.
We shall also make use of the following fact

albinJ = (cob)oa=(aoc)ob, (3.3)

for every ¢ € J, this means that a and b* operator commute in J (cf. [5, page
225]). For the proof, we observe that, since a L b, a o b* = 0, and the involution
preserves triple products, we have 0 = {a, b, ¢} = (aob*)oc+(cob*)oa—(aoc)ob*,
which proves the desired equality. A direct application of (3.3) and (3.2) shows
that
albinJ = (a®)ob*=(aob*)oa=0. (3.4)
When a C*-algebra A is regarded with its structure of JB*-algebra, elements
a,bin A are orthogonal in the associative sense if and only if they are orthogonal
in the Jordan sense.

Definition 3.1. A form V' : J x J — C is said to be orthogonal when V' (a, b*) =
0 for every a,b € J with a L b. If V(a,b) = 0 only for elements a,b € J, with
a 1 b, we shall say that V' is orthogonal on J,.

3.1. Purely Jordan generalized Jordan derivations and symmetric or-
thogonal forms. We begin this subsection by dealing with symmetric orthogo-
nal forms on a C*-algebra, a setting in which these forms have been already stud-
ied. Let V : A x A — X be a symmetric, orthogonal form on a C*-algebra. By
Goldstein’s theorem (cf. Theorem [15]), there exists a unique functional ¢, € A*
satisfying that V(a,b) = ¢, (aob) for all a,b € A. The statement also follows from
the studies of orthogonally additive n-homogeneous polynomials on C*-algebras
developed in [25].

Given an element a in the self adjoint part J,, of a JBW*-algebra 7, there
exists a smallest projection r(a) in J with the property that r(a) o a = a. We
call r(a) the range projection of a, and it is further known that r(a) belongs
JBW*-subalgebra of J generated by a. It is easy to check that r(a) coincides
with the range tripotent of a in J when the latter is seen as a JBW*-triple, so,
our notation is consistent with the previous definitions.

We explore now the symmetric orthogonal forms on a JB*-algebra.

Proposition 3.2. Let V : J x J — C be a symmetric form on a JB*-algebra
which is orthogonal on Js,. Then there exists a unique ¢ € J* satisfying

V(a,b) = ¢(aob),
for every a,b e J.
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Proof. We have already commented that the (unique) third Arens transpose V*** :
T x J* — C is separately weak*-continuous (cf. Subsection 2.1). Let a be a
self-adjoint element in 7. It is known that the JB*-subalgebra 7, generated by a
is JB*-isometrically isomorphic to a commutative C*-algebra (cf. [18, §3]). Since
the restricted mapping V|, . : J, X J, — C is a symmetric orthogonal form,
there exists a functional ¢, € (J,)* satisfying that

V(C7 d) = ¢a<c ° d)a

for every ¢,d € J, (cf. Theorem 1.1). It follows from the weak*-density of 7,
in (J,)* together with the separate weak*-continuity of V*** and the weak*-
continuity of ¢,, that

V***(c,d) = ¢q(cod),
for every ¢,d € (J,)**. Taking ¢ = a and d = r(a) the range projection of a we
get

V(a,a) = ¢a(aca) = ga(a’ or(a)) = V**(a®,r(a)) = V***(r(a),a®),  (3.5)
for every a € J,q.
We claim that

V**(a,r(a)) = V*™**(r(a),a) = V™ (a,1) = V**(1,a), (3.6)

for every positive a € Js,. We may assume that |a|] = 1. We actually know
that there is a set L C [0, 1] with L U {0} compact such that 7, is isomorphic to
the C*-algebra Cy(L) of all continuous complex-valued functions on L vanishing
at 0, and under this isometric identification the element a is identified with the
function ¢ — t. Given € > 0, let p. = x,_,; denote the projection in (J.)**, which
coincides with the characteristic function of the set [e, 1] N L. Clearly, p. < r(a)
in J**. Suppose we have a function g € J, = Cy(L) satisfying p.og = g > 0,
that is, the cozero set of ¢ is inside the interval [e, 1].

Take a sequence (h,,) C Co(L) defined by

hn(t) := < affine, ifte€ LNje— 1e— %]’
0, ift € LN[0,e— 1]

for n large enough (n > mg). The sequence (h,) converges to p. in the weak*-
topology of (J,)** and 1 — h,, L p.,g. So, J 2 Uy_p,(c) L g for every c € J and
n > mgy. Since 1 € J**, we can find, via Goldstine’s theorem, a net (¢,) C J
converging to 1 in the weak* topology of J**. By hypothesis, 0 = V(Uy_4, (¢4), 9),
for every A\, n > my. Taking weak™ limits in v and in n, it follows from the separate
weak® continuity of V***, that

V(1 —pe9) =0 (3.7)
for every p. and g as above. If we take
t, ift € LN[2e1];
ge(t) := ¢ affine, ift € LN [e, 2e];

0, ift e LN10,e,
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then 0 < g. < p,, for every n < ¢, lim ||g. — a|| = 0 and weak*-lim p, = r(a).
e—0 n—0

Combining these facts with (3.7) and the separate weak*-continuity of V***, we
get V**(1 —r(a),a) = 0, which proves (3.6).

The identities in (3.5) and (3.6) show that V(a,a) = V***(1,a?), for every
a € Jsq- Let us define ¢ = V***(1,.) € A*. A polarization formula, and V' being
symmetric imply that V'(a,b) = V**(1,a0b) = ¢(aob), for every a,b € J,, and
by bilinearity V'(a,b) = ¢(a o b), for every a,b € J. O

The previous proposition is a generalization of Goldstein’s theorem for sym-
metric orthogonal forms. It can be also regarded as a characterization of orthogo-
nally additive 2-homogeneous polynomials on a JB*-algebra J. More concretely,
according to the notation in [25], a 2-homogeneous polynomial P : J — C is
orthogonally additive on Js, (i.e., P(a+0b) = P(a)+ P(b) for every a L bin Jy,)
if, and only if, there exists a unique ¢ € J* satisfying P(a) = ¢(a?), for every
a € J. This characterization constitutes an extension of [25, Theorem 2.8] to the
setting of JB*-algebras.

Remark 3.3. Let V : J x J — C be a symmetric form on a JB*-algebra. The
above Proposition 3.2 implies that V' is orthogonal if and only if it is orthogonal

on Jsq-

Let V : J x J — C be a symmetric orthogonal form on a JB*-algebra, and
let ¢y be the unique functional in J* given by Proposition 3.2. If we define
G, : J — J*, the operator given by G, (a) = V(a,.), we can conclude that
G,(a) = ¢, oa = Gy (a), and hence G, : J — J~ is a generalized Jordan
derivation and V(a,b) = G, (a)(b) (a,b € J). Moreover, for every a,b € 7,
G,(a)(b) = V(a,b) = V(bya) = G, (b)(a). This fact motivates the following

definition:

Definition 3.4. Let J be a JB*-algebra. A purely Jordan generalized Jordan
deriwation from J into J* is a generalized Jordan derivation G : J — J~*

satisfying G(a)(b) = G(b)(a), for every a,b € J.

We have already seen that every symmetric orthogonal form V' on a JB*-algebra
J determines a purely Jordan generalized Jordan derivation Gy : J — J*. To
explore the reciprocal implication we shall prove that every generalized derivation
from J into J* defines an orthogonal form on J,.

Proposition 3.5. Let G : J — J* be a generalized Jordan derivation, where
J is a JB*-algebra. Then the form Vg : J x J — C, Vg(a,b) = G(a)(b) is
orthogonal on Jy,.

Proof. Let G : J — J* be a generalized Jordan derivation. By Proposition 2.1,
G is continuous, and by Proposition 2.2, G** : J** — J* is a generalized Jordan
derivation too. Let & denote G*™*(1).

Let p be a projection in J** and let b be any element in J** such that p L b.
Since

G (p) = G (pop) = 2po G (p) + Up(€),
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we deduce that
G (p)(b") = 2G™(p)(p o b") + &(U,(b")) = 0. (3.8)

Let a be a symmetric element in J**, and let b be any element in J** satisfying
a L b. By (3.1), the JBW*-algebra J* generated by «a is orthogonal to b, that
is, ¢ L b for every c € J*. It is well known that a can be approximated in norm
by finite linear combinations of mutually orthogonal projections in J;* (cf. [18,
Proposition 4.2.3]). It follows from (3.8), the continuity of G**, and the previous
comments that

Ve (a,b") = G™(a)(b") =0,
for every a € J.' and every b € J** with a L b. 0J

Our next result follows now as a consequence of Proposition 3.2, Remark 3.3,
and Proposition 3.5.

Theorem 3.6. Let J be a JB*-algebra. Let OF ((J) denote the Banach space of
all symmetric orthogonal forms on J, and let PJGDer(J,J*) the Banach space
of all purely Jordan generalized Jordan derivations from J into J*. For eachV €
OFs(J) define G, : I — T* in PTIGDer(J,T*) given by G, (a)(b) = V(a,b),
and for each G € PJGDer(J,J*) we set V, : T x J — C, V_(a,b) := G(a)(b)
(a,b € J). Then the mappings

OF(J) = PIGDer(T,T*), PIGDer(T,T") = OF(J),
Ve=da,, G—V,,

define two isometric linear bijections and are inverses of each other. 0
Actually, Proposition 3.2 gives a bit more:

Corollary 3.7. Let J be a JB*-algebra. Then, for every purely Jordan gener-
alized Jordan deriwation G : J — J* there exists a unique ¢ € J*, such that
G = Gy, that is, G(a) = ¢poa (a € J).

3.2. Derivations and anti-symmetric orthogonal forms. We focus now our
study on the anti-symmetric orthogonal forms on a JB*-algebra. We motivate
our study with the case of a C*-algebra A. By Goldstein’s theorem every anti-
symmetric orthogonal form V on A writes in the form V(a,b) = ¢([a,b]) =
(ab —ba) (a,b € A), where ¢ € A* (cf. Theorem 1.1). Unfortunately, ¢ is not
uniquely determined by V' (see [15, Proposition 2.6 and comments prior to it]).
Anyway, the operator D, : A — A*, D (a)(b) = V(a,b) = [¢,a](b) defines a
derivation from A into A* and D, (a)(b) = —D,,(b)(a) (a,b € A). On the other
hand, if D : A — A* is a derivation, it follows from the weak amenability of A (cf.
[16, Corollary 4.2]), that there exists ¢ € A* satistying D(a) = [a,¢]. Therefore,
the form V : Ax A — C, V,(a,b) = D(a)(b) is orthogonal and anti-symmetric.
However, when A is replaced with a JB*-algebra, the Lie product doesn’t make
any sense. To avoid the gap, we shall consider Jordan derivations.

It seems natural to ask whether the class of anti-symmetric orthogonal forms
on a JB*-algebra J is empty or not. Here is an example: let ¢q,...,¢,, € J and
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D1y, Om € T, and define V : 7 x J — C,

V(a,b) := (Z [L(¢s), L(ci)] <a>> (b) (3.9)

=1

= (Z(gbio(cioa)—cio(qﬁioa))) (b):Zgzﬁi(bo(cioa)—(ciob)oa)),

i=1

for every a,b € J. Clearly, V is an anti-symmetric form on J. It follows
from (3.3) that V(a,b*) = 0 for every a L b in J, that is, V is an orthog-
onal form on J. Further, the inner Jordan derivation D : J — J*, D =
o (L(¢s) L(ai) — L(a;)L(¢;)) satisfies V (a,b) = D(a)(b) for every a,b € J.

We shall see now that, like in the case of C*-algebras and in the previous
example, Jordan derivations from a JB*-algebra J into its dual exhaust all the
possibilities to produce an anti-symmetric orthogonal form on 7. We begin with
an strengthened version of Proposition 3.5.

Proposition 3.8. Let G : J — J* be a generalized Jordan derivation, where
J is a JB*-algebra. Then the form Vg : J x J — C, Vg(a,b) = G(a)(b) is
orthogonal (on the whole J).

Proof. We already know that every generalized Jordan derivation G : J — J*
is continuous (cf. Proposition 2.1). By Proposition 2.2, G** : J** — J* is a
generalized Jordan derivation too. Let £ = G*™*(1).

Let e be a tripotent in J** and let b be any element in J** such that e L b.
Since {e,e,e} = 2(eoe*)oe —e*oe* = e we deduce that

G (e) = 26 ((e o e*) o €) — G**(e? o ¢¥)
=2G"(eoe*)oe+2(eoe’)oG(e) — 2Uecoer ¢(§)
G () 06" — € 0 G(e") + Usn e (6).
Therefore,

G (e)(b") = 26" (o e) (b o) +2G™(e) ((eoe) o 1) (3.10)
—2§<(eoe) (eob®)+ ((eoe)o )oe—((eoe*)oe)ob*)

—G () (7ot ) — G () (o) +£(cFo e obT) +(ePobT) o€ — (PoeT) o)
— (by (3.2), (3.3), and (3.4)) = 2G™(e) (eoe*)ob*) —G**(ez)(e*ob*)
—|—§<e2 o (e ob*) — (2oe*)o b*)
=26 (e)((eoe) o) = 2(e0 G (€)) (¢ 0b") + UL(E)(e" 0 b')
+g<62 o (e*ob) — (oe)o b*)

- 2G**(e)<(e oe*)ob — (b oe*)o e) + §(2e o(eo(etob)) —e?o (e o b*))
+¢(eFo(enob) — (Foe)ob)
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= (by (3.3)) = §<2€ o(eo(e”ob))— (62 oe*)o b*)
= ((3.3) applied twice) <2[)* o (e oe)) —b*o(e2o e*))

= 5(1)* o (2(60 (e*oe)) —(e*o e*))) (b* o{e,e e}> = f(b* o e) =0,
where in the last step we applied (3.2).

Let us take a.b in J**, with @ L b. The characterizations given in (3.1) imply
that the JBW*-triple J* generated by a is orthogonal to b, that is, ¢ L b for
every ¢ € J*. Lemma 3.11 in [21] guarantees that the element a can be approx-
imated in norm by finite linear combinations of mutually orthogonal projections
in 7*. Finally, the fact proved in (3.10), the continuity of G**, and the previous
comments imply that V_., (a,b*) = G**(a)(b*) = 0. O

We shall prove next that every anti-symmetric orthogonal form is given by a
Jordan derivation.

Proposition 3.9. Let V : 7 x J — C be an anti-symmetric form on a JB*-
algebra which is orthogonal on Jy,. Then the mapping D,, : J — J*, D,,(a)(b) =
V(a,b) (a,b € J) is a Jordan derivation.

Our strategy will follow some of the arguments given by U. Haagerup and
N.J. Laustsen in [17, §3], the Jordan setting will require some simple adapta-
tions and particularizations. The proof will be divided into several lemmas. The
next lemma was established in [17, Lemma 3.3] for associative Banach algebras,
however the proof, which is left to the reader, is also valid for JB*-algebras.

Lemma 3.10. Let V : J x J — C be a form on a JB*-algebra. Suppose that
f,g : R — J are infinitely differentiable functions at a point tg € R. Then
the map t — V(f(t),g(t)), R — C, is infinitely differentiable at to and its n’th
derivative is given by

> ( b ) Vo), " o).

k=0
0J

The next lemma is also due to Haagerup and Laustsen, who established it
for associative Banach algebras in [17, Lemma 3.4]. The proof given in the just
quoted paper remains valid in the Jordan setting, the details are included here
for completeness reasons.

Lemma 3.11. Let J be a Jordan Banach algebra, letU be an additive subgroup of
J whose linear span coincides with J. LetV : J x J — C be an anti-symmetric
form satisfying V (a? a) = 0 for every a € U. Then the bounded linear operator
D, : J — J* given by D, (a)(b) = V(a,b) for alla,b € J is a Jordan derivation.

Proof. Let us take a,b € U. It follows from our hypothesis that
D (a?)(t) = 2(ao Dy (a)) () = Dy (a*)(8) = 2D, (a)(a o b)
=V(a*b)+2V(aob,a) =V (a*b) —2V(a,aob)
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V(@b ath) = V(a—b*a—b) -2V _
. .

This implies that D, (a?)(b) = 2<a o Dv(a)>(b), for every a,b € U. It follows

from the bilinearity and continuity of V', and the norm density of the linear span
of U that D, (a*) = 2a o D, (a), for every a € J, witnessing that D, : J — J*
is a Jordan derivation. O

We deal now with the proof of Proposition 3.9.

Proof of Proposition 3.9. For each a € J,, let B denote the JB*-subalgebra of J
generated by a. It is known that B is isometrically isomorphic to a commutative
C*-algebra (see [18, Theorem 3.2.2 and 3.2.3]). Clearly, V|pxp : B x B — C is
an anti-symmetric form which is orthogonal on By, (and hence orthogonal on B).
Since B is a commutative unital C*-algebra, an application of Goldstein’s theorem
(cf. Theorem 1.1) shows that V(z,y) = 0. for every =,y € B. In particular,
V(a*,a) = 0 for every a € Jy,. Lemma 3.11 guarantees that D, : J — J* is a
Jordan derivation. Clearly, D, (a)(b) = —D,,(b)(a), for every a,b € J. O

Definition 3.12. Let J be a JB*-algebra. A Jordan derivation D from J into J*
is said to be a Lie Jordan derivation if D(a)(b) = —D(b)(a), for every a,b € J.

Propositions 3.8 and 3.9 give:

Theorem 3.13. Let J be a JB*-algebra. Let OF .s(J) denote the Banach space
of all anti-symmetric orthogonal forms on J, and let LieTDer(J,J*) the Ba-
nach space of all Lie Jordan derivations from J into J*. For each’ V € OF 45(J)
we define D, : J — J* in LieJDer(J,TJ*) given by D, (a)(b) = V(a,b), and
for each D € LieJDer(J,T*) we set V, : T x J — C, V_(a,b) :== D(a)(b)
(a,b € J). Then the mappings

OF.s(T) = LieJDer(T,T*), LieJDer(T,T*) = OFs(T),
Ve=D,, D=1V,

define two isometric linear bijections and are inverses of each other. O
Our final result subsumes the main conclusions of the last subsections.

Corollary 3.14. Let V : J x J — C be a form on a JB*-algebra. The following
statements are equivalent:

(a) V is orthogonal;

(b) V is orthogonal on Jy,;

(¢) There exist a (unique) purely Jordan generalized Jordan derivation G : J —
J* and a (unique) Lie Jordan derivation D : J — J* such that V(a,b) =
G(a)(b) + D(a)(b), for every a,b e J;

(d) There exist a (unique) functional ¢ € J* and a (unique) Lie Jordan deriva-
tion D : J — J* such that V (a,b) = Gy(a)(b) + D(a)(b), for every a,b e J.

Proof. (a) = (b) is clear. To see (b) = (c) and (b) = (d), we recall that every form
VI xJ — C writes uniquely in the form V' = V,+V,,, where V,, Vs : J — J*
are a symmetric and an anti-symmetric form on J, respectively. Furthermore,
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since Vy(a,b) = 3(V(a,b)+V(b,a)) and V,s(a,b) = 3(V(a,b) =V (b,a)) (a,b € J),
we deduce that V is orthogonal (on J,) if and only if both V; and V4 are
orthogonal (on Js,). Therefore, the desired implications follow from Theorems
3.6 and 3.13. The same theorems also prove (¢) = (a) and (d) = (a). O

We shall finish this note with an observation which helps us to understand the
limitations of Goldstein theorem in the Jordan setting.

Remark 3.15. Let A be a C*-algebra, since the anti-symmetric orthogonal forms
on A and the Lie Jordan derivations from A into A* are mutually determined,
we can deduce, via Goldstein’s theorem (cf. Theorem 1.1), that every Lie Jordan
derivation D : A — A* is an inner derivation, i.e., a derivation given by a
functional ¢ € A*, that is, D(a) = adj,(a) = Ya —ay) (a € A). We shall see that
a finite number of functionals in the dual of a JB*-algebra 7 and a finite collection
of elements in 7, i.e. the inner Jordan derivations, are not enough to determine
the Lie Jordan derivations from J into J* nor the anti-symmetric orthogonal
forms on 7. Indeed, as we have commented before, there exist examples of JB*-
algebras which are not Jordan weakly amenable, that is the case of L(H) and
K(H) when H is an infinite dimensional complex Hilbert space (cf. [20, Lemmas
4.1 and 4.3]). Actually, let B = K(H) denote the ideal of all compact operators
on H, and let ¥ be an element in B* whose trace is not zero. The proof of
[20, Lemmas 4.1] shows that the derivation D = adj, : B — B*, a + a — ay)
is not inner in the Jordan sense. Therefore the anti-symmetric form V(a,b) =
D(a)(b) = (vYa—aw)(b) = 1[a, b] cannot be represented in the form given in (3.9).
A similar example holds for B = B(H) (cf. [20, Lemma 4.3]).

Remark 3.16. We have already shown the existence of JBW*-algebras which are
not Jordan weakly amenable (cf. [20, Lemmas 4.1 and 4.3]). Thus, the problem
of determining whether in a JB*-algebra J, the inner Jordan derivations on [J are
norm-dense in the set of all Jordan derivations on 7, takes on a new importance.
If the problem has an affirmative answer for a JB*-algebra 7, Theorem 3.13 allows
us to approximate anti-symmetric orthogonal forms on 7 by a finite collection of
functionals in J* and a finite number of elements in 7. Related to this problem,
we note that Pluta and Russo recently proved that if the set of inner triple
derivations from a von Neumann algebra M into its predual is norm dense in the
real vector space of all triple derivations, then M must be finite, and the reciprocal
statement holds if M acts on a separable Hilbert space, or is a factor [27, Theorem
1]. It would be interesting to explore the connections between normal orthogonal
forms and normal Jordan weak amenability or norm approximation by normal
inner derivations on JBW*-algebras.
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