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ABSTRACT. In this paper we define non-archimedean measures and integral
operators taking values in a locally convex space. We show the relation be-
tween these two concept. We define what we called integral function respect
to an integral operator. We give necessary and sufficient condition in order to
know when a function is integrable with respect to an integral operator. In
the second part, we define a kind of absolutely continuous relation between
measures in this context. After that, we formulate a type of Radon—Nikodym
Theorem between vector measures and a scalar measures which are absolutely
continuous.

1. INTRODUCTION AND NOTATION

In the second half of the 20th century, A. F. Monna and T. A. Springer [/]
built the foundations of the Non-Archimedean Integration Theory. Both authors
study certain functions defined on locally compact zero-dimensional topological
spaces taking values on a non-archimedean valued field. Afterwards, in 1969, W.
H. Schikhof and A. C. M. van Rooij devote their efforts to extend the theory to
a larger class of topological spaces, so called zero-dimensional topological spaces.
In 2001, J. N. Aguayo and a T. E. Gilsdorf, generalize this theory, consider-
ing vector measures and integrals with values in normed spaces [1].On the other
hand, in 1971, Schikhof shows an analogue of the Radon-Nikodym’s theorem in
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the non-archimedean context. [6]. Later on, in 2001, Aguayo and Moraga extend
the Schikhof work in the context of Banach spaces. [5].

The main goal of this paper, is to expand this theory for measures whose values
are taken in locally convex spaces. Also, a Radon—Nikodym theorem is treated
in this context.

Throughout this paper K will be a field with a non-trivial non-archimedean
valuation |-| for which the metric space K is complete under the metric derived
from this valuation, F is a locally convex space over K whose topology is generated
by a family of continuous seminorms denoted by I'.

2. VECTOR MEASURES AND INTEGRAL OPERATORS

Let X be a non-empty set and §2 be a ring that cover X. As we know, € is a
base for a topology 7 on X such that every element of €2 is clopen (closed and
open) in 7; hence 7 is a zero-dimensional topology.

Definition 2.1. A finitely additive set function m : 2 — E is said to be a vector
measure on €2, or simply a measure, if:

[B] {m(U) : U € Q} is bounded on F.
[M] for any net (U,)aer of subsets in Q such that U, | § and any V, € Q
such that V,, C U,, then
limm(V,) = 0.

[0}

Let m be a vector measure on a ring 2 and p € I'. For an open subset W of
X and for x € X, we define

[[W]|mp = sup{p(m(U)) : U € ;U C W}
Nop(@) = inf{||W||myp:x € W,W € T}

Most of the proofs of the properties for vector measures are similar to those
proofs given by van Rooij and Schikhof [%], therefore those proofs will be omit-
ted unless those proofs require a special treatment because the locally convex
condition.

Lemma 2.2. If m : Q — E is a measure, A and B are open subsets in X, x € X
and p € T, then

) If A C B, then ||Al|mp < ||B||mp-

) [[Allmy = sup{llUllmp : U € 2,U C A}.

) ||AU Bllmp < max{|[Al|mp, || Bllmp}-

) Noplr) = 08 {[|Ullp - U € Q€ U},

(5) N : X — R is upper semicontinuous.

(1
(2
(3
(4
5

Theorem 2.3. Let m : Q — E a finitely additive set function such that {m(V') :
V € Q} is a bounded set of E. Then, m is a measure if, and only if, for each
p € T and for any net (Uy)aer in Q with U, | ()

i [|Ua||m.p =
[0
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Proof. (<=) It is obvious since
p(m(V)) < ||U||myp ; for any V- C U,V € L

(=) Suppose that m is a measure. Let p € T" and (U, )aes a net in  such
that U, | 0. We claim
lim ||Uq||mp = 0.

In fact, if ||Uny|lmyp = 0 for some o € I, there is nothing to prove. Suppose
|Ual|mp > 0 for all @ € I and choose V,, C U,, V, € Q, such that
1
§||Ua||m7p < p(m(Va))-
Since lim p(m(V,)) = 0, it follows that
lim ||Uq||mp = 0.

Theorem 2.4. For all open subset W of X
(W[ = sup{Nmp(x) : © € W}
Theorem 2.5. IfU € Q and if § > 0, then
Usp :={x €U : Ny ,(x) > 6}
18 compact.

Theorem 2.6. Let my,my : Q — E two vector measures. Then, mi + mo and
mq — my are vector measures on S). Furthermore, for all p € I", we have

(1)
(2)

Nm1+m2,p < maX{thpv NmQ,p}

‘thp - Nm2,p| < le*mQ,P
Now, for a linear space F of K-valued functions, the collection
QF)={UC X : fxyeFflorall f € F}

is a ring of sets that covers X and X € 2. As before, () is a base of zero-

dimensional topology 7(F). We call F a Wolfheze Space if every f € F is

7(F)-continuous and if for every a € X there exists f € F with f(a) # 0. Under

this conditions, 7(F) is the weakest topology for which every f € F is continuous.
From now on, F will denote a Woltheze space of K-valued functions.

Definition 2.7. A lineal operator I : 7 — FE is said to be an Vector Integral
Operator on F, or simply, integral, if
[I] For any net (fo)aea on F with f, | 0 and for each g, € F such that
|9a] < |fal, it must have
lim I(g,) =0
in F, that is, for every p € T,

limp (1(ga)) = 0
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An equivalent formulation of [I] is:

[I'] Let (fa)aca be anet in F such that f, | 0. If p € I'and if § > 0, then there
exists @ = a(p,d) € A such that p(I(g)) < d for all g € F, |g| < |fal-

Let I be an integral operator on F. For f € F we defined
my Q(f)HE, mf(U):I(fXU)

This set function my is well-defined, is finitely additive and is a vector measure.
For the last statement, if (U, )aeca is an arbitrary net on Q(F) with U, | 0, then
fo = fXu, | 0. We choose V,, C Uy, V, € Q(F) and put g, = f&y,. Clearly,
ga € F and |ga| < |fa]. Since I is an operator, then

limmy(V,) =lim I(g,) = 0.

On the other hand, if we suppose that
sup{p(my (V) : U € Q(F)} = +o0

for some p € I', then for a given 7 € K with |7| > 1,there exists a sequence
U(1),U(2),--- in Q(F) such that p(m(U(:))) = p(I(fXu@)) > || for alli € N.
But 77/ f | 0 and |77 fXp )| < |7~" f|, which implies lim I (7~ f X)) = 0. Thus,
we have a contradiction.

Consequently, m; is a vector measure on Q(F) since it satisfies [M] and [B].

In order to simplify the notation, we will write N}, instead of N, -
Lemma 2.8. Ifpe I, f,ge F and a € X, then
|f(a)|Nyp(a) = |g(a)|Nyp(a).

Proof. The collection A = {U € Q(F) : a € U} is a directed set with the backward
order inclusion. If h = f(a)g — g(a)f, then hAy | 0; hence, lim I(hXy) = 0, in
other words, for a given § > 0, there exists Uy € A such that p(I(gXxy)) < d for
all V € Q, V C Uy. By 7(F)-upper semicontinuity of Ny, we may assume that

Ve e Uy : Nf,p(l’) < J\/'ﬂp(a) + 0.
So, for V€ Q,V C Uy, we have
p(f(a)mg(V) — g(a)m(V)) = p(I(hy)) < 6

and

p(mg(V)) S |IVlmyp = sup{Nyp(a) : 2 € V} < Npp(a) + 6.
Thus,

p(f(a)myg(V)) < max{p(f(a)my(V) — g(a)m(V)), p(g(a)ms(V))}
< max{9, [g(a)|[Nyp(a) + o]}

and, in consequence,

|[f (@) Ngp(a) < [f(a)ll|Uolm,p < max{d, |g(a)|[Nyp(a) + 6]}

As § was arbitrary, we obtain

|f(a)|Ng,p(a) < |9(a)|Nf,p(a)'
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By interchanging the roles of f and g and repeating the same argument, the
lemma follows OJ

Theorem 2.9. For every p € T', there exists a unique function Ny, : X — [0, 00[
such that for all f € F

Furthermore, N7, is 7(F)-upper semicontinuous.
Corollary 2.10. For f € F, we define

ey = 11Xl -
Then,

1fll;, = sup | f ()| N7 p(x) = sup{p(I(g)) : g € F,|g| < |f]}.

Moreover, for any 6 >0, {z € X : |f(x)|Nyp(x) > 0} is 7(F)-compact.
Proof. The first equality is directed from
HXHmf,p = SUPNﬂp(m)
zeX

and the previous theorem.
On the other hand, since p(I(g)) < ||g||rp, we have

117, = sup{p(m(U)) : U € Q} = sup{p(I(fAv)) : U € Q}
<sup{p(I(9)) : g € F,|g| < |f[} <sup{llgll;, : 9 € F,lg] < [f]}

< ||fHIp :
which establishes the formula. The last assertion follows from the facts: X €
QF), | fIN1p = Ny, and Theorem 2.5. O

Corollary 2.11. For all a € X, there exists U € Q(F) such that a € U and
{x € U: Njp(x) > 6} is 7(F)-compact for all 6 > 0.

Summarizing, we have prove that if [ is an integral operator, then N7, is 7(F)-
upper semicontinuous and for all f € F, § > 0, the set {x € X : |f(x)|Nyp(x) >
0} is 7(F)-compact. By ®(F) we denote the collection of all functions ¢ : X —
[0, 0o which are 7(F)-upper semicontinuous and satisfy

(Vfe FYVs>0){x € X :|f(x)|o(x) > d}Hs 7(F)-compact).
O(F) # 0, since N7, € ®(F) for all p € . Also, we can prove that ®(F)

is closed under supremum and infimum of finite collection of elements of ®(F).
Now, for ¢ € ®(F) we denote

1 fllo = sup | f(2)|¢(x).
rzeX
It is a routine to see that || - ||4 is a non-archimedean seminorm on F and the

collection {|| - || : ¢ € ®(F)} generates a locally convex topology on F known as
strict topology.

Theorem 2.12. Let [ : F — E a linear operator. The following conditions are
equivalent:
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1. I us an integral operator.

. 1 is strictly continuous.

3. Let f € F and let (fa) be a net in F such that |fo| < |f| and fo — O
uniformly on T-compacts. Then, lim, I(f,) = 0.

[\

Proof.
1.) = 2.) Follows from the fact that for any p € I, N7, € ®(F) and for a given
feF,

pUI(f)) = pU(fXx)) = p(my (X)) <[|X[lmsp = [ [z,

2.)=3.) Let p € I"and € > 0. If I is strictly continuous, there exists ¢ € ®(F)
and ¢ > 0 such that

11l <6 = pI(f)) <&

Take f € F and (fa),cp as in the assumptions. Set ) = {z € X :
|f(z)|p(z) > d}. Since ||¢||g = sup ¢(z) < oo, there exists g such that
zeQ

5
ll¢lle

a>ay) = |falz)| < uniformly on @,

or equivalently,
a>a) = |fa(v)|p(x) <6 for all z € Q.
On the other hand, if ¢ @, then

| fal2)|o(z) < |f(2)]|0(x) < 6.

Therefore, for z € X and a > «a we have

| falle = sup |[fa(@)|o(z) <0

which implies p(I(f,)) < e.
3) = 1) Follows from the Dini’s Theorem.

O

Example 2.13. Let X be a non-empty set and §2 a ring of subset of X with
X € Q. Let G be the linear space generated by {Xy : U € Q}. Note that
Q =Q(G) and G is a Wolfheze space.

Let m : Q — FE a finitely additive set function. Then, there exists a unique
linear operator I defined on G such that

I(Xy) =m(U) for any U € .

Moreover, I is an integral operator if, and only if, m is a measure. In fact, if
I is an integral, then we already know that for any f € G, m; is a measure, in
particular, for f = Xx € G. Clearly, my = m.

On the other hand, if m is a measure and p € T', then N,,,, € ®(G). For every
U € (), we have

PI(X0)) = P(0)) < U]y = 10y = 50 Moy ().
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If g€ G, then g = > | a;Xy,, for some ay, - - - o, € K and some Uy, --- ,U, € Q,
with U; N U; =0, i # j. Thus,

p(I(g9)) =p (I (i aﬂm)) =p (i @im(Ui)>

< max{|o;|p(m(U;))} < max {sup !aile,p}

zeU;
= sup |9(2) Nnp(2) = [[ 1IN
zeX

Therefore, I is an integral operator.

Definition 2.14. Let I : 7 — E be an integral operator. We say that f : X — K

is I-integrable if for every € > 0 and p € I', there exists h = h., € F such that
1f = hllrp < e

We denote by L£(I) the family of all I-integrable functions.

The next lemma may call an extension lemma.

Lemma 2.15. Let Y be a non-empty subset of X and let Q C'Y a T-compact.
Then, for every T-continuous f :Y — K and § > 0, there exists g € F such that

lgllx < W fllg, lgl < 1fl on Y and |lg = flig < 6.
Proof. See [3] for more details. O

Theorem 2.16. Let f : X — K be a function. Then, f is I-integrable if, and
only if, satisfies the following two conditions:
1) f is 7(F)-continuous on each X;,, t >0, p €.

2) For every 6 > 0, p € I, there exists a 7(F)-compact Qs,, contained is
some Xi,, such that |fIN7, <d on X\ Q.

Proof. Let p € I'. Then, there exists (gy),cy in F such that
T (15 = gullry = 0.

Since lim g, = f uniformly on X;, we get that f is 7(F)-continuous on X, ,.
For a § > 0, we choose g € F such that ||f — g||r, < J. As we know,

Q' ={ze X :|g(z)|Nip(x) = 5}

is 7(F)-compact. Take ¢t > 0 such that ¢||g||or < d and Q@ = Q' N X3 ,. Q 7(F)-
compact. Then, if x ¢ @', then |g(z)|N;p(z) < §;if 2 € @\ Q, then x ¢ X, ,,
which implies N7 ,(x) < t. Thus, if x € X \ Q,

| (@) Nrp(2) < max{|f(z) — g(2)IN1p(2), [9(2)N1p(2)} < max{d, tllgle'} < 0.

Conversely, let f be that satisfies 1) and 2). Let § > 0 and p € I'. Our
purpose is to find g € F with ||f — g||r, < J. Take @ and t > 0 as in 2). f
and N7 are bounded on Q. Take M > 0 such that M > ||f|lo, M > ||IN1,llo
and consider s = min {¢,6M '} . Note that Q@ C X;, C X;, and f: X,, = K
is 7(F)-continuous. By Lemma 2.15, there exists g € F such that ||g|| < ||f||q,
gl < [f] in Xy and |[g — fllg < s.
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Now, if x € @), then
|f(2) — g(2)[Npp(x) < sM <0,
if r € X, \ @, then
[f (@) = g(x)Nip(x) < |f(@)IN1p(z) <6
and if x ¢ X, then
[f(2) = g(2)[Nip(2) < max{|f(2)N7p(2), l9(2)Nip(x)}
< max {6, || fllgs} = &

Therefore,

1f = gllip <6
0J

Corollary 2.17. If f : X — K is bounded and 7(F)-continuous, then f is I-
integrable.

Proof. Tt is enough to consider f # 0. Clearly, f satisfies condition (1) in previous
theorem. Let 9 > 0 and p € I'. By Theorem 2.10,

Q={r € X :[f(x)Npp(z) > 0}

)
is 7(F)-compact. Moreover, taking s = m, then
)
QC xeX:./\/}’p(x)Zm :Xs,p~
Thus, f is I-integrable. O

It is clear that L£(I) is a K-linear space. The corresponding covering ring
Q(L(I)) of X generates a zero-dimensional topology 7(L£([)) on X. If £(I) is
endowed with the locally convex topology generated by {|| - ||1,}per, then F is
dense on L£(I). In consequence, there is a unique linear extension I* of I to L£(I)
such that

p(L*(f)) < ||fllrp for any p € ' and f € L(I).
Let us denote by

={VcCcX:VnX,,isar7(F)-clopen on X;,, forallt >0 and p € I'}

* is a covering ring of X with X € Q*. We denote by 7* the zero-dimensional
topology generate by Q* on X. It follows from Theorem 2.16, that Q* C Q(L(1)).
Obviously, 7% is finer than 7(F) and 7(£(I)) is finer than 7*.

Lemma 2.18. f: X — K is 7*-continuous if, and only if, it is T(F)— continuous
on every X ,.

Proof. 1t follows from the fact that every 7*—open set is the union of a collection
of elements of €2*. O

Theorem 2.19. L(I) is a Wolfheze space and I* is an integral operator on L(I).
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Proof. Let f € L(I). By Theorem 2.16 and Lemma 2.18, f is 7*-continuous and
then

T(L(I))-continuous. From the fact that F C L(I), it follows that L£(I) is a
Woltheze space. It remains to prove that I* is an integral. Since Q(F) C Q(L()),
Nipis 7(L(I))-upper semicontinuous. On the other hand, 7(£(I)) is the weakest
topology that makes continuous every f € L£(I), which implies 7 = 7(L()).
Since 7* and 7(F) induce the same topology on X, we see that Ny, € ®(L(I)).
Therefore, I* is strictly continuous, and the theorem follows. O

Corollary 2.20. Ny, =N, for everyp € T, L(I*) = L(I) and I** = I*.
Proof. Let us denote by W the set of all functions ¢ : X — R™ U {0} such that

e ¢ is 7(L([]))-upper semicontinuous,
o vp eI, p(I*(f) < |Iflly, £ e L)

U+ &, since Ny, € U. Let » € U, @ € X and € > 0. Choose U € Q(L(I))
such that @ € U and ¢(z) < ¢(a) + ¢ for any v € U. Take f € L(I) with
|f(a)] =1 and |f|] < 1. Note that Xy f € L(I) and

P (Xu f)) < [| X0 flly-
By Corollary 2.10, we have

| X0 fl1-p = sup{p(I*(g)) : g € L(I),]g] < [Xu fl}
<sup{|lglly : g € L), |g] < |Xufl} < | Xu flly

which implies that
Nipla) < sup | f(@)|Nis () < sup|f(2)|(x)

zeU zeU

<supy(z) < ¢(a) +e.
xeU

Since e was arbitrary, we conclude that A= ,(a) < ¢(a). Since Nj, € U, we get
NI*,p é N[,p-

In order to prove the conversely inequality, suppose that there exists a € X
and t > 0 such that Np-p(a) < t < Njy(a). By Corollary 2.11 and by the fact
that 7(L£(I)) = 7*, we can choose U € Q* with a € U such that U C {z € X :
Npp(x) < t}. Note that {x € U : Ny ,(x) > 6} is 7(L£(I))-compact for any
d > 0. As X, is 7(F)-closed on X and U N X, is 7(F)-clopen on X;,, then
UU (X \ X;p) is m-open. If f € F,|f(a)|=1and |f| <1, we have

t <|f(a)Nrp(a)
= Nonsp(a) <UU XN Xip)llmy
=sup{p(ms(W)): W e QW CUU(X\ X;,)}

which implies that there exists W € Q, W C U U (X \ X,) such that

p(I(Xw f)) = p(mp(W)) > t.
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Since Xy f € F C L(I) and U € Q* C Q(L(])), we have Xy (Xw f) = Xurw f €
L(I). Tt follows that

p(I"(Xw f — Xuaw f)) < ||Xw f — Xvaw fll1p = sup | Xvu f (@) N7 p(2)
< sup | X o [N p(); (11 <1)

= sup Nj,(z) < sup Np,(x); (WA\U C X\ X¢p)

zeW\U 2€X\ Xt p
< t.

Therefore,

p(I*(Xw f = Xuew [)) <t < p(I(Xw f)).
Now, Xy f € F implies that I*(Xw f) = (X f) which means that

P (Xw f — Xyew [)) <t < p(I*(Xw f)),

But,
t <p(I"(Xurw f)) < sup [f(2)|Npp(z) < sup |f(2)| N p(z) <t
zeWnuU xzelU
which is impossible. We conclude that Ny, > N ,. O

3. THE RADON—-NIKODYM THEOREM

The purpose of this section is to give a version of the Radon—Nikodym Theorem
for locally convex spaces in the non-archimedean context.

In order to do that, we will need to enlarge the range of our functions. Until
previous sections, the range of our functions were the non-archimedean field K.
Now, the range of them will be a locally convex spaces F over K.

Let F(X, E) be a linear vector space of functions defined from a set X into E.
We define

UF(X,E)={UCX: Xy ®feF(X,E), forany f € F(X,E)}

As before, Q(F(X, E)) is a ring such that X € Q(F(X,E)) and generates a
zero-dimensional topology 7 (F(X, E)) in X. If each of functions in F(X, E) are
continuous in this new topology and for each x € X there exists f € F(X, F)
such that f (z) # 0, then we will say that F(X, E) is a Wolfheze space. This
topology is the weakest topology that make every f € F(X, E) continuous.
Now, suppose that X is provided with a zero-dimensional topology 7. We al-
ready know that the collection € of all T7—clopen subsets of X forms a ring,
F(X) = {{Xy: U € Q}) is a Woltheze space and 7 (2 (F)) = 7. Even more, if
w: Q — Kis a scalar measure, then the linear operator I : F (X) — K defined
by I (Xy) = u(U) is an integral operator. By the fact that X € Q, N = N,,.
On the other hand, if we consider

FX,E)={Ay®e:Uec, ec E}),

where Xy ® e (x) = Xy (z) ®e, then Q(F (X, E)) =7 (Q(F)) =7 and F (X, E)
is a Wolfheze space.
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For a fixed p € I', we put
\Mhmzigp@@DNH@

for a function g : X — E. Of course, for any g € 7 (X, E), |4/, < oo

Definition 3.1. Let g : X — E a function. We will say that g is u—integrable if
for any p € I and € > 0, there exists h = h (e,p) € F (X, F) such that

lg—nhll,, <e

The integrable functions form a linear space £ (u, F) that contains F (X, E).
Note that if g € £ (u, E) , then [[g],, < oo and [|-[|, , is a semi-norm on £ (u, E) ,

for all p € I'. The family of all seminorms generates a locally convex
r

)
topology on L (u, E) .

In order to give another characterization of p-integrable functions, we need
the following lemma whose arguments to prove it, are similar to those arguments
given in Lemma 3.1 [8].

Lemma 3.2. Let Y C X and Q be a 7(F(X, E))-compact subset of Y. For any
T(F(X, E))-continuous function f :Y — E, any p € I' and every 6 > 0 there
exists g € F(X, E) such that

* [lgllxp = supp(g(x)) < |[fllr = supp(f(z)),
zeX z€Q

e p(g) <p(f) inY, and
o |lg— fllgpr < 9.

Theorem 3.3. A function f : X — E is u-integrable if and only if it satisfies
the following conditions:
(1) f is 7(F(X, E))-continuous on each X; = {x € X : N,(z) > t}, t > 0.
(2) For every 6 > 0 and p € T', there exists a 7(F(X, E))-compact Q, con-
tained in some Xy, such that p(f)N, < off Q.

Proof. Let f € L(u, E) and p € T'. There exists a sequence (gn),, oy in F(X, E)
such that lim,, . ||f — gnl|up = 0. Now, if t > 0 and = € X}, then

plan(e) — (o)) = P ZHDRE) < Ly,

which means that (g,), .y converges uniformly to f in X;. From this, f satisfies
(1). Let § > 0; hence there exists g € F(X, E) such that ||f —g||,, < J. The set

R={z€X : plg(x)N,(x) > 5}

is compact in X.

If we choose t > 0 such that t||g||gr, < 0, then @ = RN X, is also a compact in
X. A simple calculation proves p(f(z))N,(z) <0 for z € X \ Q.

Conversely, assume (1) and (2). Take 6 > 0; we shall construct a g € F(X, E)
such that ||f — g||.p, < J. Let @, t be as in (2). Both functions, f and N, are
bounded on Q. Let M >0, M > ||fllgp, M > [|Nyl|gp- Let s = min{t,6M~'}.
Note that Q C X; C X, and f : Xy — F is continuous. By the preceding lemma,
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there exists g € F(X, E) such that ||g||x, < [|fllop P(g) < p(f) in X, and
llg — fllop < s. Thus, if z € @), then

p(f(x) = g(x))Nu(x) < sM <6,
if x € X, \ @, then

p(f(x) — g(x))Nu(z) < p(f(2))Nu(x) <6
and finally, if x ¢ X, then

p(f () — g(x))Nyu(z) < max{p(f(x))Nu(x), p(g(x))Npu(z)}
< max{d, || fllps} = 0.

Therefore,

1f = 9llup < 0.
0

Before giving definitions of certain technical limits, we need the following
lemma that will help make sense of those limits. The proof was held in [6].

Lemma 3.4. Let pn: Q — K a scalar measure. Then, if a € X and ¢ €]0,1],

then for every neighborhood U of a there exists a neighborhood W € Q of a such
that W C U and |p(W)| > eN,(a).

Definition 3.5. Let 6 : Q — E a set function and p : {2 — K a scalar measure.
Fora € X, e € E, c€]0,1] and r € R we write:
(i)
LIMOU) =e

if -
(Vpel)(Ve>0)(AU € QacU)(VCUVeQ=plV)—e) <e);
(ii)
LIM, A(U) =e

U—a
if
(YpeT)(Ve >0)(3U € QacU)V CU,V e |uV)| > cNy(a) = p@(V) —e) <e);

(i)
LIM,0(U) = e

U—a
if
LIM, 0(U) = e

U—a

for all ¢ €]0, 1;
(iv) For fixed p € T,
LINTp(O(U)) = r
if
(Ve>0)3U € QuacU)(r—e<sup{p(d(V)):VeQVCU}<r+e)

Lemma 3.6. Let m : Q2 — E a vectorial measure and a € X. Then,
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(1) Nonyla) = LINIp(0(U)

(2) Vp e I, Nyppla) =0« LIMy_,m(U) =0
(3) Let pu: Q — K a scalar measure and 0 < ¢ < 1. If LIM, .m(U) = 0, then
U—a
LIMm (U) =0

Proof. To prove (1.), it is enough to prove that
(Ve > 0)(3U € Q,a € U)(Nppla) —e < ||U||lmp < Nimp(a) + ¢)

or equivalently
(Ve > 0)(AU € Q,a € U)(|IU]l,,,, = Nmp(a)| <€)

which follows directed from the definition of AV, .

To show (2.), we need to follow the definitions of N,,, and LIMy_,m(U),
respectively.

To prove (3.), let € > 0. By definition, there exists U € 2 such that if a € U,
VeQ VU and [u(V)| > cN,(a), then p(m(V)) <e.

Take W € Q such that W C U, but |u(W)| < N,(a). By Lemma 3.4, we may
assume that |(U)| > eNy(a). Then [p(U\ W)| = |u(U)| > cN,(a), therefore

p(m(W)) = p(m(U) —m(U\ W)) < max{p(m(U)),p(m(U\W))} < e
O

Next, we define a vector measure that will be crucial in what follows. For a
scalar measure p, we consider the linear operator 7}, : (X, E) — E defined by

T,(Xy @ ¢) = p(U)e.
We claim that this operator satisfies

Vpel, p(Tu(f) <lfllup  (f € F(X, E)).
In fact, for p € T:

p(Tu(f)) =p (Tu (Z Ay, ® ei)) < max{p(u(Ui)e;) : 1 <i <n}
— max{ [j(U)lples) 1< i < n} < {|Uillpler) 1< i < n)

= max {sup ple)Ny(x) 11 <i < n} = sup p(f(2))Nu(z) = || fl]p

zeU;

Now, since F(X, E) is dense in L£(p, E) (with respect to the family {|| - ||, }per).
the operator 7), may be continuously extended to L(u, E), satisfying

vpel, p(Lu(f) <[l (f € Llw, E)).

On the other hand, if we fix g € L(u, E), with ||g||x, = supp (g (z)) < +o0 for
all p € I', then we define

Sg i L(u) — E, Se(f) =Tu(f®g)
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By Theorem 2.12, S, is an integral operator, since if f € £(p) and p € I, then
p(Se(f) =p(Tu(f©®9)) < If @ gllup = Sg}lﬂgp(f(f)g(ff))/\fu(ff)

< llgllxp sup | @)INu(@) = ligllxall fllu

Thus, by the example 77, there exists a unique vector measure my, : ! — E
associated to S, such that

mg<U) = Sg<XU) = Tu(XU ®g).

Let us denote m, by ;1 ® g. Note that if g = e, then p ® e(U)
Q

w(U)e, thus the
new notation makes sense. At the same time, if p e I', U € d

and r € X, then

U lusg.p
=sup{p(p®g(V)):V Cc UV € Q} =sup{p(S,(Xv)) : V C UV € Q}
< sup{|lgllx||Xv[l, : V C UV € Q} = [lgllxpsup{[[Xv]].: V C UV € Q}
= lgllxpsup{l[VIl.: V C UV € Q} = [|gllxpl|Ull,.
and
Nuggp() = Inf{[|W]lug9p - . € W, W € QF < {|[glIx|[W]|], : x € W,W € Q}
= |lgllxp fE{{[W]|, : 2 € WW € Q} = ||g][x pNu ().

Lemma 3.7. If i is a scalar measure and g € L(p, E), then
LIM[p @ g(U) — p@ g(a)(U)] = 0.
Proof. Let p € I';e > 0 and a € X. Note that

p®@g(U)—pga)(U) =pelg—g(a)(U).

With out loss of generality, we may assume that g(a) = 0 and N,(a) < 1. Since
g is p-integrable, by Theorem 3.3, there exists a compact ) of X contained in
some X; such that p(g(z))N,(z) < e forall z € X \ Q. Now, if a ¢ @Q, then we
choose U € Q) such that a € U and U C X \ Q; or if a € @), then we choose U € Q
such that

reUnX, = p(g(x)) <e.
In both cases we have
Ve e U, p(g(x))Nu(z) <e.
Therefore, if V€ Q, V C U, then
p(p® g(V)) = p(Tu(Xy @ 9)) < ||y @ gl|,up
= sup p(Ay ® g(2))N,(z) = sup pl(g(2))Ny(z) < €

Since p € [' was arbitrary, we are done
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Definition 3.8. Let m : 2 — E a vector measure and p : {2 — K a scalar
measure. We will say that m is absolutely continuous with respect to p if, for
any a € X, there exists e, € E such that

VpeTl, Nuuge.pla)=0.
In that case we will write m << pu.
Remark 3.9. If m << pu, then for every U € €2, we have
Ul =0=VpeL, ||U|lmp=0.
Proof. First of all, note that
Nu(a) =0=Vp e, N, ,(a) =0.

In fact, if @ € X such that N,(a) = 0 and p € T, then there exists e, € E such
that /\/'m_u@,emp(a) = 0. Also, by a previous results,

Nugeap(@) < |lealxNyu(a) = p(ea)Nyu(a) = 0.
Thus, by Theorem 2.6,
0< /\/'m,p(a) = Nm—u®ea+u®6a,p(a) < maX{Nm—u@ea,p(a)aNu@emp(a)} = 0.

Now, if U € Q such that ||U||, = 0 and z € X, then N,(z) = 0; hence N, ,(z) =
0. Therefore, ||U|l,, = 0. O
Theorem 3.10. (Radon—Nikodym) Let m : Q — E a vector measure and p :
Q) — K a scalar measure. Then the following statements are equivalent:

(1) m << p.

(2) There exists a g € L(p, E) such that m = p® g.

Proof. (2.) = (1.) It is directed from Lemma 3.7 and Lemma 3.6.

(1.) = (2.) By the assumption, for all a € X, there exists e, € E such that for
all p € I', Nop—pygeap(@) =0, .

First of all, let us prove that if NV, (a) > 0, then e, is unique. As usual, suppose
that there exists another w, € E such that

No—poeap(@) =0 =Ny _ygu, p(a), forall peT.
Then, for a given € > 0, there exists U € (), a € U such that
max{||U||m—pgeqps ||Ullm-pow.p} < €.
Note that, in general, p(e)N,(a) = N,gep(a). Thus, if N,(a) > 0, then
plea = wa)Nu(a) < plea — wa) U]y = sup  |u(V)|p(ea — wa)
VeQvcu

= sup p(p®e(V)—p®w,(V))

_ VE%@CUW @ ealV) = (V) +m(V) — 1 ® wa(V))
= sup max{ple® ea(V) — m(V))p(m(V) - p® (V)

= max{||Ul[m—poea: [|Ulm—pzw. } <€
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Thus, p(e, — w,) = 0. Since p is arbitrary, we conclude e, = w,.
Now, let us define the function g : X — E| by

_ Jea, Ny(a)>0
“w_{a N, (a) = 0.

By the uniqueness of e,, ¢ is well defined.
The next step is to prove that g is p-integrable. By Theorem 3.3, it is enough to
prove that

e g is continuous on each X;, t > 0.
e For a given 0 > 0 and p € T, there exists a compact subset @ of X,
contained in some X, such that p(f)N, < off Q.

Take t >0, pe T and € > 0. If a € X; and N,,_pe4(a)p(a) = 0, by Lemma 3.6,
LIM[m(U) = p® g(a)(U)] = 0.

So, for these t and ¢, there exists U € €, a € U, such that

t
VEQVCU:mmwyw®¢@W»g%
Now, if b € U N X, and since Ny,_ 090 »(0) = 0, then we may choose V; € Q,
Vo Cc U, b € Vj such that
et

VeQVcVo=pm(V)—puxgbd)(V)) < 7

IN

plg(a) = g(0))Nu(b) < p(g(a) — g(®))|[Voll,
p(g(a) —g(b)) sup [u(V)]

VeQ,Vcy

sup  p(p @ g(a)(V) — p @ g(d)(V))

VeV,
p(m(V)—p®g(a)(V)) }

= sup max

vearer, { pm(V)=peg®) (V) =2
which implies the continuity of ¢ in X;.
In order to prove the second condition for g, let 6 > 0, p € I' and define the set
Q={x e X : N,p(x)>d}. Weclaim that @ is the compact we need. Note that
Nin—pog(z)p(®) = 0 implies Ny, ,(2) = Nygg) p(@). If 2 ¢ Q, then

p(9(2))Nu(2) = Nugga) p(2) = N p(z) < 6.

Therefore, we only need to prove that () is contained in some X;. Take a € @;
again by Lemma 3.6, there exists U, € €0, a € U, such that

VeQVcU,=pm(V)—u®gla)) <

N Sa

By the compactness and by the fact that
Qc U,

aeq)
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we may choose a finite collection {U,,,---U,,} in Q such that

Q C Lnj Uy,
i=1

Thus, if Ve Q, V CU,, then
pm(V)) =p(m(V) — p® g(a;)(V) + p @ g(a;)(V))
< max{p(m(V) — p ® g(a;)(V)), p(p @ g(a:;)(V))}
< o { 5.0 9(a) (V)|

If we choose M > max{p(g(a;)) : 1 < i <n}andt =M1 then Q C X;. In
fact, take a € @) and U,, such that a € U,,. For an arbitrary V € Q, V C U,, we
have

pln(V)) < max{ 5,00 g(a)(V) | = max { 3.tV )lp(atan)}

< mx{g w<v>|6r1}.

and thus,
)

IA

Nonp(a) = LIMy—op(m(U))

)

IN
(o)

max {5, 6t_1L-[MU—>a|,U’(U)|}

=0t ' LIMy _.|p(U)| = 6t ' N, (a)

which means

N,(a) > t.
As a consequence, g is p-integrable.
Hence, by Lemma 3.7,

LIM{p @ g(U) = p @ g(a)(U)] = 0.

which implies that for every p € I', Nugg—puog(a) p(@) = 0.

Therefore,
Nin—pagp(@) < maX{Nm—u®g(a)7p(@)7Nu@y—u®g(a),p(a)} =0.
In other words, N,,— g4, = 0 or, equivalently, m = p ® g. 0
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