
Banach J. Math. Anal. 9 (2015), no. 2, 311–321
http://doi.org/10.15352/bjma/09-2-20
ISSN: 1735-8787 (electronic)
http://projecteuclid.org/bjma

GRADED PSEUDO-H-RINGS
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Abstract. Consider a pseudo-H-space E endowed with a separately contin-
uous biadditive associative multiplication which induces a grading on E with
respect to an abelian group G. We call such a space a graded pseudo-H-ring
and we show that it has the form E = cl(U +

∑
j Ij) with U a closed subspace

of E1 (the summand associated to the unit element in G), and any Ij runs over
a well described closed graded ideal of E, satisfying IjIk = 0 if j 6= k. We also
give a context in which graded simplicity of E is characterized. Moreover, the
second Wedderburn-type theorem is given for certain graded pseudo-H-rings.

1. Introduction and Preliminaries

In this paper we start considering the notion of a pseudo-H-space, that is, a
real or complex vector space E equipped with a a family (〈·, ·〉α)α∈I of positive
semi-definite (pseudo)-inner products. We endow E with the initial topology with

respect to the family of seminorms (pα)α∈I , where pα(x) :=
√
〈x, x〉α for α ∈ I

and x ∈ E. Thus E becomes a locally convex space (see [5, p. 456, Definition
3.1]).

We assume that every pseudo-H-space E is Hausdorff and complete. The
former condition may be stated as follows: if x ∈ E satisfies pα(x) = 0 for each
α ∈ I then x = 0. The latter condition means that each Cauchy net in E is
convergent. A pseudo-H-ring is a pseudo-H-space endowed with a biadditive
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associative multiplication separately continuous, i.e., the endomorphisms of E
given by x 7→ xy and x 7→ yx are continuous for all y ∈ E. For any subset S of
E we shall denote its closure by cl(S).

Example 1.1. Let I and J be two arbitrary nonempty sets of elements. Consider
the set C(I×J)×(I×J) of all complex-valued functions a on (I × J)× (I × J) such
that

(i) a((i, j), (l,m)) = 0 when j 6= m and
(ii)

∑
i,k∈I;j∈J

|a((i, j), (k, j))|2 ∈ R+.

The latter, endowed with “point-wise” defined operations becomes a vector
space and an algebra with “matrix” multiplication

(ab)((i, j), (l,m)) =
∑

(k,s)∈I×J

a((i, j), (k, s))b((k, s), (l,m)),

for all a, b ∈ C(I×J)×(I×J). Take a family of real numbers (tα)α∈Λ, such that tα ≥ 1.
For each α ∈ Λ, the mapping 〈·, ·〉α : C(I×J)×(I×J) × C(I×J)×(I×J) → C given by

〈a, b〉α = tα
∑

(i,j),(l,m)∈I×J

a((i, j), (l,m))b((i, j), (l,m))

defines a pseudo-inner product on C(I×J)×(I×J), where “−” denotes complex con-
jugation. Thus E := (C(I×J)×(I×J), (〈·, ·〉α)α∈Λ) becomes a locally convex pseudo-
H-ring.

Two elements x, y in a pseudo-H-space E are called orthogonal if 〈x, y〉α = 0
for all α ∈ I. The orthogonal set S⊥ of a non-empty subset S in E is defined by

S⊥ := {x ∈ E : 〈x, y〉α = 0 for all y ∈ S and all α ∈ I}.

It is a closed linear subspace of E. The symbol ⊕⊥ shall denote orthogonal direct
sum, that is, a direct sum of mutually orthogonal linear subspaces.

Definition 1.2. Let E be a pseudo-H-ring, over K = R or C, and let G be an
abelian group. We say that E is a graded pseudo-H-ring (with respect to G) if

E = cl(
⊕⊥

g∈G

Eg),

where Eg is a closed linear subspace satisfying EgEh ⊂ Egh (denoting by juxta-
position the product both in E and G), for any g, h ∈ G. We define the support
of the grading to be the set Σ := {g ∈ G \ {1} : Eg 6= 0}.

Graded Hilbert spaces, and therefore graded classical H∗-algebras, and graded
l2(G) algebras, where G is a compact topological group, are examples of graded
pseudo-H-rings (see [1, 4, 8]). Let us also endow the family of pseudo-H-rings in
Example 1.1 of different gradings.

Example 1.3. Consider the pseudo-H-ring E = (C(I×J)×(I×J), (〈·, ·〉α)α∈Λ) of
Example 1.1. Let us fix an arbitrary abelian group G. For any ((i, j), (k, j)),
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i, k ∈ I and j ∈ J , denote a((i,j),(k,j)) : (I × J)× (I × J) → C by

a((i,j),(k,j))((l,m), (n, s)) :=

{
1, if ((l,m), (n, s)) = ((i, j), (k, j));
0, otherwise.

the element units in E. We have that any function

φ : I × J → G

gives rise to a G-grading on E given by

Ca((i,j),(k,j)) ⊂ Eg if and only if g = φ(i, j)−1φ(k, j).

Indeed, taking into account a((i,j),(k,j))a((m,l),(n,l)) = 0 for (k, j) 6= (m, l), and

φ(i, j)−1φ(k, j)φ(k, j)−1φ(n, j) = φ(i, j)−1φ(n, j),

the above condition clearly defines the grading E = cl(
⊕⊥

g∈G

Eg) with

Eg =
⊕⊥

Ca((i,j),(k,j)), (1.1)

where the orthogonal direct sum is taken over all i, k ∈ I; j ∈ J with

φ(i, j)−1φ(k, j) = g.

Let E be a graded pseudo-H-ring. A graded pseudo-H-subring F of E is
a linear subspace with FF ⊂ F and which is decomposed as F = cl(

⊕⊥
g∈G Fg)

where Fg := F∩Eg. A graded ideal I of E is a graded pseudo-H-subring satisfying
IE ⊂ I and EI ⊂ I. A graded pseudo-H-ring E shall be called graded simple if
its product is nonzero and its only graded ideals are (0) and E.

In this work we study graded pseudo-H-rings E. In Section 2, we give a
particular decomposition of E as E = cl(U +

∑
j

Ij) with U a closed subspace

of E1 (the summand associated to the unit element in G), and any Ij a well
described closed graded ideal of E, satisfying IjIk = 0 if j 6= k;. Then, in Section
3 we give a context in which graded simplicity of E is characterized. Moreover,
a second Wedderburn-type theorem is given for certain graded pseudo-H-rings.

In the next lemma, by a topological ring we mean a topological vector space
which is a ring, such that the ring multiplication is separately continuous.

Lemma 1.4. Let E be a topological ring.

(i) If A, B, C are subsets of E with AB ⊆ C, then cl(A)cl(B) ⊆ cl(C).

If, in addition E is Hausdorff and complete, then the following hold:

(ii) If A and B are orthogonal closed subspaces of E, then A⊕B is closed.
(iii) If A and B are orthogonal subspaces with A closed, then cl(A ⊕ B) =

A⊕ cl(B).

Proof. (i) See [8, p. 6, Lemma 1.5].
(ii) Let A and B be orthogonal closed subspaces and let (xλ)λ∈Λ be a net in

A ⊕ B converging to x0. For each λ ∈ Λ we may write xλ = aλ + bλ for unique
elements aλ and bλ belonging to A and B respectively. For any α ∈ I, and as A
and B are orthogonal, we have 〈xλ, xλ〉α = 〈aλ, aλ〉α + 〈bλ, bλ〉α. We deduce that
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〈aλ, aλ〉α ≤ 〈xλ, xλ〉α and that 〈bλ, bλ〉α ≤ 〈xλ, xλ〉α. Then (aλ)λ∈Λ and (bλ)λ∈Λ

are Cauchy nets in A and B and, by the completeness of E, they converge to
a0 ∈ A and b0 ∈ B respectively. As E is Hausdorff we have x0 = a0 + b0 and we
are done.

(iii) We start by noticing that A ⊕ cl(B) ⊆ cl(A ⊕ B). By (ii) above, we get
that cl(A⊕B) ⊆ A⊕ cl(B). It is left to prove that the sum A⊕ cl(B) is indeed
orthogonal. Take a ∈ A and c ∈ cl(B). Fix α ∈ I. For any ε〉0 choose b ∈ B such
that pα(c− b)〈ε. Then we have

〈a, c〉α = 〈a, c− b + b〉α = 〈a, c− b〉α ≤ pα(a)pα(c− b)〈εpα(a).

As this is true for each ε〉0 we get that 〈a, c〉α = 0. So, by (ii), A⊕ cl(B) is closed
and hence, A⊕ cl(B) ⊆ A⊕B ⊆ A⊕ cl(B). Thus, the assertion follows. �

2. Decompositions

From now on, E denotes a graded pseudo-H-ring over R or C and

E = cl(
⊕⊥

g∈G

Eg) = E1 ⊕ cl(
⊕⊥

g∈Σ

Eg)

the corresponding grading, with support Σ, and with respect to an abelian (mul-
tiplicative) group G. Let us denote by Σ−1 := {h−1 : h ∈ Σ} ⊂ G.

Definition 2.1. Let g, h be elements in Σ. We shall say that g is connected to h
if there exist g1, g2 · · · , gn ∈ Σ ∪ Σ−1 such that

(i) g1 = g.
(ii) {g1, g1g2, · · · , g1g2 · · · gn−1} ⊂ Σ ∪ Σ−1.
(iii) g1g2 · · · gn−1gn ∈ {h, h−1}.
We shall also say that {g1, · · · , gn} is a connection from g to h.

The next result shows that connectioness is an equivalence relation.

Proposition 2.2. Let E be a graded pseudo-H-ring with support Σ. Then, the
relation ∼ in Σ, defined by g ∼ h if and only if g is connected to h, is an
equivalence one.

Proof. Clearly the set {g} is a connection from g to itself and so the relation is
reflexive.

If g ∼ h then there exists a connection {g1, g2, · · · , gn} from g to h:

{g1g2, g1g2g3, · · · , g1g2 · · · gn−1} ⊂ Σ ∪ Σ−1,

where g1g2 · · · gn ∈ {h, h−1}. Hence, we have two possibilities. In the first one
g1g2 · · · gn = h, and in the second one g1g2 · · · gn = h−1. Now observe that the set

{h, g−1
n , g−1

n−1, · · · , g−1
2 }

gives us a connection from h to g for the first possibility and {h, gn, gn−1, · · · , g2}
for the second one. Hence ∼ is symmetric.

Finally, suppose that g ∼ h and h ∼ k, and write {g1, g2, · · · , gn} for a connec-
tion from g to h and {h1, h2, · · · , hm} for a connection from h to k. If h /∈ {k, k−1},
then m ≥ 1 and so {g1, g2, · · · , gn, h2, · · · , hm} (resp. {g1, g2, · · · , gn, h

−1
2 , · · · , h−1

m })
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is a connection from g to k if g1g2 · · · gn = h (resp. g1g2 · · · gn = h−1). If
h ∈ {k, k−1} then, {g1, g2, · · · , gn} is a connection from g to k. Therefore g ∼ k
and this completes the assertion. �

By the above proposition we can consider the quotient set

Σ/ ∼= {[g] : g ∈ Σ},
where [g] denotes the set of elements of Σ which are connected to g. By the
definition of ∼, it is clear that if h ∈ [g] and h−1 ∈ Σ then h−1 ∈ [g].

Our next goal in this section is to associate a graded ideal E[g] to any [g]. Fix
g ∈ Σ, we start by defining the set E1,[g] ⊂ E1 as follows

E1,[g] := spanK{EhEh−1 : h ∈ [g]} ⊂ E1.

Next, we define

V[g] :=
⊕⊥

h∈[g]

Eh

Finally, we denote by E[g] the following closed linear subspace of E,

E[g] := cl(E1,[g] ⊕⊥ V[g]).

Proposition 2.3. For any g ∈ Σ, the linear subspace E[g] is a graded pseudo
H-subring of E.

Proof. We have

(E1,[g] ⊕⊥ V[g])(E1,[g] ⊕⊥ V[g]) ⊂ E1,[g]E1,[g] + E1,[g]V[g] + V[g]E1,[g] + V[g]V[g]. (2.1)

Let us consider the last summand V[g]V[g] in (2.1). Given h, k ∈ [g] such that
EhEk 6= 0, if k = h−1 then, clearly EhEk = EhEh−1 ⊂ E1,[g]. Suppose that
k 6= h−1 and consider a connection {g1, · · · , gn} from g to h. Since EhEk 6= 0
implies hk ∈ Σ, we get that {g1, · · · , gn, k} is a connection from g to hk, in
case g1 · · · gn = h and {g1 · · · gn, k

−1}, the respective one, in case g1 · · · gn = h−1.

So hk ∈ [g] and thus EhEk ⊂ Ehk ⊂ V[g]. Therefore, (
⊕⊥

h∈[g]

Eh)(
⊕⊥

h∈[g]

Eh) ⊂

E1,[g] ⊕⊥ V[g], that is,

V[g]V[g] ⊂ E1,[g] ⊕⊥ V[g]. (2.2)

Consider now the first summand E1,[g]E1,[g] in (2.1). By associativity, given h, k ∈
[g], we have (EhEh−1)(EkEk−1) ⊂ (EhEh−1) ∩ (EkEk−1) ⊂ E1,[g]. Hence,

E1,[g]E1,[g] ⊂ E1,[g]. (2.3)

Similarly, we show
E1,[g]V[g] + V[g]E1,[g] ⊂ V[g]. (2.4)

From the relations (2.1), (2.2),(2.3) and (2.4), we get

(E1,[g] ⊕⊥ V[g])(E1,[g] ⊕⊥ V[g]) ⊂ E1,[g] ⊕⊥ V[g].

Finally, Lemma 1.4-(i) completes the proof. �

Lemma 2.4. If [g] 6= [h] for some g, h ∈ Σ then E[g]E[h] = 0.
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Proof. We have
(E1,[g] ⊕⊥ V[g])(E1,[h] ⊕⊥ V[h]) ⊂

E1,[g]E1,[h] + E1,[g]V[h] + V[g]E1,[h] + V[g]V[h]. (2.5)

Consider the above last summand V[g]V[h] and suppose there exist g1 ∈ [g] and
h1 ∈ [h] such that Eg1Eh1 6= 0. Since g1 6= h−1

1 , then g1h1 ∈ Σ. So {g1, h1, g
−1
1 } is

a connection between g1 and h1. By the transitivity of the connection relation,
we have h ∈ [g], that is a contradiction. Hence Eg1Eh1 = 0 and thus

V[g]V[h] = 0. (2.6)

Consider now the first summand E1,[g]E1,[h] of (2.5) and suppose there exist g1 ∈
[g] and h1 ∈ [h] so that (Eg1Eg−1

1
)(Eh1Eh−1

1
) 6= 0. We have Eg1(Eg−1

1
Eh1)Eh−1

1
6= 0

and so Eg−1
1

Eh1 6= 0, that contradicts (2.6). Hence E1,[g]E1,[h] = 0. Arguing in a

similar way, we also get
E1,[g]V[h] + V[g]E1,[h] = 0.

From (2.5) we get
(E1,[g] ⊕⊥ V[g])(E1,[h] ⊕⊥ V[h]) = 0.

Applying Lemma 1.4, we finally get E[g]E[h] = 0. �

Theorem 2.5. In any pseudo-H-ring E the following assertions hold.

(i) For any g ∈ Σ, the linear subspace

E[g] = cl(E1,[g] ⊕⊥ V[g])

of E associated to [g] is a graded ideal of E.
(ii) If E is graded simple, then there exists a connection between any two

elements of Σ and E1 = cl(spanK{EgEg−1 : g ∈ Σ}).

Proof. (i) We first observe that by the grading (see Definition 1.2)

EhE(h)−1E1 ⊂ EhE(h)−1 (2.7)

and
EhE1 ⊂ Eh. (2.8)

Let us prove that E[g]E1 ⊂ E[g]. From (2.7), we obtain E1,[g]E1 ⊂ E1,[g], and taking
into account (2.8), we get V[g]E1 ⊂ V[g]. Therefore, (E1,[g]⊕⊥V[g])E1 ⊂ E1,[g]⊕⊥V[g].
Taking closure, by Lemma 1.4-(i) and the fact E1 is closed, we have

E[g]E1 ⊂ E[g].

Taking into account the above observation, Proposition 2.3 and Lemma 2.4,
we have

E[g](E1 ⊕⊥ (
⊕⊥

h∈[g]

Eh)⊕⊥ (
⊕⊥

k/∈[g]

Ek)) ⊂ E[g].

Hence, Lemma 1.4 and the equality

E = cl(E1 ⊕⊥ (
⊕⊥

h∈[g]

Eh)⊕⊥ (
⊕⊥

k/∈[g]

Ek))

finally give E[g]E ⊂ E[g].
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In a similar way, we get EE[g] ⊂ E[g] and so E[g] is a graded ideal of E.
(ii) The graded simplicity of E implies E[g] = E. From here, it is easy to get

[g] = Σ and E1 = cl(spanK{EgEg−1 : g ∈ Σ}). �

Theorem 2.6. Let E be a pseudo-H-ring. Then for an orthogonal complement
U of

cl(spanK{EgEg−1 : g ∈ Σ})
in E1, we have

E = cl(U +
∑

[g]∈Σ/∼

E[g])

where any E[g] is one of the (closed) graded ideals of E described in Theorem
2.5-(i), satisfying E[g]E[h] = 0 if [g] 6= [h].

Proof. By Proposition 2.2, we can consider the quotient set Σ/ ∼:= {[g] : g ∈ Σ}.
For any [g] ∈ Σ/ ∼ we know that E[g] is well defined and, by Theorem 2.5-(i), it

is a graded ideal of E. We also have E1 ⊕⊥ (
⊥⊕

g∈Σ

Eg) = U +
∑

[g]∈Σ/∼
E[g] and so

E = cl(U +
∑

[g]∈Σ/∼

E[g]).

By applying Proposition 2.3-(ii), we get E[g]E[h] = 0 if [g] 6= [h]. �

The linear subspace E1 of E, associated to 1 ∈ G, plays a special role in

any graded pseudo-H-ring E = E1 ⊕⊥ cl(
⊕⊥

g∈Σ
Eg). Hence, in order to obtain

deeper structural descriptions of E we have to consider graded pseudo-H-rings
in which E1 and the (pseudo-)inner products {〈, 〉α}α∈I of E are compatible in a
sense. From here, we introduce the following notion motivated by the compati-
bility condition between the inner product, the involution and the multiplication
which characterize a classical H∗-algebra ([1]) and its generalizations like Am-
brose algebras ([6]).

Definition 2.7. We say that a graded pseudo-H-ring (E, (〈·, ·〉α)α∈I) has a co-
herent 1-homogeneous space if E1 = cl(spanK{EgEg−1 : g ∈ Σ}) and the following
relation holds

〈EgEg−1 , EhEh−1〉α = 〈Eg, EhEh−1Eg〉α
for any g, h ∈ G and α ∈ I.

Graded classical H∗-algebras are examples of graded pseudo-H-ring with coher-
ent 1-homogeneous spaces. The graded pseudo-H-rings in Example 3.3 below are
also examples of graded pseudo-H-rings having coherent 1-homogeneous spaces.

Theorem 2.8. Let E be a pseudo-H-ring. If E has a coherent 1-homogeneous
space, then

E = cl(
⊕⊥

[g]∈Σ/∼

E[g]).

Namely, E is the topological orthogonal direct sum of the (closed) graded ideals
given in Theorem 2.5.
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Proof. Taking into account Theorem 2.6, we clearly have from the fact

E1 = cl(spanK{EgEg−1 : g ∈ Σ})
that E = cl(

∑
[g]∈Σ/∼

E[g]). Since E1 is coherent, and E[g]E[h] = 0, for [g] 6= [h]

(Lemma 2.4), we get

〈Eg1Eg−1
1

, Eg2Eg−1
2
〉α = 〈Eg1 , Eg2(Eg−1

2
Eg1)〉α = 0

for any g1 ∈ [g], g2 ∈ [h] and α ∈ I. Hence the direct sum
⊕⊥

[g]∈Σ/∼

E1,[g] is or-

thogonal. So, since E[g] = cl(E1,[g] ⊕⊥ (
⊕⊥

h∈[g]

Eh)), we get the orthogonal direct

character of the sum of the ideals E[g], [g] ∈ Σ/ ∼. �

3. The graded simple components

In this section, we study when the components in the decompositions given in
Theorems 2.6 and 2.8 are graded simple. We begin by introducing the key notions
of Σ-multiplicativity and maximal length in the context of graded pseudo-H-rings,
in a similar way to that for graded associative algebras, graded Lie algebras,
graded Poisson algebras and so on. For these notions and examples see [2, 3, 7].

Definition 3.1. It is said that a graded pseudo-H-ring E is of maximal length if
E1 6= 0 and dim Eg = 1 for any g ∈ Σ.

Definition 3.2. We say that a graded pseudo-H-ring E is Σ-multiplicative if
given g ∈ Σ and h ∈ Σ ∪ {1} such that gh ∈ Σ, then EgEh + EhEg 6= 0.

We recall that Σ is called symmetric when Σ = Σ−1 and that the annihilator
of E is the set Ann(E) := {v ∈ E : vE = 0 and Ev = 0}. From now on Σ will
be supposed to be symmetric.

Example 3.3. Consider the graded pseudo-H-ring E = cl(
⊕⊥

g∈G

Eg) where

E = (C(I×J)×(I×J), (〈·, ·〉α)α∈Λ)

as in Example 1.3. Take I = N, J = {1, 2, · · · , r} a finite set, G = Q×, (the mul-
tiplicative rational group), and a family of r sequences of prime natural numbers
{xn,t}n∈N where t ∈ J , such that xn,t 6= xm,s when (n, t) 6= (m, s). Define

φ : N× J → Q×

(n, p) 7→ xn,p

Taking into account (1.1) it is easy to verify that for any q ∈ Q×, q 6= 1, either
Eq = 0 or Eq = Ca((n,t),(m,t)) for (unique) n,m ∈ N and t ∈ J such that x−1

n,txm,t =
q. In this case Eq−1 = Ca((m,t),(n,t)) and thus we get that E is of maximal length
and that its support is symmetric.

Since

E1 = cl(
⊕⊥

n∈N; t∈J

Ca((n,t),(n,t))) 6= 0
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and a((n,t),(n,t)) = a((n,t),(m,t))a((m,t),(n,t)) for any m ∈ N with m 6= n, we also get
that E1 = cl(

∑
q∈Σ

EqEq−1) and so E1 is coherent.

In order to verify that E is Σ-multiplicative, take q ∈ Σ and p ∈ Σ such that
qp ∈ Σ. By the above we can write q = x−1

n,txm,t and p = x−1
r,vxs,v. From here, if

qp ∈ Σ then either (m, t) = (r, v) or (n, t) = (s, v). So, either qp = x−1
n,txs,t and

thus EqEp = Ca((n,t),(m,t))Ca((m,t),(s,t)) = Ca((n,t),(s,t)) 6= 0 or pq = x−1
r,t xm,t and we

have EpEq = Ca((r,t),(n,t))Ca((n,t),(m,t)) = Ca((r,t),(m,t)) 6= 0. If p = 1, then clearly
we have that a((n,t),(m,t))a((m,t),(m,t)) = a((n,t),(m,t)) and so EqE1 6= 0. Thus E is
Σ-multiplicative.

Theorem 3.4. Let E be a Σ-multiplicative graded pseudo-H-ring of maximal
length and with Ann(E) = 0. Then E is graded simple if and only if its support
has all of its elements connected and E1 = cl(spanK{EgEg−1 : g ∈ Σ}).

Proof. For the first implication, see Theorem 2.5-(ii). To prove the converse,

consider I = cl(
⊕⊥

g∈G Ig), where Ig := I ∩ Eg, a nonzero graded ideal of E. We
denote by

ΣI := {g ∈ Σ : Ig 6= 0}.
By the maximal length of the grading, if g ∈ ΣI then 0 6= Ig = I ∩ Eg = Eg and

so we can write I = I1 ⊕⊥ cl(
⊕⊥

g∈ΣI
Eg) where I1 = I ∩ E1.

Observe that ΣI 6= ∅. Indeed, in the opposite case 0 6= I ⊂ E1 and then

I(
⊕⊥

g∈Σ

Eg) ⊂ (
⊕⊥

g∈Σ

Eg) ∩ E1 = 0.

Therefore I(
⊕⊥

g∈Σ

Eg) = 0. In a similar way (
⊕⊥

g∈Σ

Eg)I = 0. Hence, by Lemma

1.4

I(cl(
⊕⊥

g∈Σ

Eg)) = (cl(
⊕⊥

g∈Σ

Eg))I = 0. (3.1)

Thus, the associativity of the product gives I(EgEg−1) + (EgEg−1)I = 0 and so,
since E1 = cl(spanK{EgEg−1 : g ∈ Σ}), Lemma 1.4 implies

IE1 + E1I = 0. (3.2)

From equations (3.1) and (3.2) we finally get I ⊂ Ann(E) = 0, a contradiction.
By the above we can take g0 ∈ ΣI , so that

0 6= Eg0 ⊂ I. (3.3)

For any h ∈ Σ with h /∈ {g0, g0
−1}. Since g0 and h are connected, there is a

connection {g1, g2, · · · , gr} between them, such that

g1 = g0; g1g2, g1g2g3, · · · , g1g2g3 · · · gr−1 ∈ Σ and g1g2g3 · · · gr ∈ {h, h−1}.
Consider g0 = g1, g2 and g1g2. The Σ-multiplicativity and maximal length of

E give 0 6= Eg0Eg2 + Eg2Eg0 = Eg0g2 . Thus, using (3.3), we get 0 6= Eg0g2 ⊂ I.
In a similar way, and employing the elements g0g2, g3 and g0g2g3 we have 0 6=

Eg0g2g3 ⊂ I.
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Continuing this process on the connection {g1, · · · , gr} we obtain that 0 6=
Eg0g2g3···gr ⊂ I. Therefore, either 0 6= Eh ⊂ I or 0 6= Eh−1 ⊂ I for any h ∈ Σ.
Since E1 = cl(spanK{EgEg−1 : g ∈ Σ}) we conclude

E1 ⊂ I. (3.4)

Finally, given any g ∈ Σ, the Σ-multiplicativity and maximal length of E together
with (3.4) allow us to assert that

0 6= EgE1 + E1Eg = Eg ⊂ I. (3.5)

From (3.4) and (3.5) we clearly get I = E. Hence, E is graded simple. �

We state now our main theorem that it is the second Wedderburn-type theorem
for certain graded pseudo-H-rings:

Theorem 3.5. Let E be a Σ-multiplicative graded pseudo-H-ring of maximal
length and with Ann(E) = 0. If E1 is coherent then E is the topological orthogonal
direct sum of its minimal (closed) graded ideals E[g], g ∈ G . Moreover, each E[g]

is a graded simple, graded pseudo-H-ring, such that the elements of its support
are connected.

Proof. By Theorem 2.8, E = cl(⊕⊥
[g]∈Σ/∼E[g]). Namely, E is the topological or-

thogonal direct sum of the ideals

E[g] = cl(E1,[g] ⊕⊥ V[g]) = cl(spanK{EhE(h)−1 : h ∈ [g]})⊕⊥ cl(⊕⊥
h∈[g]Eh),

(see also Theorem 2.5 and the notation before Proposition 2.3). We claim that
the support, say

∑
E[g]

, of E[g], g ∈ G, has all of its elements connected. Indeed,

since [g] = [g−1] and E[g]E[g] ⊂ E[g] (see Proposition 2.3-1), we easily deduce
that [g] has all of its elements [g]-connected (connected through elements in [g]).
Besides, the Σ-multiplicativity of E implies that of E[g], g ∈ G. Clearly E[g] is of
maximal length. Moreover, Ann(E[g]) = {0} (the latter denotes the annihilator
of E[g] in itself), this is a consequence of the fact that E[g]E[h] = 0 if [g] 6= [h]
(Theorem 2.6), and Ann(E) = {0}. An application of Theorem 3.4 leads to the
graded simpleness of E[g]. Thus, we easily get that any of the ideals E[g] are
minimal, as well and this finishes the proof. �

Example 3.6. Let us consider the pseudo-H-ring of Example 3.3. This is Σ-
multiplicative of maximal length with symmetric support and it has a coherent
1-homogeneous subspace. It is easy to check that Ann(E) = 0. Observe that
given any q, p ∈ Σ with p /∈ {q, q−1}, we can write q = x−1

n,txm,t with n 6= m and
p = x−1

r,vxs,v with r 6= s.
Suppose v = t. By fixing some u, v ∈ N such that u /∈ {n,m, r} and v /∈

{m, r, s, u} we get that the set

{q, x−1
u,txn,t, x

−1
m,txv,t, x

−1
r,t xu,t, x

−1
v,txs,t}

is a connection from q to p.
However, if v 6= t, and since Σ = {x−1

n,txm,t : n, m ∈ N with n 6= m and t ∈ J},
there is not any connection from q to p. We have shown that the equivalence
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classes in Σ/ ∼ are [x−1
n,txm,t] = {x−1

r,t xs,t : r, s ∈ N with r 6= s} and by applying
the results in this section we can assert that, under the notation

Et = cl((
∑
n∈N

Ca((n,t),(n,t)))⊕ (
⊕

n,m∈N;n6=m

Ca((n,t),(m,t))))

for any t ∈ J , any Et is a graded simple, graded pseudo-H-ring having all of the
elements of its support connected. Moreover, E decomposes as the topological
orthogonal direct sum of these family of minimal graded ideals, namely:

E = cl(

r⊕⊥

t=1

Et).
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