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ABSTRACT. Consider a pseudo-H-space E endowed with a separately contin-
uous biadditive associative multiplication which induces a grading on E with
respect to an abelian group G. We call such a space a graded pseudo-H-ring
and we show that it has the form £ = cl(U + ), I;) with U a closed subspace
of By (the summand associated to the unit element in G), and any I, runs over
a well described closed graded ideal of E, satisfying ;1 = 0 if j # k. We also
give a context in which graded simplicity of F is characterized. Moreover, the
second Wedderburn-type theorem is given for certain graded pseudo-H-rings.

1. INTRODUCTION AND PRELIMINARIES

In this paper we start considering the notion of a pseudo-H -space, that is, a
real or complex vector space E equipped with a a family ({-,)s)aes of positive
semi-definite (pseudo)-inner products. We endow E with the initial topology with
respect to the family of seminorms (p,)acr, Where po(x) := /(z,x), for a € I
and x € E. Thus E becomes a locally convex space (see [5, p. 456, Definition
3.1]).

We assume that every pseudo-H-space E is Hausdorff and complete. The
former condition may be stated as follows: if x € E satisfies p,(z) = 0 for each
a € I then x = 0. The latter condition means that each Cauchy net in F is
convergent. A pseudo-H-ring is a pseudo-H-space endowed with a biadditive
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associative multiplication separately continuous, i.e., the endomorphisms of E
given by x +— zy and x — yx are continuous for all y € E. For any subset S of
E we shall denote its closure by cl(S).

Example 1.1. Let [ and J be two arbitrary nonempty sets of elements. Consider
the set CUX*UIXJ) of all complex-valued functions @ on (I x J) x (I x J) such
that

(i) a((7,7),(l,m)) = 0 when j # m and
(i) > la((4), (k,4) € Ry

ikel;jed
The latter, endowed with “point-wise” defined operations becomes a vector
space and an algebra with “matriz” multiplication

(ab)((i,5), (t,m)) = > al(i ), (K, ))b((K, s), (I,m)),

(k,s)eIxJ

for all a,b € CU*)*UxT) Take a family of real numbers (4 )aea, such that ¢, > 1.
For each a € A, the mapping (-, -)q : CUXXUXI) 5 CUXNXIX]) _, C given by

<a’b>a :ta Z a((z,]),(l,m))l;((z,]),(l,m))

(4,9),(ILm)elxJ

defines a pseudo-inner product on CE*/)*UIxJ) wwhere “—” denotes complex con-

jugation. Thus E := (CUX)*IxJ) ((. ) ) cn) becomes a locally convex pseudo-
H-ring.

Two elements z,y in a pseudo-H-space E are called orthogonal if (z,y), = 0
for all o € I. The orthogonal set S+ of a non-empty subset S in E is defined by

St={z € E:{(r,y)a=0 forally €S and all o € I}.

It is a closed linear subspace of E. The symbol & shall denote orthogonal direct
sum, that is, a direct sum of mutually orthogonal linear subspaces.

Definition 1.2. Let E be a pseudo-H-ring, over K = R or C, and let G be an
abelian group. We say that E is a graded pseudo-H-ring (with respect to G) if

E=d(@D F,).

geG

where E is a closed linear subspace satisfying E,E;, C E,, (denoting by juxta-
position the product both in £ and G), for any g, h € G. We define the support
of the grading to be the set ¥ :={g € G\ {1} : E, # 0}.

Graded Hilbert spaces, and therefore graded classical H*-algebras, and graded
l2(G) algebras, where G is a compact topological group, are examples of graded
pseudo- H-rings (see [1, 4, 8]). Let us also endow the family of pseudo- H-rings in
Example 1.1 of different gradings.

Example 1.3. Consider the pseudo-H-ring E = (CUXI)*UIXI) (.0 ) cn) of
Example 1.1. Let us fix an arbitrary abelian group G. For any ((,7), (k, 7)),
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i,k € I and j € J, denote a(g ), k) : (I x J) x (I x J) — C by
1, if ((I,m),(n,s)) = ((:,7),(k,7));
a(ig), kg (M), (n,5)) = { (L, m), (n,8)) = ((8:.), (k. 9))

0, otherwise.
the element units in . We have that any function
p:IxJ—G
gives rise to a G-grading on F given by
Caij), ki) C Eq if and only if g = ¢(i, 7)o (k, j).
Indeed, taking into account a j),k,j))@((m.),n) = 0 for (k,7) # (m,1), and

o, )" o (k, 5)o(k, ) 6(n, j) = (i, 5) " o(n, j),

L
the above condition clearly defines the grading F = cl( @ E,) with
geG

1
By =D Cagi.eay; (1.1)

where the orthogonal direct sum is taken over all ¢,k € I;j € J with
o(i,j) " o(k, j) = g.

Let E be a graded pseudo-H-ring. A graded pseudo-H-subring F of E is
a linear subspace with F'F' C F' and which is decomposed as F' = cl (@;eG F,)
where Fj, ;= FNE,. A graded ideal I of I is a graded pseudo-H-subring satisfying
IE C I and EI C I. A graded pseudo-H-ring E shall be called graded simple if
its product is nonzero and its only graded ideals are (0) and E.

In this work we study graded pseudo-H-rings E. In Section 2, we give a
particular decomposition of E as £ = cl(U + > I;) with U a closed subspace

J
of By (the summand associated to the unit element in G), and any [; a well
described closed graded ideal of E, satisfying I;I; = 0 if j # k;. Then, in Section
3 we give a context in which graded simplicity of E is characterized. Moreover,
a second Wedderburn-type theorem is given for certain graded pseudo- H-rings.
In the next lemma, by a topological ring we mean a topological vector space
which is a ring, such that the ring multiplication is separately continuous.

Lemma 1.4. Let E be a topological ring.
(i) If A, B,C are subsets of E with AB C C, then cl(A)cl(B) C cl(C).
If, in addition E is Hausdorff and complete, then the following hold:

(ii) If A and B are orthogonal closed subspaces of E, then A ® B is closed.
(iii) If A and B are orthogonal subspaces with A closed, then cl(A @ B) =
A®c(B).

Proof. (i) See [3, p. 6, Lemma 1.5].

(ii) Let A and B be orthogonal closed subspaces and let (z))xea be a net in
A & B converging to xy. For each A € A we may write x) = ay + by for unique
elements a, and by belonging to A and B respectively. For any a € I, and as A
and B are orthogonal, we have (xy,z))o = (ax,ax)a + (bx, br)a. We deduce that
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(a,\,a,\>a S <$>\,ZL‘)\>Q and that <b)\,b)\>a S <ZE)\7ZL')\>Q. Then (a,\),\eA and (b)\)AGA
are Cauchy nets in A and B and, by the completeness of E, they converge to
ag € A and by € B respectively. As E is Hausdorff we have zy = ag + by and we
are done.

(iii) We start by noticing that A @ cl(B) C cl(A @ B). By (ii) above, we get
that cl(A® B) C A® cl(B). It is left to prove that the sum A & cl(B) is indeed
orthogonal. Take a € A and ¢ € ¢l(B). Fix a € I. For any €)0 choose b € B such
that p,(c — b){e. Then we have

<CL, C)Oé = <CL, c—b+ b>a = <CL, c— b>a < pa<a)pa(c - b)<€pa(a)'

As this is true for each €)0 we get that (a,c), = 0. So, by (ii), A@ cl(B) is closed
and hence, A® cl(B) C A® B C A@ cl(B). Thus, the assertion follows. O

2. DECOMPOSITIONS

From now on, E denotes a graded pseudo-H-ring over R or C and

E=d(@ E)=Bedd E)

geG geEX

the corresponding grading, with support ¥, and with respect to an abelian (mul-
tiplicative) group G. Let us denote by X' :={h~': h € ¥} C G.

Definition 2.1. Let g, h be elements in >. We shall say that g is connected to h
if there exist g1, g2+ , g, € ¥ U X! such that
(i) g1 =g
(i) {91,9192, - 192 gn1} CEUN
(iii) 9192 " Gn—-19n € {h7 h_l}'
We shall also say that {gi,---,gn} is a connection from g to h.

The next result shows that connectioness is an equivalence relation.

Proposition 2.2. Let E be a graded pseudo-H -ring with support 3. Then, the
relation ~ in X, defined by g ~ h if and only if g is connected to h, is an
equivalence one.

Proof. Clearly the set {g} is a connection from g to itself and so the relation is
reflexive.
If g ~ h then there exists a connection {g1, ¢z, -, gn} from g to h:

{9192, 919293, . 9192 Gar} CTUN,

where ¢1go--- g, € {h,h7'}. Hence, we have two possibilities. In the first one
g1 -+ gn = h, and in the second one g, g5 - - - g, = h~'. Now observe that the set

{hv 97:1791:}17 e 792_1}
gives us a connection from h to g for the first possibility and {h, gn, gn—1, -+ , 92}
for the second one. Hence ~ is symmetric.
Finally, suppose that g ~ h and h ~ k, and write {g1, 92, - , gn} for a connec-
tion from g to h and {hy, hy, -+ , hy,} for a connection from hto k. If b & {k,k~'},
then m > 1andso {g1,g2, " » Gn, h2, -+ , B} (vesp. {91, 92, , Gn, By 5y -+ A Y)



GRADED PSEUDO-H-RINGS 315

is a connection from g to k if g1ga---g, = h (resp. qig2---gn, = h™1). If
h € {k,k~'} then, {g1,92, -, gn} is a connection from g to k. Therefore g ~ k
and this completes the assertion. O

By the above proposition we can consider the quotient set
2/ ~={lg]: g € X},

where [g] denotes the set of elements of ¥ which are connected to g. By the
definition of ~, it is clear that if h € [¢g] and h™! € ¥ then h™! € [g].

Our next goal in this section is to associate a graded ideal Ey; to any [g]. Fix
g € X, we start by defining the set F) ;) C £ as follows

B (g := spang{EpEp-1 - h € [g]} C E).

Vig) == @L By

helg]
Finally, we denote by Ej, the following closed linear subspace of £,

By == cl(Ey g & Vig)).

Next, we define

Proposition 2.3. For any g € X, the linear subspace Ejy is a graded pseudo
H-subring of E.
Proof. We have
L

(B & Vig) (v & Vig) C BB + BvgVig + Vg B + VigVlg- (221)

Let us consider the last summand Vj; Vi, in (2.1). Given h, k € [g] such that
EwE, # 0, if k = h™! then, clearly ELE, = EyEp1 C E,g. Suppose that
k # h~' and consider a connection {gi, - ,g,} from g to h. Since E,E # 0

implies hk € X, we get that {g1, -, gn, k} is a connection from ¢ to hk, in
case g1+ gn = h and {g; - - - g, k= '}, the respective one, in case g; -+ g, = h™ L.

1 1L
So hk € [g] and thus EyEy, C Eyp, C Vig. Therefore, (D En)(ED En) C
helg] helg]
Elj[g] ot ‘/[g], that is,
VigVig) C Ex g o Vig- (2.2)

Consider now the first summand E; g F g in (2.1). By associativity, given h, k €
lg], we have (EyEj1)(EpEr1) C (EpEp-1) N (Epfy-) C Ey . Hence,

Erjg B g C g (2.3)
Similarly, we show
Ly jgVig + Vig Erlg C Vig- (2.4)
From the relations (2.1), (2.2),(2.3) and (2.4), we get
(B © Vig)(Evg & Vig) C By & Vg
Finally, Lemma 1.4-(i) completes the proof. O

Lemma 2.4. If [g] # [h] for some g,h € ¥ then EigEp = 0.



316 A.J. CALDERON, A. DIAZ, M. HARALAMPIDOU, J.M. SANCHEZ

Proof. We have
(Evjg) & Vig) (B & Viny) C

Evjg B + EujgVin + Vig B + VigVin- (2.5)
Consider the above last summand Vg V], and suppose there exist g; € [g] and
hy € [h] such that E,, Ej,, # 0. Since g; # hy', then g1hy € 3. So {g1,h1,9; '} is
a connection between g; and h;. By the transitivity of the connection relation,
we have h € [g], that is a contradiction. Hence E, E},, = 0 and thus

Vig Vi = 0. (2.6)
Consider now the first summand E; gy ) of (2.5) and suppose there exist g; €
lg] and h; € [h] so that (Eglngl)(Ehl -1) # 0. We have Ey, (E -1 Ep,)Ej-1 # 0
and so nglEhl # 0, that contradicts (2 6). Hence Ey g E ;) = 0. Arguing in a
similar way, we also get
EvigVim + VigE1im = 0.
From (2.5) we get
(Erfg & Vig) By & Vi) = 0.

Applying Lemma 1.4, we finally get EigE), = 0. U

Theorem 2.5. In any pseudo-H-ring E the following assertions hold.
(i) For any g € 3, the linear subspace

Eg = cl(Eypg & Vi)

of E associated to [g] is a graded ideal of E.
(ii) If E is graded simple, then there exists a connection between any two
elements of ¥ and Ey = cl(spang{E,E,;~1 : g € £}).

Proof. (i) We first observe that by the grading (see Definition 1.2)
EhE(h)AEl C EhE(h)A (2.7)

and

EnEy C By, (2.8)
Let us prove that Eig )y C Ej,. From (2.7), we obtain £, [g] E, C E [y, and taking
into account (2.8), we get Vjy 1 C Vig. Therefore, (El,[g]@ Vi) E1 C Elyg]@ Vig-
Taking closure, by Lemma 1.4-(i) and the fact £} is closed, we have

Ejg £y C Eg.

Taking into account the above observation, Proposition 2.3 and Lemma 2.4,
we have

1 i
E[g](E1 ot (@ Ey) ot (@ Ey)) C Elg.
helg] ké¢[g]
Hence, Lemma 1.4 and the equality

E=d(B ot (D Byt (D B

helg] kélg]
finally give E[g]E C E[g].
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In a similar way, we get EEj, C Ej, and so Ejg is a graded ideal of F.
(ii) The graded simplicity of £ implies Ej; = E. From here, it is easy to get
lg] =¥ and E; = cl(spang{E4E,~1 = g € 3}). O

Theorem 2.6. Let E be a pseudo-H-ring. Then for an orthogonal complement
U of
cl(spang{EgEy-1 : g € ¥})

:Cl(U+ Z E[g])
lglex/~
where any Ejg is one of the (closed) graded ideals of E described in Theorem
2.5-(i), satisfying EgEp = 0 if [g] # [h].

Proof. By Proposition 2.2, we can consider the quotient set %/ ~:= {[g] : g € ¥}.
For any [g] € ¥/ ~ we know that Ej, is well defined and, by Theorem 2.5-(i), it

1
is a graded ideal of E. We also have By & (@ E,) =U+ Y. Ej; and so

m E1, we have

gex [gex/~
U + Z Eg]
[g]€x/~
By applying Proposition 2.3-(ii), we get EjEpp = 0 if [g] # [h]. O

The linear subspace FE; of E, associated to 1 € G, plays a special role in
i

any graded pseudo-H-ring E = E, &+ cl( @ s E,). Hence, in order to obtain
g

deeper structural descriptions of £ we have to consider graded pseudo-H-rings
in which £; and the (pseudo-)inner products {(, ), }aecs of E are compatible in a
sense. From here, we introduce the following notion motivated by the compati-
bility condition between the inner product, the involution and the multiplication
which characterize a classical H*-algebra ([1]) and its generalizations like Am-
brose algebras ([0]).

Definition 2.7. We say that a graded pseudo-H-ring (E, ({-,
herent 1-homogeneous space if Ey = cl(spang{E4E,1 : g € ¥})
relation holds

Ya)acr) has a co-
and the following

(EgEy-1, EyEp-1)o = (Ey, EyEp-1Eg)q
for any g,h € G and o € I.
Graded classical H*-algebras are examples of graded pseudo- H-ring with coher-

ent 1-homogeneous spaces. The graded pseudo-H-rings in Example 3.3 below are
also examples of graded pseudo-H-rings having coherent 1-homogeneous spaces.

Theorem 2.8. Let E be a pseudo-H-ring. If E has a coherent 1-homogeneous

space, then
_Cl @ E[g]
[g]es/~
Namely, E is the topological orthogonal direct sum of the (closed) graded ideals
giwen in Theorem 2.5.
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Proof. Taking into account Theorem 2.6, we clearly have from the fact
Ey = cl(spang{EyE,1 1 g € X})
that £ = cl( >, Ey). Since E; is coherent, and EiyEy, = 0, for [g] # [h]

[glex/~
(Lemma 2.4), we get

<E91Eg;17 Engg;1>oz = (Ey,, EQQ(E951E91)>0( =0

L
for any g1 € [g],92 € [h] and o € I. Hence the direct sum @ E g is or-

lgles/~
1
thogonal. So, since Ejy = cl(Ey 5 &F (@ E})), we get the orthogonal direct
helg]
character of the sum of the ideals Ey;, [g] € ¥/ ~. O

3. THE GRADED SIMPLE COMPONENTS

In this section, we study when the components in the decompositions given in
Theorems 2.6 and 2.8 are graded simple. We begin by introducing the key notions
of ¥-multiplicativity and maximal length in the context of graded pseudo- H-rings,
in a similar way to that for graded associative algebras, graded Lie algebras,
graded Poisson algebras and so on. For these notions and examples see [2, 3, 7].

Definition 3.1. It is said that a graded pseudo-H-ring F is of maximal length if
E, # 0 and dim E, = 1 for any g € .

Definition 3.2. We say that a graded pseudo-H-ring E is X-multiplicative if
given g € ¥ and h € ¥ U {1} such that gh € ¥, then E,E), + E,E, # 0.

We recall that ¥ is called symmetric when ¥ = ¥~! and that the annihilator
of E is the set Ann(F) := {v € E: vE =0 and Ev = 0}. From now on ¥ will
be supposed to be symmetric.

L
Example 3.3. Consider the graded pseudo-H-ring E = cl( EB E,) where
geG

E = (C(I><J)><(I><J)7 (<, '>a>a€1\)

as in Example 1.3. Take I =N, J = {1,2,--- ,r} a finite set, G = Q*, (the mul-
tiplicative rational group), and a family of r sequences of prime natural numbers
{Zn.t}nen where t € J, such that x,; # ,,, s when (n,t) # (m, s). Define

¢o:NxJ—Q

(n,p) = Ty
Taking into account (1.1) it is easy to verify that for any g € Q*, g # 1, either
E, = 0or E; = Canyg),(me) for (unique) n,m € N and t € J such that x;éxm,t =
q. In this case Ey-1 = Ca(my), ) and thus we get that E is of maximal length
and that its support is symmetric.
Since

s
El = cl( @ CG((mt),(n,t))) 7’é 0

neN; teJ
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and A((n,t),(n,t)) = G((n,t),(m,t))A((m,t),(n,t)) for any m < N with m 75 n, we also get
that £y = cl(>_ E,E,~1) and so E; is coherent.

q
qeY

In order to verify that E is Y-multiplicative, take ¢ € ¥ and p € ¥ such that

gp € Y. By the above we can write ¢ = x;ﬁxm,t and p = x;’ixs,v. From here, if

gp € ¥ then either (m,t) = (r,v) or (n,t) = (s,v). So, either ¢gp = x;}xs,t and
thus Equ = Ca((n,t),(m,t))Ca((m,t),(s,t)) = Ca((n,t)v(syt)) 75 0 or pq = J};’tll’m,t and we
have E,E, = (Ca((M)7(n7t))(Ca((n,t)7(m,t)) = (Ca((r,t),(m,t)) £ 0. If p = 1, then clearly
we have that QA((n,t),(m,t)) A((m,t),(m,t)) = A((n,t),(m,t)) and so Equ 7§ 0. Thus FE is
Y -multiplicative.

Theorem 3.4. Let E be a X-multiplicative graded pseudo-H-ring of maximal
length and with Ann(E) = 0. Then E is graded simple if and only if its support
has all of its elements connected and Ey = cl(spang{E,E,~1 : g € £}).

Proof. For the first implication, see Theorem 2.5-(ii). To prove the converse,
consider [ = Cl(@;_eG I,), where I, := I N E,, a nonzero graded ideal of E. We
denote by

Yri={geX: I, #0}
By the maximal length of the grading, if g € ¥; then 0 # I, = I N E, = E, and
so we can write I = I; &+ cl(G}L E,) where I = I N Ej.

geEY
Observe that X; # (). Indeed, in Ithe opposite case 0 # I C F; and then

[(@LEQ) c (Q}LEng1 = 0.

geX geD

1 1
Therefore I( @ E,;) = 0. In a similar way (@ E,)I = 0. Hence, by Lemma

geEX geEX

HA(@D Ey) = (@@ E)N=0. (3.1)

geL geS
Thus, the associativity of the product gives I(E E,-1) + (EqE,-1)I = 0 and so,
since By = cl(spang{E,E,~1 : g € £}), Lemma 1.4 implies
[E, + BE\I = 0. (3.2)

From equations (3.1) and (3.2) we finally get I C Ann(E) = 0, a contradiction.
By the above we can take gy € X7, so that

1.4

04K, CI. (3.3)
For any h € ¥ with h & {go,g90"'}. Since gy and h are connected, there is a
connection {g1, g2, - , g} between them, such that

91 =go; 9192, 919293, » 919293 - gr—1 € X and g1gags - - gr € {h,h7'}.
Consider gy = ¢1,92 and g1go. The X-multiplicativity and maximal length of
E give 0 # Ey E,, + Ej,E, = Ej4,- Thus, using (3.3), we get 0 # E,,, C 1.
In a similar way, and employing the elements gygs, g3 and ggg.g3 we have 0 #
E.‘]O.‘]293 C ]
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Continuing this process on the connection {g;,--,¢g.} we obtain that 0 #
Egogog5--g. C 1. Therefore, either 0 # Ej, C I or 0 # Ej-1 C [ for any h € .
Since Ey = cl(spang{E,E,~1 : g € ¥}) we conclude

E,ClI. (34)

Finally, given any g € X, the Y-multiplicativity and maximal length of E together
with (3.4) allow us to assert that

0+ E,E + E\E,=E, CI. (3.5)
From (3.4) and (3.5) we clearly get I = E. Hence, E is graded simple. O

We state now our main theorem that it is the second Wedderburn-type theorem
for certain graded pseudo- H-rings:

Theorem 3.5. Let E be a X-multiplicative graded pseudo-H-ring of maximal
length and with Ann(E) = 0. If Ey is coherent then E is the topological orthogonal
direct sum of its minimal (closed) graded ideals Eig, g € G . Moreover, each Ejg
1s a graded simple, graded pseudo-H-ring, such that the elements of its support
are connected.

Proof. By Theorem 2.8, F = CZ(GB[Jé]GE /NE[Q]). Namely, E is the topological or-
thogonal direct sum of the ideals

E[g} = CZ(EL[Q] @J‘ V[g}) = cl(spanK{EhE(h)fl ch e [g]}) @J' Cl(@ﬁe[g]Eh),

(see also Theorem 2.5 and the notation before Proposition 2.3). We claim that
the support, say »_ By of Ejy,9 € G, has all of its elements connected. Indeed,

since [g] = [¢7'] and EyEy C Ey, (see Proposition 2.3-1), we easily deduce
that [g] has all of its elements [g]-connected (connected through elements in [g]).
Besides, the X-multiplicativity of E implies that of Ej,,g € G. Clearly Ej; is of
maximal length. Moreover, Ann(Ey;) = {0} (the latter denotes the annihilator
of Eyg in itself), this is a consequence of the fact that EjgEy, = 0 if [g] # [h]
(Theorem 2.6), and Ann(E) = {0}. An application of Theorem 3.4 leads to the
graded simpleness of Ejg. Thus, we easily get that any of the ideals Ej, are
minimal, as well and this finishes the proof.

Example 3.6. Let us consider the pseudo-H-ring of Example 3.3. This is >-
multiplicative of maximal length with symmetric support and it has a coherent
1-homogeneous subspace. It is easy to check that Ann(FE) = 0. Observe that
given any ¢,p € ¥ with p & {q,¢"'}, we can write ¢ = a:,:;xmt with n # m and
p= x;ﬂ}xw with r # s.

Suppose v = t. By fixing some u,v € N such that u ¢ {n,m,r} and v ¢
{m,r,s,u} we get that the set

—1 —1 —1 —1
{q7 xu,t'rni? wm,txv,b xr,t Lt xv,t xS,t}

is a connection from ¢ to p.
However, if v # t, and since % = {x;;xmt :n,m € N with n #m and t € J},
there is not any connection from ¢ to p. We have shown that the equivalence
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classes in £/ ~ are [z, ;@] = {2, 25, : ;5 € N with 7 # s} and by applying
the results in this section we can assert that, under the notation

Ey = () Caupme) ®( P Cagnayme))

neN n,meN;n#m

for any t € J, any F; is a graded simple, graded pseudo-H-ring having all of the
elements of its support connected. Moreover, F decomposes as the topological
orthogonal direct sum of these family of minimal graded ideals, namely:

T

E=d(@ E).

t=1

Acknowledgment. We would like to thank both of the referees for the de-
tailed reading of this work and for the suggestions which have improved the final
version of the same.

REFERENCES

1. W. Ambrose, Structure theorems for a special class of Banach algebras. Trans. Amer. Math.
Soc. 57 (1945), 364-386.

2. A.J. Calderén, On the structure of graded Lie algebras, J. Math. Phys. 50 (2009), no. 10,
103513, 8 pp.

3. A.J. Calder6n, On extended graded Poisson algebras, Linear algebra Appl. 439 (2013), no.
4, 879-892.

4. J. Dixmier, Les algébres d’opérateurs dans l’espace hilbertien: algébres de von Neumann,
Gauthier-Villars, 1957.

5. M. Haralampidou, On locally convex H*-algebras, Math. Japon 38(1993), 451-460.

6. M. Haralampidou, Structure theorems for Ambrose algebras, Period. Math. Hungar. 31
(1995), no. 2, 139-154.

7. M. Kochetov, Gradings on finite-dimensional simple Lie algebras. Acta Appl. Math. 108
(2009), no. 1, 101-127.

8. A. Mallios, Topological algebras. Selected topics, North-Holland, Amsterdam, 1986.

! DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CADIZ, CAMPUS DE PUERTO REAL,
11510, CADIZ, SPAIN.

E-mail address: ajesus.calderon@uca.es

E-mail address: txema.sanchez@uca.es

2 DEPARTMENT OF ALGEBRA, GEOMETRY AND TOPOLOGY, UNIVERSITY OF MALAGA,
CAMPUS DE TEATINOS, 29080, MALAGA, SPAIN.
E-mail address: adiaz@agt.cie.uma.es

3 DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ATHENS, PANEPISTIMIOUPOLIS, 15784,
ATHENS, GREECE.
E-mail address: mharalam@math.uoa.gr



	1. Introduction and Preliminaries
	2. Decompositions
	3. The graded simple components
	References

