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ABSTRACT. In this paper we introduce operator preinvex functions and es-
tablish a Hermite-Hadamard type inequality for such functions. We give an
estimate of the right hand side of a Hermite-Hadamard type inequality in which
some operator preinvex functions of selfadjoint operators in Hilbert spaces are
involved. Also some Hermite-Hadamard type inequalities for the product of
two operator preinvex functions are given.

1. INTRODUCTION

The following inequality holds for any convex function f defined on R and
a,be R, with a <b

f(a;b)ﬁbia/:f@)d“"gw (1.1)

Both inequalities hold in the reversed direction if f is concave. We note that
Hermite-Hadamard’s inequality may be regarded as a refinement of the concept
of convexity and it follows easily from Jensen’s inequality. The classical Hermite—
Hadamard inequality provides estimates of the mean value of a continuous convex
function f : [a,b] — R. The Hermite-Hadamard inequality has several applica-
tions in nonlinear analysis and the geometry of Banach spaces, see [10, 5].
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In recent years several extensions and generalizations have been considered for
classical convexity. We would like to refer the reader to [3, 7, 17] and references
therein for more information. A number of papers have been written on this
inequality providing some inequalities analogous to Hadamard’s inequality given
in (1.1) involving two convex functions, see [11, 11, 16]. Pachpatte in [I1] has
proved the following theorem for the product of two convex functions.

Theorem 1.1. Let f and g be real-valued, nonnegative and convex functions on

la,b]. Then

1
z)dr < M(a b)+6N(a b),

2f(a+b) (“;b)_b_a/f )z + M(ab)+;N(ab)
where M(a,b) = f(a)g(a) + f(b)g(b), N(a,b) = f(a)g(b) + f(b)g(a).

A significant generalization of convex functions is that of invex functions intro-
duced by Hanson in [9]. In this paper we introduce operator preinvex functions
and give an operator version of the Hermite-Hadamard inequality for such func-
tions.

First, we review the operator order in B(H) and the continuous functional
calculus for a bounded selfadjoint operator. For selfadjoint operators A, B €
B(H) we write A < B(or B > A) if (Az,z) < (Bx,x) for every vector x € H,
we call it the operator order.

Now, let A be a bounded selfadjoint linear operator on a complex Hilbert
space (H;{(.,.)) and C(Sp(A)) the C*-algebra of all continuous complex-valued
functions on the spectrum of A. The Gelfand map establishes a *-isometrically
isomorphism @ between C(Sp(A)) and the C*-algebra C*(A) generated by A
and the identity operator 1y on H as follows (see for instance [15, p.3]): For
f,g€ C(Sp(A)) and o, 5 € C

(i) ®(af + Bg) = a®(f) + 5(g);
(i) ®(fg) = B(f)®P(g) and B(f) = (f)";
(@i2) ([N =11 == sup [f()];

teSp(A)
(iv) ®(fo) =1 and ®(f;) = A, where fo(t) =1 and fi(t) = t, for
t € Sp(A).

If f is a continuous complex-valued functions on Sp(A), the element ®(f) of
C*(A) is denoted by f(A), and we call it the continuous functional calculus for a
bounded selfadjoint operator A.

If A is a bounded selfadjoint operator and f is a real-valued continuous function
on Sp(A), then f(t) > 0 for any t € Sp(A) implies that f(A) > 0, i.e., f(A) is a
positive operator on H. Moreover, if both f and g are real-valued functions on
Sp(A) such that f(t) < g(t) for any t € sp(A), then f(A) < f(B) in the operator
order in B(H).
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A real valued continuous function f on an interval [ is said to be operator
convex (operator concave) if

f(A=XNA+AB) < (2)(1 = A)f(A) +Af(B)

in the operator order in B(H), for all A € [0, 1] and for every bounded self-adjoint
operators A and B in B(H) whose spectra are contained in 1.

For some fundamental results on operator convex (operator concave) and op-
erator monotone functions, see [15, 1] and the references therein.

Dragomir in [0] has proved a Hermite-Hadamard type inequality for operator
convex functions:

Theorem 1.2. Let f : I — R be an operator convex function on the interval
I. Then for any selfadjoint operators A and B with spectra in I we have the
inequality

(7))l (557) 0 ()
/ (1= ) A + tB))dt
<3 (5

£BY | A +F(B)] [ f(4)+ f(B)
5 :
Moslehian in [13] generalized the above theorem 1.2 as follows:

2

Theorem 1.3. If A, B are self-adjoint operators on a Hilbert space H with spectra
i an interval J, f is an operator convex function on J and k,p are positive
integers, then

A+ B 1 21+ 1 21+ 1
(A52) <53 (Bptas (120 o)
—1)A d
< /0 F(L = )A + tB))dt

1T /it i+ 1 i i
<o [ (e () B) e (e () 8]

A1)

Motivated by the above results we investigate in this paper the operator version
of the Hermite-Hadamard inequality for operator preinvex functions. We show
that Theorem 1.3 holds for operator preinvex functions and establish an estimate
of the right hand side of a Hermite-Hadamard type inequality in which some
operator preinvex functions of selfadjoint operators in Hilbert spaces are involved.
We also give some Hermite-Hadamard type inequalities for the product of two
operator preinvex functions.
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2. OPERATOR PREINVEX FUNCTIONS

Definition 2.1. Let X be a real vector space, a set S C X is said to be invex
with respect to the map n: S x S — X, if for every z,y € S and t € [0, 1],

y+tn(z,y) € S. (2.1)

It is obvious that every convex set is invex with respect to the map n(x,y) =
x — y, but there exist invex sets which are not convex (see [1]).
Let S C X be an invex set with respect ton: S x S — X. For every z,y € S
the n—path P,, joining the points x and v := z + n(y, z) is defined as follows
P, ={z:z=z+1tn(y,z) : t €0,1]}.

The mapping 7 is said to be satisfies the condition C' if for every z,y € S and
t€0,1],

(©) 0y, y+tnz,y) = —tn(z,y),
n(@,y +tn(z,y)) = (1 —t)n(z,y).
Note that for every x,y € S and every ty,t5 € [0,1] from condition C' we have
0y + tan(z, ),y + tin(z,y)) = (b2 — t)n(z, y), (2.2)

see [12, 18] for details.
Let A be a C*-algebra, denote by Ay, the set of all self adjoint elements in A.

Definition 2.2. Let I be an interval in R and S C B(H),, be an invex set with
respect ton : S xS — B(H)s,. A continuous function f : I — R is said to be
operator preinvex on [ with respect to n for operators in S’ if

f(B+itn(A,B)) < (1=1)f(B) +1f(A). (2.3)

in the operator order in B(H), for all t € [0,1] and for every A, B € S whose
spectra are contained in I.

Every operator convex function is an operator preinvex with respect to the map
n(A, B) = A — B but the converse does not holds (see the following example).

Now, we give an example of some operator preinvex functions and invex sets
with respect to the maps n which satisfy the conditions (C).

Example 2.3. (a) Suppose that 1y is the identity operator on a Hilbert
space H, and

T:={Ae€B(H)s: A< —-1x1g}
U:={A€ B(H)s,:1g < A}
S:=TUUC B(H)sa.
Suppose that the function 7y : S x S — B(H), is defined by
A-B  ABeU,
A—B A BeT,
1y — B AeT,BeU,
—1ly—B AeceUBE€eT.

771(A7 B) =
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Clearly n; satisfies condition C' and S is an invex set with respect to ;.
We show that the real function f(t) = ¢? is operator preinvex with respect
to m; on every interval I C R, for operators in S. Since f is an operator
convex function on I, for the cases which 7, (A, B) = A— B the inequality
(2.3) holds. Let 1m(A, B) = 15 — B, in this case we have 1y < —A < A?
and
(B+tm(A,B))? = (B+t(ly — B))*=((1 —t)B + tly)?
<(1—t)B*+tly < (1 —t)B? +tA%
Similarly, for the case 1, = —1g — B we have
(B +tm(A,B))* = (B+t(~1g — B))* = (1 — t)(=B) + t1x)
<(1—t)B*+tly < (1 —t)B? +tA?
therefore, the inequality (2.3) holds.
But the real function g(t) = a + bt, a,b € R is not operator preinvex
with respect to 1; on S.
Suppose that V := (=2 x15,0), W :=(0,2x 1), S:=VUW C B(H)sa
and the function 7y : S x S — B(H), is defined by

A—B A BeVorABeW,
0 otherwise .

nZ(AvB) = {

Clearly 7, satisfies condition C' and S is an invex set with respect to
n2. The constant functions f(t) = a, a € R is only operator preinvex
functions with respect to 7s for operators in S. Because for 1, = 0,

f(B+tm(A,B)) = f(B) < (1 —1)f(B) +tf(A),

implies that f(A)— f(B) > 0. interchanging A ,B we get f(B)—f(A) > 0.
The function f(t) = —|t| is not a convex function, but it is a operator
preinvex function with respect to 73, where

A—-B A B>0o0r A B<O,
ng(A,B) = A
B — A otherwise .

Let X be a vector space, x,y € X, x # y. Define the segment

[z,y] == (1 —t)z +ty;t € [0, 1].

We consider the function f : [x,y] — R and the associated function

glz,y) : [0,1] = R,
g(a,y)(t) == f((1 =)z + ty), L € [0, 1].

Note that f is convex on [z,y] if and only if g(z,y) is convex on [0,1]. For any
convex function defined on a segment [z, y] € X, we have the Hermite- Hadamard
integral inequality

f <x;y> g/o F((1 =)z + ty)dt < M (2.4)
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which can be derived from the classical Hermite-Hadamard inequality (1.1) for
the convex function g(z,y) : [0,1] — R.

Proposition 2.4. Let I be an interval in R, S C B(H),, an inver set with
respect ton : S x S — B(H)s, and n satisfies condition C on S and f: 1 — R a
continuous function. Then, for every A, B € S with spectra of A,V := A4+n(B, A)
in I, the function f is operator preinver on I with respect to n for operators in
n—path Pay if and only if the function ¢, ap :[0,1] — R defined by

is convex on [0,1] for every x € H with ||z| = 1.

Proof. Let the function f be operator preinvex on I with respect to 7 for operators
in n—path P4y. Suppose that A, B € S with spectra A,V in I, since A +
tn(B,A) =tV + (1 — t)A therefore for all t € [0,1], Sp(A+tn(B,A)) C I. If
t1,ts € [0, 1] since 7 satisfies condition C' on S, we have
Pa,a,8((L = N)tr + M) = (f(A+ (1 = M)ty + Ma)n(B, A))z, x)
< Mf(A+1an(B, A))z,z) + (1 = A)(f(A+tin(B, A))z, )
= ApzaB(ta) + (1 = N)we a5(t),
(2.6)
for every A € [0, 1] and € H with ||z|| = 1. Therefore, ¢, 4 p is convex on [0, 1].
Conversely, suppose that € H with [|z|| = 1 and ¢, 45 is convex on [0, 1]
and C] := A —|—t17’](B,A) € Pyy,Cy i = A+ tg?](B,A) € Pyy. Fix A € [0, 1] By
(2.4) we have
(F(Ch 4+ M(Co, G, ) = {F(A+ (1= A)ts + A)n(B, A)r, )
= (P:c,A,B((l — )\)tl + /\tQ)
< (1= N)@eaB(t1) + Az a,5(t2)
= (1= {f(C)z, z) + A{f(Ca)z, z).

Hence, f is operator preinvex with respect to n for operators in n—path Psy. O

(2.7)

3. HERMITE-HADAMARD TYPE INEQUALITIES

In this section we generalize Theorem 1.1 and Theorem 1.3 for operator prein-
vex functions and establish an estimate for the right-hand side of the Hermite—
Hadamard operator inequality for such functions. Some Hermite-Hadamard type
inequalities for the product of two operator preinvex functions is also given.

The following Theorem is a generalization of Theorem 1.3 for operator preinvex
functions.

Theorem 3.1. Let S C B(H)s, be an invex set with respect ton : S x S —
B(H)s, and n satisfies condition C. If for every A, B € S with spectra of A,V :=
A+ n(B, A) in the interval I, the function f : I — R is operator preinver with
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respect to n for operators in n—path Pay and k,p are positive integers, then the
following inequalities holds

f(A+ nBA) kzlf( 2”1 (B,A))
/fAthn A))dt

§2—1pk%_l{f(A+ k1< )) f(A+k—n(BA))}

f(A) + f(B)
5 .

(3.1)

Proof. For x € H with ||z]| =1 and t € [0, 1], we have
(A+1tn(B,A)x,zy = (1 —t)(Az,z) + t(Vz,z) € I, (3.2)

since (Az,z) € Sp(A) C I and (Vz,z) € Sp(V) C I.

Continuity of f and (3.2) imply that the operator valued integral fol f(A+
tn(B, A))dt exists. Since 7 satisfied condition C, by (2.2), for every ¢ € [0, 1] we
have

A+ %n(B, A)=A+1tn(B,A)+ %U(A + (1 =t)n(B,A),A+tn(B,A). (3.3)

Let © € H be a unit vector, define the real-valued function ¢ : [0,1] — R given
by ¢(t) = (f(A+ tn(B,A))x,x). Since f is operator preinvex, by the previous
proposition 2.4, ¢ is a convex function on [0, 1]. Utilizing the classical Hermite—

Hadamard 1nequahty for real-valued convex function ¢ on the interval [5, SE£1],
we get
i+1 . .
2+ 1 w p() +o(5)
< kP t)dt < T8 kP 3.4
o (P ) swo [ et < T (3.4)
Summation of the above inequalities over ¢ = 0,--- , kP — 1 yields
kP—1 . 1 kP—1 i i1
2+ 1 L) + oL
, 2%p . , 2
=0 =0
Hence
kP —1 .
1 2t +1
Bt (4 )
/ A+ tn(B, A))dt

ggééép(A+gﬁ< ,Q r(a+pu)]. Go
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Inequality (3.3) for t = %i and operator preinvexity f imply that

P

f(A+%M&A0

. (3.7)
1 21 +1 1 2t +1
<= - — .
_2f<A+ i (BA))+2f(A+(1 e )n(B,A))
Summation of the above inequalities over ¢ = 0,--- kP — 1 and the following
equality
KP—1 kP —1 ,
2 —|— 1 2i+1
Zf( ) =g (a+ (1- 25 s
i=0
yield
g 2@+ 1
kpf(AJr nBA) Zf( (B,A)). (3.8)
In the other hand, from preinvexity f we have
kP —1 . .
1 1+ 1 1
o 3 | (4 s ) s (45 )|
1 S [it1 i+1 i i
< _ _ _
<5 2 | 1)+ (1=t ) 0 s+ (1 55 5]
A B
From inequalities (3.6), (3.8) and (3.9) we obtain (3.1). O

A simple consequence of the above theorem is that the integral is closer to the
left bound than to the right, namely we can state:

Corollary 3.2. With the assumptions in Theorem 3.1 we have the inequality

0 < /01 F(A+ (B, A))dt — f (A (B, A))

< w - /01 F(A+ ty(B, A))dt.

Example 3.3. Let S, f, n; be as in Example 2.3, then we have

A? + B?
2 b

2 1
(A+ %nl(B,A)> §/ (A+tn (B, A))?*dt <
0
for every A, B € S.

Let S C B(H)s, be an invex set with respect to n : S x S — B(H),, and
f,g : I — R operator preinvex functions on the interval I with respect to n
for operators in n-path P4y. Then for every A, B € S with spectra of A,V =
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A+ n(B,A) in the interval I, we define real functions M (A, B) and N(A, B) on
H by

M(A, B)(x) = (f(A)z, x){g(A)z, ) + (f(B)z, z)(g(B)z, z) (z € H),
N(A, B)(z) = (f(A)x, x)(g(B)z, ) + (f(B)z, z){9(A)z,z) (z € H).

The following Theorem is a generalization of Theorem 1.1 for operator preinvex
functions.

Theorem 3.4. Let f, g : I — RT be operator preinver functions on the interval I
with respect to n and n satisfies condition C'. Then for any selfadjoint operators
A and B on a Hilbert space H with spectra A, V in I, the inequality

/0 (F(A + tn(B, A)), ) (g(A + tn(B, A))z, z)dt

% (A, B)(x )+éN(A,B)(:c), (3.10)

holds for any x € H with ||z|| = 1.

Proof. Continuity of f, g and (3.2) imply that the following operator valued inte-
grals exist

1

/0 f(B+tn(B,A))dt,/o g(A+t77(B,A))dt,/O (Fo)(A + tn(B, A))dt.

Since f and g are operator preinvex, therefore for ¢ in [0, 1] and x € H we have

(f(A+1tn(B, A))z,z) <((tf(B) + (1 = 1)f(A))z, ), (3.11)

(g(A+tn(B, A))z, x) < ((tg(B) + (1 = t)g(A))x, x). (3.12)
From (3.11) and (3.12) we obtain

(f(A+in(B, A))x, x)(g(A +tn(B, A))z, z)
(1—t) (f(A)z, 2){g(A)z, z) + *(f(B)z,2){g(B), )
+ (1 =) [(f(A)z, ) (9(B)x, x) + (f(B)x, x)(g(A)x, z)] . (3.13)

Integrating both sides of (3.13) over [0, 1] we get the required inequality (3.10).
UJ

Theorem 3.5. Let f,g: I — R be operator preinvex functions on the interval I
with respect to n. If n satisfies condition C, then for any selfadjoint operators A
and B on a Hilbert space H with spectra A, V in I, the inequality
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<f (A + %U(B,A)) m> <g (A +on(B, A)) xw>

1

<5 | U+ (B ) oA + tn(B, A))a.o)
F S MAB)(@) + EN(A B)(@), (314)
holds for any x € H with ||z| = 1.

Proof. Put D = A+ tn(B,A) and E = A+ (1 —t)n(B,A), by (3.3) we have
A+3n(B,A) = D+ in(E, D). Since f and g are operator preinvex, therefore for
any t € I and any x € H with ||z|| = 1 we observe that

(4 o) ) o (a4 o) s

i[ﬂf(z‘l)x 2) + (1 =O(f(B)z, 0)][(1 = t){g(A)z, x) + t{g(B)z, z)]
(1= 8)(f(A)z, z) + L{f(B)z, 0)][t{g(A)z, x) + (1 = t)(g(B)z, z)]
= 1 [(f(D)z, 2){g(D)z, z) + (f(E)z, 2){g(E)z, z)]

+ Qt(l—t)Kf(A)x,@(( )z, ) + ([(B)z, x){g(B)z, )]

+ (¢ + (1 =) [(f(A)z, 2){g(B)z,z) + (f(B)z,2)(9(A)z, z)]. (3.15)
We integrate both sides of (3.15) over [0,1] and obtain

(£ (a4 guB.0)ac) (o (a4 gu(5.) o)

<1 / [(F(A + tn(B. A))z, ) (g(A+ (B, )z x)

!
+ {(f(A+ (1 =)n(B, A))z, x)(g(A + (1 — t)n(B, A))z, z)]dt
1 1
This implies the required inequality (3.14). O

The following Theorem is a generalization of Theorem 3.1 in [2].



SOME HERMITE-HADAMARD TYPE INEQUALITIES 19

Theorem 3.6. Let the function f : I — RT is continuous, S C B(H)s, be an
open invex set with respect ton : S x S — B(H)s, and n satisfies condition C.
If for every A,B € S and V = A+ n(B, A) the function f is operator preinvex
with respect to n on n—path Pay with spectra of A and V in I. Then, for every
a,b € (0,1) with a < b and every x € H with ||z|| = 1 the following inequality
holds,

B </Oaf(A 4+ sn(B, A))ds m> + % </Obf(A + (B, A))ds H>

_bia/ab</0tf(A+sn(B,A))ds x,x>dt‘

b A+ an(B, A, ) + (A -+ by(B, A, )} (3.16)

<

Moreover we have

H%/Oaf(A+s77(B,A))ds+%/Obf(AJrS??(BaA))dS

— /ab /Otf(A+ ST}(B,A))dsdtH

a
L7+ an(B, )+ (A +bn(B, A))|
b—a
<
-8
Proof. Let A,B € S and a,b € (0,1) with a < b. For x € H with [|z]| = 1 we
define the function ¢ : [0,1] — R™ by

b
<

[LIF(A+an(B, DI+ [[F(A+bn(B, A ] (3.17)

oll) = </Otf(A + sn(B, A))ds xm> |

Utilizing the continuity of the function f, the continuity property of the inner
product and the properties of the integral of operator-valued functions we have

</Otf(A+S77(B,A))ds :E,x> :/Ot (f(A+ sn(B,A)) z,z) ds.

Since f(A + sn(B, A)) > 0, therefore ¢(t) > 0 for all t € I. Obviously for every
t € (0,1) we have

¢'(t) = (f(A+in(B,A))x,x) =0,
hence, |¢'(t)| = ¢'(t). Since f is operator preinvex with respect to n on n—path
Pay, by Proposition 2.4 the function ¢’ is convex. Applying Theorem 2.2 in []
to the function ¢ implies that

o) 1 [ g < 0@+ W)

2 b—a

and we deduce that (3.16) holds. Taking supremum over both side of inequality
(3.16) for all = with ||z|| = 1, we deduce that the inequality (3.17) holds. O
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