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Abstract. The paper is concerned with weak approximation properties which
are weaker than the classical approximation property. For λ ≥ 1, we prove
that a Banach space X has the λ-bounded weak approximation property (λ-
BWAP) if and only if every locally 1-complemented subspace of X has the
λ-BWAP, and that if X has the λ-BWAP and Z is a locally µ-complemented
subspace of X, then Z has the (2µ+4)µλ-BWAP. It also follows that X has the
weak approximation property (WAP) if and only if every locally complemented
subspace of X has the WAP.

1. Introduction and Main results

A Banach space X is said to have the approximation property (AP) if for every
compact subset K of X and every ε > 0, there exists a finite rank and continuous
linear map (operator) S on X such that supx∈K ‖Sx − x‖ ≤ ε, briefly, idX ∈
F(X)

τc
, where idX is the identity map on X, F(X) is the space of all finite rank

operators on X and τc is the topology of uniformly compact convergence on the
space L(X) of all operators on X. For λ ≥ 1, if idX ∈ {S ∈ F(X) : ‖S‖ ≤ λ}

τc
,

then we say that X has the λ-bounded approximation property (λ-BAP). Choi and
the first author [1, 7] introduced and studied weaker forms of the AP. A Banach
space X is said to have the weak approximation property (WAP) if K(X) ⊂
F(X)

τc
, where K(X) is the space of all compact operators on X. For λ ≥ 1,
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we say that X has the λ-bounded weak approximation property (λ-BWAP) if for

every T ∈ K(X), we have T ∈ {S ∈ F(X) : ‖S‖ ≤ λ‖T‖}
τc

.
For µ ≥ 1, a closed subspace Z of a Banach space X is called locally µ-

complemented in X if for every finite-dimensional subspace E of X and every
ε > 0, there exists an operator T : E → Z with ‖T‖ ≤ µ+ε such that Tx = x for
all x ∈ E ∩Z. It is well known that the AP and the BAP are inherited by locally
complemented subspaces (cf. [3, Theorem 2.4]). The first author [7, Theorem
1.4] obtained the analogue for the WAP and the BWAP under an assumption.
In this paper, we have:

Theorem 1.1. If X has the λ-BWAP and Z is a locally µ-complemented subspace
of X, then Z has the (2µ + 4)µλ-BWAP.

For a closed subspace Z of a Banach space X, a map Φ : Z∗ → X∗ is called
an extension operator if (Φz∗)(z) = z∗(z) for every z∗ ∈ Z∗ and z ∈ Z. A closed
subspace Z of X is called an ideal if there exists an extension operator Φ from
Z∗ to X∗ with ‖Φ‖ = 1. The operator Φ is called a Hahn–Banach extension
operator. It is well known that Z is an ideal in X if and only if Z is locally
1-complemented in X (cf. Lemma 2.2), and that X has the λ-BAP (resp. AP)
if and only if every ideal in X has the λ-BAP (resp. AP) (cf. [8, Proposition 4.3
and Theorem 2.2] and [3, Theorem 2.4]). In this paper, we have:

Theorem 1.2. Let λ ≥ 1. The following statements are equivalent.
(a) X has the λ-BWAP.
(b) Every ideal in X has the λ-BWAP.
(c) If for every separable closed subspace Y of X, there exists a separable closed
subspace Z of X with Y ⊂ Z such that Z has the λ-BWAP.

Theorem 1.3. The following statements are equivalent.
(a) X has the WAP.
(b) Every locally complemented subspace of X has the WAP.
(c) Every ideal in X has the WAP.
(d) If for every separable closed subspace Y of X, there exists a separable closed
subspace Z of X with Y ⊂ Z such that Z has the WAP.

2. Proof of Theorem 1.1

Lemma 2.1. [5, Lemma 3.2] If Z is a locally µ-complemented subspace of X,
then for every closed subspace Y of X containing Z with dim Y/Z < ∞, there
exists a projection P from Y onto Z with ‖P‖ ≤ 2µ + 4.

The following lemma is a simple extension of [5, Theorem 3.4 and Theorem
3.5] (cf. [2]).

Lemma 2.2. Let Z be a closed subspace of X and let µ ≥ 1. The following
statements are equivalent.

(a) For every Banach space Y and every T ∈ K(Z, Y ), there exists a T̃ ∈ K(X, Y )

with ‖T̃‖ ≤ µ‖T‖ such that T̃ x = Tx for all x ∈ Z.
(b) Z is locally µ-complemented in X.



250 J.M. KIM, K.Y. LEE

Proof of Theorem 1.1. Let T ∈ K(Z). Let K be a compact subset of Z and let
ε > 0 be given. Since Z is locally µ-complemented in X, by Lemma 2.2 there

exists a T̃ ∈ K(X,Z) with ‖T̃‖ ≤ µ‖T‖, which is an extension of T . Since X has

the λ-BWAP, there exists an S0 ∈ F(X) with ‖S0‖ ≤ λ‖iT̃‖, where i : Z → X is
the inclusion map, such that

sup
z∈K

‖S0z − iTz‖ ≤ ε

2µ + 4
.

Put Y := Z + S0(X). Then dim Y/Z < ∞. By Lemma 2.1 there exists a
projection P from Y onto Z with ‖P‖ ≤ 2µ + 4. Let S := PS0|Z . Then
S ∈ F(Z) and for every z ∈ K

‖Sz − Tz‖ = ‖PS0z − PTz‖ ≤ ε

and we also have

‖S‖ ≤ (2µ + 4)λ‖T̃‖ ≤ (2µ + 4)µλ‖T‖,
hence Z has the (2µ + 4)µλ-BWAP.

�

3. Proofs of Theorems 1.2 and 1.3

We denote by ‖ · ‖π and ‖ · ‖I , respectively, the projective tensor norm and the
integral ideal norm. The following lemmas are needed to prove Theorem 1.2.

Lemma 3.1. [6, Theorem 2.5] Let T ∈ L(X) and let λ ≥ 1. The following
statements are equivalent.

(a) T ∈ {S ∈ F(X) : ‖S‖ ≤ λ‖T‖}
τc
.

(b) ‖TS‖π ≤ λ‖T‖‖S‖I for every S ∈ F(X).
(c) ‖TS‖π ≤ λ‖T‖‖S‖I for every Banach space Y and every S ∈ F(Y,X).

Lemma 3.2. Let A(X) be a subset of L(X). Let T ∈ L(X) and let λ ≥ 1.

Then T ∈ {S ∈ A(X) : ‖S‖ ≤ λ‖T‖}
τc

if and only if for every finite-dimensional
subspace F of X and every ε > 0, there exists an S ∈ A(X) with ‖S‖ ≤ λ‖T‖
such that ‖Sx− Tx‖ ≤ ε‖x‖ for every x ∈ F .

Proof of Theorem 1.2. (a)⇒(b) Let Z be an ideal in X. Let T ∈ K(Z). We use

Lemma 3.1(b) to prove that T ∈ {S ∈ F(Z) : ‖S‖ ≤ λ‖T‖}
τc

. Let j : Z → X be
the inclusion map and let Φ : Z∗ → X∗ be a Hahn–Banach extension operator.
For a Banach space B, we denote by iB the canonical isometry from B to B∗∗.

Now, since the operator T ∗ : Z∗ → Z∗ is weak∗ to weak continuous, T ∗∗ maps
from Z∗∗ into iZ(Z). Thus the operator i−1

Z T ∗∗Φ∗iX : X → Z is well defined and
we claim that

i−1
Z T ∗∗Φ∗iXj = T.

Indeed, for every z ∈ Z and z∗ ∈ Z∗,

Φ∗iXj(z)(z∗) = iXj(z)(Φ(z∗)) = z∗(z) = iZ(z)(z∗).

Then for every z ∈ Z, we have

i−1
Z T ∗∗Φ∗iXj(z) = i−1

Z T ∗∗iZ(z) = Tz.



WEAK APPROXIMATION PROPERTIES 251

Now, let S ∈ F(Z). Since Z is an ideal in X, Z∗⊗̂πZ is a closed subspace of
Z∗⊗̂πX (cf. [10, Theorem 3.4]). Thus ‖TS‖π = ‖ji−1

Z T ∗∗Φ∗iXjS‖π. Since X has
the λ-BWAP, by Lemma 3.1(c) we have

‖TS‖π = ‖ji−1
Z T ∗∗Φ∗iXjS‖π

≤ λ‖ji−1
Z T ∗∗Φ∗iX‖‖jS‖I(Z,X)

≤ λ‖T‖‖S‖I(Z,Z).

(b)⇒(c) Let Y be a separable closed subspace of X. Then by [11, Theorem]
there exists a separable ideal Z in X such that Y ⊂ Z. Hence by (b) Z has the
λ-BWAP.

(c)⇒(a) This proof is due to the one of [4, Lemma 3(b)]. Let T ∈ K(X).

We use Lemma 3.2 to prove that T ∈ {S ∈ F(X) : ‖S‖ ≤ λ‖T‖}
τc

. Let F be a
finite-dimensional subspace of X and let ε > 0 be given. Then by [9, Lemma 1]
we see that there exists a separable subspace Y of X such that for every finite-
dimensional subspace E of X with F ⊂ E there exists an operator TE : E → Y
satisfying that ‖TE‖ ≤ 1+1/ dim E and the restriction TE|F is the identity map.
Consider the separable subspace span(T (X) ∪ Y ) of X. Then by (c) there exists
a separable closed subspace Z of X with span(T (X) ∪ Y ) ⊂ Z such that Z has
the λ-BWAP. Since the restriction T |Z ∈ K(Z), there exists an S ∈ F(Z) with
‖S‖ ≤ λ‖T‖ such that

‖Sf − Tf‖ ≤ ε‖f‖
for every f ∈ F . We define the map SE : X → X by

SEx = STEx if x ∈ E, SE = 0 otherwise,

for every finite-dimensional subspace E of X with F ⊂ E. By compactness, there

is a subnet which converges pointwise to a finite rank linear operator S̃ on X with

‖S̃‖ ≤ λ‖T‖ and for every f ∈ F , we have

‖S̃f − Tf‖ = lim
G
‖SGf − Tf‖ = lim

G
‖STGf − Tf‖ = ‖Sf − Tf‖ ≤ ε‖f‖.

�

Remark 3.3. In view of the proof of Theorem 1.2(a)⇒(b), we see that for every
T ∈ W(X), the space of all weakly compact operators on X,

T ∈ {S ∈ F(X) : ‖S‖ ≤ λ‖T‖}
τc

if and only if for every ideal Z in X, for every T ∈ W(Z),

T ∈ {S ∈ F(Z) : ‖S‖ ≤ λ‖T‖}
τc

.

Proof of Theorem 1.3. (a)⇒(b) follows from the proof of Theorem 1.1. (b)⇒(c)
is trivial. The proof of (c)⇒(d) is similar to (b)⇒(c) in Theorem 1.2.

(d)⇒(a) This result was inspired from [4, Lemma 3(a)]. Let T ∈ K(X). Let K
be a compact subset of X and let ε > 0 be given. Consider the separable subspace
span(K ∪ T (X)) of X. Then by (c) there exists a separable closed subspace Z
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of X with span(K ∪ T (X)) ⊂ Z such that Z has the WAP. Since the restriction
T |Z ∈ K(Z), there exists an S ∈ F(Z) such that

sup
x∈K

‖Sx− Tx‖ ≤ ε.

Then by an application of the Hahn–Banach theorem there exists an extension

Ŝ : X → Z of S. Then jŜ ∈ F(X), where j : Z → X is the inclusion map, and

sup
x∈K

‖jŜx− Tx‖ = sup
x∈K

‖Sx− Tx‖ ≤ ε.

Hence X has the WAP. �
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