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A SHORT PROOF OF BURNSIDE’S FORMULA FOR THE
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Abstract. We present simple proofs for Burnside’s asymptotic formula and
for its extension to positive real numbers.

1. Introduction

Burnside’s asymptotic formula for factorial n asserts that

n! ∼
√

2π

(
n + 1/2

e

)n+1/2

, (B)

in the sense that the ratio of the two sides tends to 1 as n → ∞. This provides
a more efficient estimation of the factorial, comparing to Stirling’s formula,

n! ∼
√

2πnn+1/2e−n. (S)

Indeed, for n = 100, the exact value of 100! with 24 digits is

9. 332 621 544 394 415 268 169 924× 10157.

Burnside’s formula yields the approximation

100! ≈ 9. 336 491 570 312 414 838 264 959× 10157,

while Stirling’s formula is less precise, offering only the approximation

100! ≈ 9. 324 847 625 269 343 247 764 756× 10157.
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The aim of the present paper is to present a short (and elementary) proof of
Burnside’s asymptotic formula and to extend it to positive real numbers. The
main ingredients are Wallis’ s product formula for π and the property of log-
convexity of the Gamma function.

2. The proof of Burnside’s formula

The starting point is the following result concerning the monotonicity of the

function
(
1 + 1

x

)x+α
on the interval [1,∞).

Lemma 2.1. (I. Schur [6], Problem 168, page 38). Let α ∈ R. The sequence

aα(n) =
(
1 + 1

n

)n+α
is decreasing if α ∈ [1

2
,∞), and increasing for n ≥ N(α) if

α ∈ (−∞, 1/2).

According to Lemma 1 above, for α ∈ (0, 1/2) arbitrarily fixed, there is a
positive integer N(α) such that(

1 +
1

k

)k+α

< e <

(
1 +

1

k

)k+1/2

for all k ≥ N(α). As a consequence,

2n∏
k=n

(
k + 1

k

)k+α

< en+1 <
2n∏

k=n

(
k + 1

k

)k+1/2

,

for all n ≥ N(α), equivalently,

(2n + 1)2n+α

nn+α
· 1

(n + 1) · · · (2n)
< en+1 <

(2n + 1)2n+1/2

nn+1/2
· 1

(n + 1) · · · (2n)
.

This can be restated as

22n+α
(
n + 1

2

)n+1/2 (
1 + 1

2n

)n+α√
n + 1

2

· n!

(2n)!
< en+1

<
22n+1/2

(
n + 1

2

)n+1/2 (
1 + 1

2n

)n+1/2√
n + 1

2

· n!

(2n)!
,

whence

1√
2n + 1

· (2n)!!

(2n− 1)!!
·
2α+1/2

(
1 + 1

2n

)n+α

√
e

< n!

(
e

n + 1
2

)n+1/2

<
1√

2n + 1
· (2n)!!

(2n− 1)!!
·
2
(
1 + 1

2n

)n+1/2

√
e

for all n ≥ N(α). Here n!! = n · (n− 2) · · · 4 · 2 if n is even, and n · (n− 2) · · · 3 · 1
if n is odd.
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Taking into account Wallis’s formula,

lim
n→∞

2 · 2 · 4 · 4 · · · (2n) · (2n)

1 · 3 · 3 · 5 · 5 · · · (2n− 1) · (2n− 1) · (2n + 1)
=

π

2
,

that is,

lim
n→∞

1√
2n + 1

· (2n)!!

(2n− 1)!!
=

√
π

2
,

we arrive easily at Burnside’s formula for factorial n :

n! ∼
√

2π

(
n + 1/2

e

)n+1/2

.

3. The extension of Burnside’s formula for the Gamma function

Our next goal is to derive from Burnside’s formula the following asymptotic
formula for the Gamma function:

Theorem 3.1. (R. J. Wilton [7]). Γ (x + 1) ∼
√

2π
(

x+1/2
e

)x+1/2

as x →∞.

The proof of the above theorem will be done by estimating the function

f (x) = Γ (x + 1)

(
e

x + 1/2

)x+1/2

,

for large values of x. We shall need the following double inequality:

Lemma 3.2. bxc! x{x} ≤ Γ (x + 1) ≤ bxc! (bxc+ 1){x} for all x ≥ 1.

Here bxc denotes the largest integer less than or equal to x and {x} = x−bxc.

Proof. Our argument is based on the property of log-convexity of the Gamma
function:

Γ((1− λ)x + λy) ≤ Γ(x)1−λΓ(y)λ,

for all x, y > 0 and λ ∈ [0, 1]. See [5], Theorem 2.2.4, pp. 69-70.
If x is a positive number, then bxc+ 1 ≤ x + 1 < bxc+ 2, which yields

x + 1 = (1− {x}) (bxc+ 1) + {x} (bxc+ 2) .

Therefore,

Γ(x + 1) ≤ Γ(bxc+ 1)1−{x}Γ(bxc+ 2){x}

= bxc!1−{x} (bxc+ 1)!{x}

≤ bxc! (bxc+ 1)x−bxc .

In a similar way, taking into account that bxc + 1 = {x}x + (1− {x}) (x + 1) ,
we obtain

bxc! = Γ(bxc+ 1) ≤ Γ(x){x}Γ(x + 1)1−{x} =
Γ(x + 1)

xx−bxc ,

whence bxc!xx−bxc ≤ Γ(x + 1). The proof is done. �
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According to Lemma 2,

f(x) ≥ bxc! x{x} · ex+1/2

(x + 1/2)x+1/2

= Γ(bxc+ 1) · ebxc+1/2

(bxc+ 1/2)bxc+1/2
· e{x}(bxc+ 1/2)bxc+1/2x{x}

(x + 1/2)x+1/2

= f(bxc) ·
(
bxc+ 1/2

x + 1/2

)bxc+1/2

· e{x} ·
(

x

x + 1/2

){x}

= f(bxc) ·
(

x

x + 1/2

){x}

·

 e(
1 + {x}

bxc+1/2

) bxc+1/2
{x}


{x}

≥ f(bxc) ·
(

x

x + 1/2

){x}

. (LW )

Similarly,

f (x) = Γ (x + 1)

(
e

x + 1/2

)x+1/2

≤ bxc!
(

e

x + 1/2

)x+1/2

(bxc+ 1){x}

= f (bxc)
(
bxc+ 1/2

x + 1/2

)bxc+1/2 (
bxc+ 1

x + 1/2

){x}

e{x}

= f (bxc)

 e(
1 + {x}

bxc+1/2

) bxc+1/2
{x}


{x} (

bxc+ 1

x + 1/2

){x}

. (RW )

The formulas (LW ) and (RW ) show that

lim
x→∞

f(x) = lim
n→∞

f(n),

and this fact combined with Burnside’s formula (B) allows us to conclude that
the limit of f at infinity is

√
2π, that is,

lim
x→∞

Γ (x + 1)

(
e

x + 1/2

)x+1/2

=
√

2π.

This ends the proof of Wilton’s asymptotic formula.
It seems very likely that the above technique can be adapted to cover more

accurate asymptotic formulas such as that of Gosper [4],

n! ∼

√
2π

(
n +

1

6

) (n

e

)n

,

and of its extension to real numbers. This is also supported by our joint paper
with D. E. Dutkay [3].
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Additional information concerning the approximation of the Gamma function
may be found in the recent paper of G. D. Anderson, M. Vuorinen and X. Zhang
[1].
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