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Abstract. In the present paper, we prove the stability of the functional equa-
tion

max{f((x ◦ y) ◦ y), f(x)} = f(x ◦ y) + f(y)

for real valued functions defined on a square-symmetric groupoid with a left
unit element. As a consequence, we obtain the known result about the stability
of the equation

max{f(x + y), f(x− y)} = f(x) + f(y)

for real valued functions defined on an abelian group.

1. Introduction

The topic of this paper is related to the study of the functional equation

max{f(x+ y), f(x− y)} = f(x) + f(y). (1.1)

The general solution of this equation has been determined in the class of real
valued functions defined on an abelian group G in a joint paper with Alice Simon
[19]. It has been proved that a function f of this type satisfies (1.1) if and only
if it has the form

f(x) = |a(x)| (x ∈ G),

where a : G→ R is an additive function.
In the following, we will investigate the stability of a generalization of the equation
above in the sense of Pólya–Szegő ([15]) and Hyers–Ulam ([20, 10]). Based on
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the simple observation that replacing x− y by x̄ in equation (1.1), it becomes

max{f((x̄+ y) + y), f(x̄)} = f(x̄+ y) + f(y) (x̄, y ∈ G),

we may consider it on more general structures than groups. We will prove the
stability of this equation for real valued functions defined on a square-symmetric
groupoid with a left unit element. As a consequence of our main theorem, we
get the stability of equation (1.1) on abelian groups, which has been proved in a
joint paper with Witold Jarczyk [8].

2. Notation and terminology

Throughout the paper, (S, ◦) denotes a groupoid, that is, a nonempty set S with a
binary operation ◦ : S×S → S. If x ∈ S, we define x1 = x and, for a nonnegative
integer n, x2

n+1
= x2

n ◦ x2n .
A groupoid (S, ◦) (or the operation ◦ on S) is called square-symmetric if

(x ◦ y) ◦ (x ◦ y) = (x ◦ x) ◦ (y ◦ y)

holds for all x, y ∈ S.
Obviously, a commutative and associative binary operation is also square-sym-
metric. However, neither commutativity nor associativity follow from square-
symmetry. For example, the operation x ◦ y = y is associative, square-symmetric
but not commutative on an arbitrary set S with at least two elements (concerning
the connection between commutativity and square-symmetry, we refer to [9]).
Furthermore, the commutative operation x ◦ y = |x − y| on S = [0,∞[ is also
square-symmetric but not associative. Moreover, power-symmetry is a “weaker
property” than bisymmetry: the commutative and square-symmetric operation
x◦y = |x−y| above is not bisymmetric. (An operation on S is called bisymmetric
if (x ◦ x̄) ◦ (y ◦ ȳ) = (x ◦ y) ◦ (x̄ ◦ ȳ) for x, x̄, y, ȳ ∈ S; cf. [1]).
The stability of functional equations on square-symmetric groupoids was investi-
gated by several authors. Among others, Karol Baron, Gian Luigi Forti, Zoltán
Kaiser, R. Duncan Luce, Zenon Moszner, Zsolt Páles and Jürg Rätz proved such
type of results in [2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 18, 21, 22, 23]. Let us mention
recent results of Barbara Przebieracz ([16, 17]) on the stability of some equations
connected with the topic of the present paper (cf. also the references in [8]).

3. Stability theorems

Theorem 3.1. Let (S, ◦) be a square-symmetric groupoid and let δ be a nonneg-
ative real number. If a function f : S → R satisfies the inequality

|f(x ◦ x)− 2f(x)| ≤ δ (x ∈ S)

then the function g : S → R defined by

g(x) = lim
n→∞

1

2n
f
(
x2

n)
(x ∈ S), (3.1)

solves the equation

g(x ◦ x) = 2g(x) (x ∈ S) (3.2)
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and fulfils
|f(x)− g(x)| ≤ δ (x ∈ S). (3.3)

Moreover, there exists only one solution g : S → R of (3.2) for which the left
hand side in (3.3) is bounded.

Proof. The statement is a simple consequence of the results presented in [23] and
[7]. �

Theorem 3.2. Let (S, ◦) be a square-symmetric groupoid with a left unit element
and let f : S → R be a function. If there exists a nonnegative real number ε such
that

|max{f((x ◦ y) ◦ y), f(x)} − f(x ◦ y)− f(y)| ≤ ε (x, y ∈ S) (3.4)

then there exists a solution g : S → R of the functional equation

max{g((x ◦ y) ◦ y), g(x)} = g(x ◦ y) + g(y) (x, y ∈ S) (3.5)

for which
|f(x)− g(x)| ≤ 3ε (x ∈ S). (3.6)

Moreover, there exists only one solution g : S → R of (3.5) for which the left
hand side in (3.6) is bounded.

Proof. Replacing x and y by the unit element e of S in (3.4), we get that

|f(e)| ≤ ε. (3.7)

Writing e instead of x in (3.4), we obtain

|max{f(y ◦ y), f(e)} − 2f(y)| ≤ ε (y ∈ S). (3.8)

Inequality (3.7) gives f(e) ≥ −ε, thus, max{f(y ◦ y), f(e)} ≥ −ε, which together
with (3.8) implies

f(y) ≥ −ε (y ∈ S). (3.9)

A simple calculation based on inequalities (3.8) and (3.9) yields

|f(y ◦ y)− 2f(y)| ≤ 3ε (y ∈ S). (3.10)

In fact, if max{f(y ◦ y), f(e)} = f(y ◦ y) for a y ∈ S then |f(y ◦ y)− 2f(y)| ≤ ε,
thus, (3.10) follows from (3.8). On the other hand, if max{f(y ◦ y), f(e)} = f(e)
for a y ∈ S then, by (3.7), we have f(y◦y) ≤ ε, (3.8) gives f(y) ≤ ε, (3.9) implies
f(y) ≥ −ε and f(y ◦ y) ≥ −ε, and these properties yield (3.10).
Based on inequality (3.10) and applying Theorem 3.1 with δ = 3ε, we obtain
that the function g : S → R defined by (3.1) satisfies properties (3.2) and (3.6).
Writing x2

n
instead of x and y2

n
instead of y in (3.4), we obtain∣∣max{f((x2

n ◦ y2n) ◦ y2n), f(x2
n

)} − f(x2
n ◦ y2n)− f(y2

n

)
∣∣ ≤ ε (3.11)

for all x, y ∈ S and n ∈ N ∪ {0}, where N = {1, 2, 3, . . .}. It can be shown by
induction that the square-symmetry of S implies

x2
n ◦ y2n = (x ◦ y)2

n

(x, y ∈ S, n ∈ N ∪ {0}),
which yields

(x2
n ◦ y2n) ◦ y2n = ((x ◦ y) ◦ y)2

n

(x, y ∈ S, n ∈ N ∪ {0}).
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Thus, dividing inequality (3.11) by 2n and letting n approach infinity, we obtain
that the function g satisfies (3.5).
In order to prove uniqueness, suppose that ḡ : S → R is a solution of (3.5) which
fulfils

|f(x)− ḡ(x)| ≤ K (x ∈ S)

with a nonnegative constant K ∈ R. The triangle inequality, with (3.6) and the
previous inequality, implies

|g(x)− ḡ(x)| ≤ K + 3ε (x ∈ S).

Since g and ḡ are solutions of inequality (3.4) with ε = 0, inequality (3.10) gives

g(x ◦ x) = 2g(x) (x ∈ S)

and
ḡ(x ◦ x) = 2ḡ(x) (x ∈ S).

Based on the last three formulas, Theorem 3.1 yields g(x) = ḡ(x), (x ∈ S), that
is, the uniqueness part of our theorem. �

As a corollary of Theorem 3.2, we obtain the stability result of [8].

Theorem 3.3. Let (G,+) be an abelian group and f : G → R be a function. If
there exists a nonnegative real number ε such that

|max{f(x+ y), f(x− y)} − f(x)− f(y)| ≤ ε (x, y ∈ G) (3.12)

then there exists a solution g : G→ R of the functional equation

max{g(x+ y), g(x− y)} = g(x) + g(y) (x, y ∈ G) (3.13)

for which
|f(x)− g(x)| ≤ 3ε (x ∈ G). (3.14)

Moreover, there exists only one solution g : G → R of (3.13) for which the left
hand side in (3.14) is bounded.

Proof. Substituting x− y by x̄ in inequality (3.12), we obtain that

|max{f((x̄+ y) + y), f(x̄)} − f(x̄+ y)− f(y)| ≤ ε (x̄, y ∈ G).

Since the abelian group G is a square-symmetric groupoid with a left unit element,
Theorem 3.2 implies the existence of a function g : G → R which solves the
equation

max{g((x̄+ y) + y), g(x̄)} = g(x̄+ y) + g(y) (x̄, y ∈ G)

and satisfies inequality (3.14). Writing x = x̄ + y in the last equation, we get
(3.13), which yields the existence part of our statement. The uniqueness can be
proved based on Theorem 3.2 using the substitution x̄ = x− y again. �

Remark 3.4. According to the argumentation in the proof above, equations (3.5)
and (3.13) are equivalent on abelian groups (i.e., they have the same solutions
there). However, as it is well-known (cf., e.g., [24]), the equivalence of two func-
tional equations does not imply that they are stable or unstable at the same time.
This is the reason why we formulated our statement concerning the stability of
equation (3.13) in a separate theorem.
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Finally, we note that, in the class of real valued functions defined on a square-
symmetric groupoid with a left unit element, the general solution of equation
(3.5) has not been determined yet.
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22. P. Volkmann, Zur Rolle der ideal konvexen Mengen bei der Stabilität der Cauchyschen
Funktionalgleichung, Sem. LV, no. 6 (1999), 6pp., http://www.math.us.edu.pl/smdk
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Instytut Matematyki, Uniwersytet Śla̧ski, Bankowa 14, 40-007 Katowice, Poland.


	1. Introduction
	2. Notation and terminology
	3. Stability theorems
	References

