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Abstract. In this survey we present some recent results obtained by the
author in extending Ostrowski inequality in various directions for continuous
functions of selfadjoint operators defined on complex Hilbert spaces.

1. Introduction

Ostrowski’s type inequalities provide sharp error estimates in approximating
the value of a function by its integral mean. They can be utilized to obtain a
priory error bounds for different quadrature rules in approximating the Riemann
integral by different Riemann sums. They also shows, in general, that the mid-
point rule provides the best approximation in the class of all Riemann sums
sampled in the interior points of a given partition.

As revealed by a simple search in the data base MathSciNet of the American
Mathematical Society with the key words ”Ostrowski” and ”inequality” in the
title, an exponential evolution of research papers devoted to this result has been
registered in the last decade. There are now at least 280 papers that can be found
by performing the above search. Numerous extensions, generalizations in both
the integral and discrete case have been discovered. More general versions for n-
time differentiable functions, the corresponding versions on time scales, for vector
valued functions or multiple integrals have been established as well. Numerous
applications in Numerical Analysis, Probability Theory and other fields have been
also given.
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In the scalar case, comparison between functions and integral means are incor-
porated in Ostrowski type inequalities as mentioned below.

The first result in this direction is known in the literature as Ostrowski’s in-
equality [46].

Theorem 1.1. Let f : [a, b] → R be a differentiable function on (a, b) with the
property that |f ′ (t)| ≤M for all t ∈ (a, b). Then∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤
1

4
+

(
x− a+b

2

b− a

)2
 (b− a)M (1.1)

for all x ∈ [a, b]. The constant 1
4

is the best possible in the sense that it cannot be
replaced by a smaller quantity..

The following Ostrowski type result for absolutely continuous functions holds
(see [35] – [37]).

Theorem 1.2. Let f : [a, b]→ R be absolutely continuous on [a, b]. Then, for all
x ∈ [a, b], we have:∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣

≤



[
1
4

+
(
x−a+b

2

b−a

)2
]

(b− a) ‖f ′‖∞ if f ′ ∈ L∞ [a, b] ;

1

(p+1)
1
p

[(
x−a
b−a

)p+1
+
(
b−x
b−a

)p+1
] 1

p
(b− a)

1
p ‖f ′‖q if f ′ ∈ Lq [a, b] ,

1
p

+ 1
q

= 1, p > 1;[
1
2

+
∣∣∣x−a+b

2

b−a

∣∣∣] ‖f ′‖1 ;

(1.2)

where ‖·‖r (r ∈ [1,∞]) are the usual Lebesgue norms on Lr [a, b], i.e.,

‖g‖∞ := ess sup lim
t∈[a,b]

|g (t)|

and

‖g‖r :=

(∫ b

a

|g (t)|r dt
) 1

r

, r ∈ [1,∞).

The constants 1
4
, 1

(p+1)
1
p

and 1
2

respectively are sharp in the sense presented in

Theorem 1.1.

The above inequalities can also be obtained from the Fink result in [40] on
choosing n = 1 and performing some appropriate computations.

If one drops the condition of absolute continuity and assumes that f is Hölder
continuous, then one may state the result (see for instance [33] and the references
therein for earlier contributions):
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Theorem 1.3. Let f : [a, b]→ R be of r −H−Hölder type, i.e.,

|f (x)− f (y)| ≤ H |x− y|r , for all x, y ∈ [a, b] , (1.3)

where r ∈ (0, 1] and H > 0 are fixed. Then, for all x ∈ [a, b] , we have the
inequality:

∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ (1.4)

≤ H

r + 1

[(
b− x
b− a

)r+1

+

(
x− a
b− a

)r+1
]

(b− a)r .

The constant 1
r+1

is also sharp in the above sense.

Note that if r = 1, i.e., f is Lipschitz continuous, then we get the following
version of Ostrowski’s inequality for Lipschitzian functions (with L instead of H)
(see for instance [26])

∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤
1

4
+

(
x− a+b

2

b− a

)2
 (b− a)L. (1.5)

Here the constant 1
4

is also best.
Moreover, if one drops the condition of the continuity of the function, and

assumes that it is of bounded variation, then the following result may be stated
(see [25]).

Theorem 1.4. Assume that f : [a, b]→ R is of bounded variation and denote by
b∨
a

(f) its total variation. Then

∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤
[

1

2
+

∣∣∣∣∣x− a+b
2

b− a

∣∣∣∣∣
]

b∨
a

(f) (1.6)

for all x ∈ [a, b]. The constant 1
2

is the best possible.

If we assume more about f , i.e., f is monotonically increasing, then the inequal-
ity (1.6) may be improved in the following manner [14] (see also the monograph
[34]).
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Theorem 1.5. Let f : [a, b] → R be monotonic nondecreasing. Then for all
x ∈ [a, b], we have the inequality:∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ (1.7)

≤ 1

b− a

{
[2x− (a+ b)] f (x) +

∫ b

a

sgn (t− x) f (t) dt

}
≤ 1

b− a
{(x− a) [f (x)− f (a)] + (b− x) [f (b)− f (x)]}

≤

[
1

2
+

∣∣∣∣∣x− a+b
2

b− a

∣∣∣∣∣
]

[f (b)− f (a)] .

All the inequalities in (1.7) are sharp and the constant 1
2

is the best possible.

For other scalar Ostrowski’s type inequalities, see [1]-[5] and [27].
For some Ostrowski related results in abstract structures, see [2], [3], [8] and

the references therein.
In this survey we present some recent results obtained by the author in ex-

tending Ostrowski inequality in various directions for continuous functions of
selfadjoint operators in complex Hilbert spaces. As far as we know, the obtained
results are new with no previous similar results ever obtained in the literature.

2. Continuous Functions of Selfadjoint Operators

Assume that A is a bounded selfadjoint operator on the Hilbert space H. If ϕ
is any function defined on R we define

‖ϕ‖A = sup {|ϕ (λ)| , λ ∈ Sp (A)} .
If ϕ is continuous, in particular if ϕ is a polynomial, then the supremum is actually
assumed for some points in Sp (A) which is compact. Therefore the supremum
may then be written as a maximum and the above formula can be written in the
form ‖ϕ (A)‖ = ‖ϕ‖A .

Consider C (R) the algebra of all continuous complex valued functions defined
on R. The following fundamental result for continuous functional calculus holds,
see for instance [42, p. 232]:

Theorem 2.1. If A is a bounded selfadjoint operator on the Hilbert space H and
ϕ ∈ C (R), then there exists a unique operator ϕ (A) ∈ B (H) with the property
that whenever {ϕn}∞n=1 ⊂ P such that limn→∞ ‖ϕ− ϕn‖A = 0, then ϕ (A) =
limn→∞ ϕn (A) . The mapping ϕ→ ϕ (A) is a homomorphism of the algebra C (R)
into B (H) with the additional properties [ϕ (A)]∗ = ϕ̄ (A) and ‖ϕ (A)‖ ≤ 2 ‖ϕ‖A .
Moreover, ϕ (A) is a normal operator, i.e. [ϕ (A)]∗ ϕ (A) = ϕ (A) [ϕ (A)]∗ . If ϕ
is real-valued, then ϕ (A) is selfadjoint.

As examples we notice that, if A ∈ B (H) is selfadjoint and ϕ (s) = eis, s ∈ R
then

eiA =
∞∑
k=0

1

k!
(iA)k .
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Moreover, eiA is a unitary operator and its inverse is the operator(
eiA
)∗

= e−iA =
∞∑
k=0

1

k!
(−iA)k .

Now, if λ ∈ C \ R, A ∈ B (H) is selfadjoint and ϕ (s) = 1
s−λ ∈ C (R) , then

ϕ (A) = (A− λI)−1 .
If the selfadjoint operator A ∈ B (H) and the functions ϕ, ψ ∈ C (R) are given,

then we obtain the commutativity property ϕ (A)ψ (A) = ψ (A)ϕ (A) . This prop-
erty can be extended for another operator as follows, see for instance [42, p. 235]:

Theorem 2.2. Assume that A ∈ B (H) and the function ϕ ∈ C (R) are given. If
B ∈ B (H) is such that AB = BA, then ϕ (A)B = Bϕ (A) .

The next result is well known in the case of continuous functions, see for in-
stance [42, p. 235]:

Theorem 2.3. If A is abounded selfadjoint operator on the Hilbert space H and
ϕ is continuous, then Sp (ϕ (A)) = ϕ (Sp (A)) .

As a consequence of this result we have:

Corollary 2.4. With the assumptions in Theorem 2.3 we have:

a) The operator ϕ (A) is selfadjoint iff ϕ (λ) ∈ R for all λ ∈ Sp (A) ;
b) The operator ϕ (A) is unitary iff |ϕ (λ)| = 1 for all λ ∈ Sp (A) ;
c) The operator ϕ (A) is invertible iff ϕ (λ) 6= 0 for all λ ∈ Sp (A) ;
d) If ϕ (A) is selfadjoint, then ‖ϕ (A)‖ = ‖ϕ‖A .

In order to develop inequalities for functions of selfadjoint operators we need
the following result, see for instance [42, p. 240]:

Theorem 2.5. Let A be a bounded selfadjoint operator on the Hilbert space H.
The homomorphism ϕ→ ϕ (A) of C (R) into B (H) is order preserving, meaning
that, if ϕ, ψ ∈ C (R) are real valued on Sp (A) and ϕ (λ) ≥ ψ (λ) for any λ ∈
Sp (A) , then

ϕ (A) ≥ ψ (A) in the operator order of B (H) . (P)

The ”square root” of a positive bounded selfadjoint operator on H can be
defined as follows, see for instance [42, p. 240]:

Theorem 2.6. If the operator A ∈ B (H) is selfadjoint and positive, then there

exists a unique positive selfadjoint operator B :=
√
A ∈ B (H) such that B2 = A.

If A is invertible, then so is B.

If A ∈ B (H) , then the operator A∗A is selfadjoint and positive. Define the

”absolute value” operator by |A| :=
√
A∗A.

Analogously to the familiar factorization of a complex number

ξ = |ξ| ei arg ξ

a bounded normal operator on H may be written as a commutative product
of a positive selfadjoint operator, representing its absolute value, and a unitary
operator, representing the factor of absolute value one.



144 S.S. DRAGOMIR

In fact, the following more general result holds, see for instance [42, p. 241]:

Theorem 2.7. For every bounded linear operator A on H, there exists a positive
selfadjoint operator B = |A| ∈ B (H) and an isometric operator C with the

domain DC = B (H) and range RC = C (DC) = A (H) such that A = CB.

In particular, we have:

Corollary 2.8. If the operator A ∈ B (H) is normal, then there exists a positive
selfadjoint operator B = |A| ∈ B (H) and a unitary operator C such that A =
BC = CB. Moreover, if A is invertible, then B and C are uniquely determined
by these requirements.

Remark 2.9. Now, suppose that A = CB where B ∈ B (H) is a positive selfadjoint
operator and C is an isometric operator. Then

a) B =
√
A∗A; consequently B is uniquely determined by the stated require-

ments;
b) C is uniquely determined by the stated requirements iff A is one-to-one.

3. The Spectral Representation Theorem

Let A ∈ B (H) be selfadjoint and let ϕλ defined for all λ ∈ R as follows

ϕλ (s) :=

 1, for −∞ < s ≤ λ,

0, for λ < s < +∞.
Then for every λ ∈ R the operator

Eλ := ϕλ (A) (3.1)

is a projection which reduces A.
The properties of these projections are summed up in the following fundamental

result concerning the spectral decomposition of bounded selfadjoint operators in
Hilbert spaces, see for instance [42, p. 256]

Theorem 3.1 (Spectral Representation Theorem). Let A be a bonded selfadjoint
operator on the Hilbert space H and let m = min {λ |λ ∈ Sp (A)} =: minSp (A)
and M = max {λ |λ ∈ Sp (A)} =: maxSp (A) . Then there exists a family of
projections {Eλ}λ∈R, called the spectral family of A, with the following properties

a) Eλ ≤ Eλ′ for λ ≤ λ′;
b) Em−0 = 0, EM = I and Eλ+0 = Eλ for all λ ∈ R;
c) We have the representation

A =

∫ M

m−0

λdEλ. (3.2)

More generally, for every continuous complex-valued function ϕ defined on R
and for every ε > 0 there exists a δ > 0 such that∥∥∥∥∥ϕ (A)−

n∑
k=1

ϕ (λ′k)
[
Eλk − Eλk−1

]∥∥∥∥∥ ≤ ε (3.3)
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whenever 
λ0 < m = λ1 < ... < λn−1 < λn = M,

λk − λk−1 ≤ δ for 1 ≤ k ≤ n,

λ′k ∈ [λk−1, λk] for 1 ≤ k ≤ n

(3.4)

this means that

ϕ (A) =

∫ M

m−0

ϕ (λ) dEλ, (3.5)

where the integral is of Riemann–Stieltjes type.

Corollary 3.2. With the assumptions of Theorem 3.1 for A,Eλ and ϕ we have
the representations

ϕ (A)x =

∫ M

m−0

ϕ (λ) dEλx for all x ∈ H (3.6)

and

〈ϕ (A)x, y〉 =

∫ M

m−0

ϕ (λ) d 〈Eλx, y 〉 for all x, y ∈ H. (3.7)

In particular,

〈ϕ (A)x, x〉 =

∫ M

m−0

ϕ (λ) d 〈Eλx, x 〉 for all x ∈ H. (3.8)

Moreover, we have the equality

‖ϕ (A)x‖2 =

∫ M

m−0

|ϕ (λ)|2 d ‖Eλx‖2 for all x ∈ H. (3.9)

The next result shows that it is legitimate to talk about ”the” spectral family
of the bounded selfadjoint operator A since it is uniquely determined by the
requirements a), b) and c) in Theorem 3.1, see for instance [42, p. 258]:

Theorem 3.3. Let A be a bonded selfadjoint operator on the Hilbert space H and
let m = minSp (A) and M = maxSp (A) . If {Fλ}λ∈R is a family of projections
satisfying the requirements a), b) and c) in Theorem 3.1, then Fλ = Eλ for all
λ ∈ R where Eλ is defined by (3.1).

By the above two theorems, the spectral family {Eλ}λ∈R uniquely determines
and in turn is uniquely determined by the bounded selfadjoint operator A. The
spectral family also reflects in a direct way the properties of the operator A as
follows, see [42, p. 263-p.266]

Theorem 3.4. Let {Eλ}λ∈R be the spectral family of the bounded selfadjoint op-
erator A. If B is a bounded linear operator on H, then AB = BA iff EλB = BEλ
for all λ ∈ R. In particular EλA = AEλ for all λ ∈ R.

Theorem 3.5. Let {Eλ}λ∈R be the spectral family of the bounded selfadjoint op-
erator A and µ ∈ R. Then

a) µ is a regular value of A,i.e., A− µI is invertible iff there exists a θ > 0
such that Eµ−θ = Eµ+θ;
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b) µ ∈ Sp (A) iff Eµ−θ < Eµ+θ for all θ > 0;
c) µ is an eigenvalue of A iff Eµ−0 < Eµ.

The following result will play a key role in many results concerning inequalities
for bounded selfadjoint operators in Hilbert spaces. Since we were not able to
locate it in the literature, we will provide here a complete proof:

Theorem 3.6 (Total Variation Schwarz’s Inequality). Let {Eλ}λ∈R be the spectral
family of the bounded selfadjoint operator A and let m = minSp (A) and M =
maxSp (A) . Then for any x, y ∈ H the function λ → 〈Eλx, y〉 is of bounded
variation on [m,M ] and we have the inequality∣∣∣∣∣

M∨
m

(〈
E(·)x, y

〉)∣∣∣∣∣ ≤ ‖x‖ ‖y‖ , (TVSI)

where
M∨
m

(〈
E(·)x, y

〉)
denotes the total variation of the function

〈
E(·)x, y

〉
on

[m,M ] .

Proof. If P is a nonnegative selfadjoint operator on H, i.e., 〈Px, x〉 ≥ 0 for any
x ∈ H, then the following inequality is a generalization of the Schwarz inequality
in H

|〈Px, y〉|2 ≤ 〈Px, x〉 〈Py, y〉 , (3.10)

for any x, y ∈ H.
Now, if d : m = t0 < t1 < ... < tn−1 < tn = M is an arbitrary partition of the

interval [m,M ] , then we have by Schwarz’s inequality for nonnegative operators
(3.10) that

M∨
m

(〈
E(·)x, y

〉)
(3.11)

= sup
d

{
n−1∑
i=0

∣∣〈(Eti+1
− Eti

)
x, y
〉∣∣}

≤ sup
d

{
n−1∑
i=0

[〈(
Eti+1

− Eti
)
x, x
〉1/2 〈(

Eti+1
− Eti

)
y, y
〉1/2
]}

:= I.

By the Cauchy-Buniakovski–Schwarz inequality for sequences of real numbers we
also have that

I ≤ sup
d


[
n−1∑
i=0

〈(
Eti+1

− Eti
)
x, x
〉]1/2 [n−1∑

i=0

〈(
Eti+1

− Eti
)
y, y
〉]1/2

 (3.12)

≤ sup
d


[
n−1∑
i=0

〈(
Eti+1

− Eti
)
x, x
〉]1/2 [n−1∑

i=0

〈(
Eti+1

− Eti
)
y, y
〉]1/2


=

[
M∨
m

(〈
E(·)x, x

〉)]1/2 [M∨
m

(〈
E(·)y, y

〉)]1/2

= ‖x‖ ‖y‖
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for any x, y ∈ H.
On making use of (3.11) and (3.12) we deduce the desired result (TVSI). �

4. Ostrowski’s type Inequalities for Hölder Continuous Functions

4.1. Introduction. Utilising the spectral representation theorem and the fol-
lowing Ostrowski’s type inequality for the Riemann–Stieltjes integral obtained
by the author in [30]: ∣∣∣∣f (s) [u (b)− u (a)]−

∫ b

a

f (t) du (t)

∣∣∣∣ (4.1)

≤ L

[
1

2
(b− a) +

∣∣∣∣s− a+ b

2

∣∣∣∣]r b∨
a

(u)

for any s ∈ [a, b] , provided that f is of r − L−Hölder type on [a, b] (see (4.2)

below), u is of bounded variation on [a, b] and
∨b
a (u) denotes the total variation of

u on [a, b] , we obtained the following inequality of Ostrowski type for selfadjoint
operators:

Theorem 4.1 (Dragomir, 2008, [31]). Let A and B be selfadjoint operators with
Sp (A) , Sp (B) ⊆ [m,M ] for some real numbers m < M. If f : [m,M ] −→ R is
of r − L−Hölder type, i.e., for a given r ∈ (0, 1] and L > 0 we have

|f (s)− f (t)| ≤ L |s− t|r for any s, t ∈ [m,M ] , (4.2)

then we have the inequality:

|f (s)− 〈f (A)x, x〉| ≤ L

[
1

2
(M −m) +

∣∣∣∣s− m+M

2

∣∣∣∣]r , (4.3)

for any s ∈ [m,M ] and any x ∈ H with ‖x‖ = 1.
Moreover, we have

|〈f (B) y, y〉 − 〈f (A)x, x〉| (4.4)

≤ 〈|f (B)− 〈f (A)x, x〉 · 1H | y, y〉

≤ L

[
1

2
(M −m) +

〈∣∣∣∣B − m+M

2
· 1H

∣∣∣∣ y, y〉]r ,
for any x, y ∈ H with ‖x‖ = ‖y‖ = 1.

With the above assumptions for f, A and B we have the following particular
inequalities of interest:∣∣∣∣f (m+M

2

)
− 〈f (A)x, x〉

∣∣∣∣ ≤ 1

2r
L (M −m)r (4.5)

and

|f (〈Ax, x〉)− 〈f (A)x, x〉| ≤ L

[
1

2
(M −m) +

∣∣∣∣〈Ax, x〉 − m+M

2

∣∣∣∣]r , (4.6)

for any x ∈ H with ‖x‖ = 1.
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We also have the inequalities:

|〈f (A) y, y〉 − 〈f (A)x, x〉| (4.7)

≤ 〈|f (A)− 〈f (A)x, x〉 · 1H | y, y〉

≤ L

[
1

2
(M −m) +

〈∣∣∣∣A− m+M

2
· 1H

∣∣∣∣ y, y〉]r ,
for any x, y ∈ H with ‖x‖ = ‖y‖ = 1,

|〈[f (B)− f (A)]x, x〉| (4.8)

≤ 〈|f (B)− 〈f (A)x, x〉 · 1H |x, x〉

≤ L

[
1

2
(M −m) +

〈∣∣∣∣B − m+M

2
· 1H

∣∣∣∣x, x〉]r
and, more particularly,

〈|f (A)− 〈f (A)x, x〉 · 1H |x, x〉 (4.9)

≤ L

[
1

2
(M −m) +

〈∣∣∣∣A− m+M

2
· 1H

∣∣∣∣x, x〉]r ,
for any x ∈ H with ‖x‖ = 1.

We also have the norm inequality

‖f (B)− f (A)‖ ≤ L

[
1

2
(M −m) +

∥∥∥∥B − m+M

2
· 1H

∥∥∥∥]r . (4.10)

For various generalizations, extensions and related Ostrowski type inequalities
for functions of one or several variables see the monograph [34] and the references
therein.

4.2. More Inequalities of Ostrowski’s Type. The following result holds:

Theorem 4.2 (Dragomir, 2010, [32]). Let A be a selfadjoint operator with Sp (A) ⊆
[m,M ] for some real numbers m < M. If f : [m,M ] −→ R is of r − L−Hölder
type with r ∈ (0, 1], then we have the inequality:

|f (s)− 〈f (A)x, x〉| ≤ L 〈|s · 1H − A|x, x〉r (4.11)

≤ L
[
(s− 〈Ax, x〉)2 +D2 (A;x)

]r/2
,

for any s ∈ [m,M ] and any x ∈ H with ‖x‖ = 1, where D (A;x) is the variance
of the selfadjoint operator A in x and is defined by

D (A;x) :=
(
‖Ax‖2 − 〈Ax, x〉2

)1/2
,

where x ∈ H with ‖x‖ = 1.

Proof. First of all, by the Jensen inequality for convex functions of selfadjoint
operators (see for instance [41, p. 5]) applied for the modulus, we can state that

|〈h (A)x, x〉| ≤ 〈|h (A)|x, x〉 (M)

for any x ∈ H with ‖x‖ = 1, where h is a continuous function on [m,M ] .
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Utilising the property (M) we then get

|f (s)− 〈f (A)x, x〉| = |〈f (s) · 1H − f (A)x, x〉| ≤ 〈|f (s) · 1H − f (A)|x, x〉
(4.12)

for any x ∈ H with ‖x‖ = 1 and any s ∈ [m,M ] .
Since f is of r − L−Hölder type, then for any t, s ∈ [m,M ] we have

|f (s)− f (t)| ≤ L |s− t|r . (4.13)

If we fix s ∈ [m,M ] and apply the property (P) for the inequality (4.13) and the
operator A we get

〈|f (s) · 1H − f (A)|x, x〉 ≤ L 〈|s · 1H − A|r x, x〉 ≤ L 〈|s · 1H − A|x, x〉r (4.14)

for any x ∈ H with ‖x‖ = 1 and any s ∈ [m,M ] , where, for the last inequality
we have used the fact that if P is a positive operator and r ∈ (0, 1) then, by the
Hölder-McCarthy inequality [44],

〈P rx, x〉 ≤ 〈Px, x〉r (HM)

for any x ∈ H with ‖x‖ = 1. This proves the fist inequality in (4.11).
Now, observe that for any bounded linear operator T we have

〈|T |x, x〉 =
〈

(T ∗T )1/2 x, x
〉
≤ 〈(T ∗T )x, x〉1/2 = ‖Tx‖

for any x ∈ H with ‖x‖ = 1 which implies that

〈|s · 1H − A|x, x〉r ≤ ‖sx− Ax‖r (4.15)

=
(
s2 − 2s 〈Ax, x〉+ ‖Ax‖2)r/2

=
[
(s− 〈Ax, x〉)2 + ‖Ax‖2 − 〈Ax, x〉2

]r/2
for any x ∈ H with ‖x‖ = 1 and any s ∈ [m,M ] .

Finally, on making use of (4.12), (4.14) and (4.15) we deduce the desired result
(4.11). �

Remark 4.3. If we choose in (4.11) s = m+M
2
, then we get the sequence of in-

equalities ∣∣∣∣f (m+M

2

)
− 〈f (A)x, x〉

∣∣∣∣ (4.16)

≤ L

〈∣∣∣∣m+M

2
· 1H − A

∣∣∣∣x, x〉r
≤ L

[(
m+M

2
− 〈Ax, x〉

)2

+D2 (A;x)

]r/2

≤ L

[
1

4
(M −m)2 +D2 (A;x)

]r/2
≤ 1

2r
L (M −m)r

for any x ∈ H with ‖x‖ = 1, since, obviously,(
m+M

2
− 〈Ax, x〉

)2

≤ 1

4
(M −m)2
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and

D2 (A;x) ≤ 1

4
(M −m)2

for any x ∈ H with ‖x‖ = 1.
We notice that the inequality (4.16) provides a refinement for the result (4.5)

above.

The best inequality we can get from (4.11) is incorporated in the following:

Corollary 4.4 (Dragomir, 2010, [32]). Let A be a selfadjoint operator with
Sp (A) ⊆ [m,M ] for some real numbers m < M. If f : [m,M ] −→ R is of
r − L−Hölder type with r ∈ (0, 1], then we have the inequality

|f (〈Ax, x〉)− 〈f (A)x, x〉| ≤ L 〈|〈Ax, x〉 · 1H − A|x, x〉r ≤ LDr (A;x) , (4.17)

for any x ∈ H with ‖x‖ = 1.

The inequality (4.11) may be used to obtain other inequalities for two selfad-
joint operators as follows:

Corollary 4.5 (Dragomir, 2010, [32]). Let A and B be selfadjoint operators with
Sp (A) , Sp (B) ⊆ [m,M ] for some real numbers m < M. If f : [m,M ] −→ R is
of r − L−Hölder type with r ∈ (0, 1], then we have the inequality

|〈f (B) y, y〉 − 〈f (A)x, x〉| (4.18)

≤ L
[
(〈By, y〉 − 〈Ax, x〉)2 +D2 (A;x) +D2 (B; y)

]r/2
for any x, y ∈ H with ‖x‖ = ‖y‖ = 1.

Proof. If we apply the property (P) to the inequality (4.11) and for the operator
B, then we get

〈|f (B)− 〈f (A)x, x〉 · 1H | y, y〉 (4.19)

≤ L
〈[

(B − 〈Ax, x〉 · 1H)2 +D2 (A;x) · 1H
]r/2

y, y
〉

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1.
Utilising the inequality (M) we also have that

|f (〈By, y〉)− 〈f (A)x, x〉| ≤ 〈|f (B)− 〈f (A)x, x〉 · 1H | y, y〉 (4.20)

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1.
Now, by the Hölder-McCarthy inequality (HM) we also have〈[

(B − 〈Ax, x〉 · 1H)2 +D2 (A;x) · 1H
]r/2

y, y
〉

(4.21)

≤
〈[

(B − 〈Ax, x〉 · 1H)2 +D2 (A;x) · 1H
]
y, y
〉r/2

=
(
(〈By, y〉 − 〈Ax, x〉)2 +D2 (A;x) +D2 (B; y)

)r/2
for any x, y ∈ H with ‖x‖ = ‖y‖ = 1.

On making use of (4.19)-(4.21) we deduce the desired result (4.18). �
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Remark 4.6. Since

D2 (A;x) ≤ 1

4
(M −m)2 , (4.22)

then we obtain from (4.18) the following vector inequalities

|〈f (A) y, y〉 − 〈f (A)x, x〉| (4.23)

≤ L
[
(〈Ay, y〉 − 〈Ax, x〉)2 +D2 (A;x) +D2 (A; y)

]r/2
≤ L

[
(〈Ay, y〉 − 〈Ax, x〉)2 +

1

2
(M −m)2

]r/2
,

and

|〈[f (B)− f (A)]x, x〉| (4.24)

≤ L
[
〈(B − A)x, x〉2 +D2 (A;x) +D2 (B;x)

]r/2
≤ L

[
〈(B − A)x, x〉2 +

1

2
(M −m)2

]r/2
.

In particular, we have the norm inequality

‖f (B)− f (A)‖ ≤ L

[
‖B − A‖2 +

1

2
(M −m)2

]r/2
. (4.25)

The following result provides convenient examples for applications:

Corollary 4.7 (Dragomir, 2010, [32]). Let A be a selfadjoint operator with
Sp (A) ⊆ [m,M ] for some real numbers m < M. If f : [m,M ] −→ R is ab-
solutely continuous on [m,M ], then we have the inequality:

|f (s)− 〈f (A)x, x〉| (4.26)

≤


〈|s · 1H − A|x, x〉 ‖f ′‖[m,M ],∞ if f ′ ∈ L∞ [m,M ] ,

〈|s · 1H − A|x, x〉1/q ‖f ′‖[m,M ],p

if f ′ ∈ Lp [m,M ] ,
p > 1, 1

p
+ 1

q
= 1,

≤


[
(s− 〈Ax, x〉)2 +D2 (A;x)

]1/2 ‖f ′‖[m,M ],∞ if f ′ ∈ L∞ [m,M ] ,

[
(s− 〈Ax, x〉)2 +D2 (A;x)

] 1
2q ‖f ′‖[m,M ],p

if f ′ ∈ Lp [m,M ] ,
p > 1, 1

p
+ 1

q
= 1,

for any s ∈ [m,M ] and any x ∈ H with ‖x‖ = 1, where ‖f ′‖[m,M ],` are the
Lebesgue norms, i.e.,

‖f ′‖[m,M ],` :=


ess supt∈[m,M ] |f ′ (t)| if ` =∞(∫M

m
|f ′ (t)|p dt

)1/p

if ` = p ≥ 1.
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Proof. Follows from Theorem 4.2 and on tacking into account that if f : [m,M ] −→
R is absolutely continuous on [m,M ] , then for any s, t ∈ [m,M ] we have

|f (s)− f (t)|

=

∣∣∣∣∫ s

t

f ′ (u) du

∣∣∣∣
≤


|s− t| ess supt∈[m,M ] |f ′ (t)| if f ′ ∈ L∞ [m,M ]

|s− t|1/q
(∫M

m
|f ′ (t)|p dt

)1/p

if f ′ ∈ Lp [m,M ] , p > 1, 1
p

+ 1
q

= 1.

�

Remark 4.8. It is clear that all the inequalities from Corollaries 4.4, 4.5 and
Remark 4.6 may be stated for absolutely continuous functions. However, we
mention here only one, namely

|f (〈Ax, x〉)− 〈f (A)x, x〉| (4.27)

≤


〈|〈Ax, x〉 · 1H − A|x, x〉 ‖f ′‖[m,M ],∞ if f ′ ∈ L∞ [m,M ]

〈|〈Ax, x〉 · 1H − A|x, x〉1/q ‖f ′‖[m,M ],p

if f ′ ∈ Lp [m,M ] ,
p > 1, 1

p
+ 1

q
= 1,

≤


D (A;x) ‖f ′‖[m,M ],∞ if f ′ ∈ L∞ [m,M ]

D1/q (A;x) ‖f ′‖[m,M ],p

if f ′ ∈ Lp [m,M ] ,
p > 1, 1

p
+ 1

q
= 1.

4.3. The Case of (ϕ,Φ)−Lipschitzian Functions. The following lemma may
be stated.

Lemma 4.9. Let u : [a, b]→ R and ϕ,Φ ∈ R be such that Φ > ϕ. The following
statements are equivalent:

(i) The function u−ϕ+Φ
2
·e, where e (t) = t, t ∈ [a, b] , is 1

2
(Φ− ϕ)−Lipschitzian;

(ii) We have the inequality:

ϕ ≤ u (t)− u (s)

t− s
≤ Φ for each t, s ∈ [a, b] with t 6= s; (4.28)

(iii) We have the inequality:

ϕ (t− s) ≤ u (t)− u (s) ≤ Φ (t− s) for each t, s ∈ [a, b] with t > s. (4.29)

We can introduce the following class of functions, see also [43]:

Definition 4.10. The function u : [a, b]→ R which satisfies one of the equivalent
conditions (i) – (iii) is said to be (ϕ,Φ)−Lipschitzian on [a, b] .

Utilising Lagrange’s mean value theorem, we can state the following result that
provides practical examples of (ϕ,Φ)−Lipschitzian functions.
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Proposition 4.11. Let u : [a, b] → R be continuous on [a, b] and differentiable
on (a, b) . If

−∞ < γ := inf
t∈(a,b)

u′ (t) , sup
t∈(a,b)

u′ (t) =: Γ <∞ (4.30)

then u is (γ,Γ)−Lipschitzian on [a, b] .

The following result can be stated:

Proposition 4.12 (Dragomir, 2010, [32]). Let A be a selfadjoint operator with
Sp (A) ⊆ [m,M ] for some real numbers m < M. If f : [m,M ] −→ R is
(γ,Γ)−Lipschitzian on [m,M ] , then we have the inequality

|f (〈Ax, x〉)− 〈f (A)x, x〉| ≤ 1

2
(Γ− γ) 〈|〈Ax, x〉 · 1H − A|x, x〉 (4.31)

≤ 1

2
(Γ− γ)D (A;x) ,

for any x ∈ H with ‖x‖ = 1.

Proof. Follows by Corollary 4.4 on taking into account that in this case we have
r = 1 and L = 1

2
(Γ− γ) . �

We can use the result (4.31) for the particular case of convex functions to
provide an interesting reverse inequality for the Jensen’s type operator inequality
due to Mond and Pečarić [45] (see also [41, p. 5]):

Theorem 4.13 (Mond-Pečarić, 1993, [45]). Let A be a selfadjoint operator on
the Hilbert space H and assume that Sp (A) ⊆ [m,M ] for some scalars m,M with
m < M. If f is a convex function on [m,M ] , then

f (〈Ax, x〉) ≤ 〈f (A)x, x〉 (MP)

for each x ∈ H with ‖x‖ = 1.

Corollary 4.14 (Dragomir, 2010, [32]). With the assumptions of Theorem 4.13
we have the inequality

(0 ≤) 〈f (A)x, x〉 − f (〈Ax, x〉) (4.32)

≤ 1

2

(
f ′− (M)− f ′+ (m)

)
〈|〈Ax, x〉 · 1H − A|x, x〉

≤ 1

2

(
f ′− (M)− f ′+ (m)

)
D (A;x) ≤ 1

4

(
f ′− (M)− f ′+ (m)

)
(M −m)

for each x ∈ H with ‖x‖ = 1.

Proof. Follows by Proposition 4.12 on taking into account that

f ′+ (m) (t− s) ≤ f (t)− f (s) ≤ f ′− (M) (t− s)

for each s, t with the property that M > t > s > m. �

The following result may be stated as well:



154 S.S. DRAGOMIR

Proposition 4.15 (Dragomir, 2010, [32]). Let A be a selfadjoint operator with
Sp (A) ⊆ [m,M ] for some real numbers m < M. If f : [m,M ] −→ R is
(γ,Γ)−Lipschitzian on [m,M ] , then we have the inequality

|f (〈Ax, x〉)− 〈f (A)x, x〉| (4.33)

≤ 1

2
(Γ− γ)

[
1

2
(M −m) +

∣∣∣∣〈Ax, x〉 − m+M

2

∣∣∣∣]
for any x ∈ H with ‖x‖ = 1.

The following particular case for convex functions holds:

Corollary 4.16 (Dragomir, 2010, [32]). With the assumptions of Theorem 4.13
we have the inequality

(0 ≤) 〈f (A)x, x〉 − f (〈Ax, x〉) (4.34)

≤ 1

2

(
f ′− (M)− f ′+ (m)

) [1

2
(M −m) +

∣∣∣∣〈Ax, x〉 − m+M

2

∣∣∣∣]
for each x ∈ H with ‖x‖ = 1.

4.4. Related Results. In the previous sections we have compared amongst other
the following quantities

f

(
m+M

2

)
and f (〈Ax, x〉)

with 〈f (A)x, x〉 for a selfadjoint operator A on the Hilbert spaceH with Sp (A) ⊆
[m,M ] for some real numbers m < M, f : [m,M ] −→ R a function of r −
L−Hölder type with r ∈ (0, 1] and x ∈ H with ‖x‖ = 1.

Since, obviously,

m ≤ 1

M −m

∫ M

m

f (t) dt ≤M,

then is also natural to compare 1
M−m

∫M
m
f (t) dt with 〈f (A)x, x〉 under the same

assumptions for f, A and x.
The following result holds:

Theorem 4.17 (Dragomir, 2010, [32]). Let A be a selfadjoint operator with
Sp (A) ⊆ [m,M ] for some real numbers m < M. If f : [m,M ] −→ R is of
r − L−Hölder type with r ∈ (0, 1], then we have the inequality:∣∣∣∣ 1

M −m

∫ M

m

f (s) dt− 〈f (A)x, x〉
∣∣∣∣ (4.35)

≤ 1

r + 1
L (M −m)r

×

[〈(
M · 1H − A
M −m

)r+1

x, x

〉
+

〈(
A−m · 1H
M −m

)r+1

x, x

〉]
≤ 1

r + 1
L (M −m)r ,
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for any x ∈ H with ‖x‖ = 1.
In particular, if f : [m,M ] −→ R is Lipschitzian with a constant K, then∣∣∣∣ 1

M −m

∫ M

m

f (s) dt− 〈f (A)x, x〉
∣∣∣∣ (4.36)

≤ K (M −m)

[
1

4
+

1

(M −m)2

(
D2 (A;x) +

(
〈Ax, x〉 − m+M

2

)2
)]

≤ 1

2
K (M −m)

for any x ∈ H with ‖x‖ = 1.

Proof. We use the following Ostrowski’s type result (see for instance [34, p. 3])
written for the function f that is of r − L−Hölder type on the interval [m,M ] :∣∣∣∣ 1

M −m

∫ M

m

f (s) dt− f (t)

∣∣∣∣ (4.37)

≤ L

r + 1
(M −m)r

[(
M − t
M −m

)r+1

+

(
t−m
M −m

)r+1
]

for any t ∈ [m,M ] .
If we apply the properties (P) and (M) then we have successively∣∣∣∣ 1

M −m

∫ M

m

f (s) dt− 〈f (A)x, x〉
∣∣∣∣ (4.38)

≤
〈∣∣∣∣ 1

M −m

∫ M

m

f (s) dt− f (A)

∣∣∣∣x, x〉
≤ L

r + 1
(M −m)r

×

[〈(
M · 1H − A
M −m

)r+1

x, x

〉
+

〈(
A−m · 1H
M −m

)r+1

x, x

〉]
which proves the first inequality in (4.35).

Utilising the Lah-Ribarić inequality version for selfadjoint operators A with
Sp (A) ⊆ [m,M ] for some real numbers m < M and convex functions g :
[m,M ]→ R, namely (see for instance [41, p. 57]):

〈g (A)x, x〉 ≤ M − 〈Ax, x〉
M −m

g (m) +
〈Ax, x〉 −m
M −m

g (M)

for any x ∈ H with ‖x‖ = 1, then we get for the convex function g (t) :=(
M−t
M−m

)r+1
, 〈(

M · 1H − A
M −m

)r+1

x, x

〉
≤ M − 〈Ax, x〉

M −m
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and for the convex function g (t) :=
(
t−m
M−m

)r+1
,〈(

A−m · 1H
M −m

)r+1

x, x

〉
≤ 〈Ax, x〉 −m

M −m

for any x ∈ H with ‖x‖ = 1.
Now, on making use of the last two inequalities, we deduce the second part of

(4.35).
Since

1

2

〈(
M · 1H − A
M −m

)2

x, x

〉
+

〈(
A−m · 1H
M −m

)2

x, x

〉

=
1

4
+

1

(M −m)2

(
D2 (A;x) +

(
〈Ax, x〉 − m+M

2

)2
)

for any x ∈ H with ‖x‖ = 1, then on choosing r = 1 in (4.35) we deduce the
desired result (4.36). �

Remark 4.18. We should notice from the proof of the above theorem, we also
have the following inequalities in the operator order of B (H)∣∣∣∣f (A)−

(
1

M −m

∫ M

m

f (s) dt

)
· 1H

∣∣∣∣ (4.39)

≤ L

r + 1
(M −m)r

[(
M · 1H − A
M −m

)r+1

+

(
A−m · 1H
M −m

)r+1
]

≤ 1

r + 1
L (M −m)r · 1H .

The following particular case is of interest:

Corollary 4.19 (Dragomir, 2010, [32]). Let A be a selfadjoint operator with
Sp (A) ⊆ [m,M ] for some real numbers m < M. If f : [m,M ] −→ R is
(γ,Γ)−Lipschitzian on [m,M ] , then we have the inequality∣∣∣∣〈f (A)x, x〉 − Γ + γ

2
− 1

M −m

∫ M

m

f (s) dt+
Γ + γ

2
· m+M

2

∣∣∣∣ (4.40)

≤ 1

2
(Γ− γ) (M −m)

×

[
1

4
+

1

(M −m)2

(
D2 (A;x) +

(
〈Ax, x〉 − m+M

2

)2
)]

≤ 1

4
(Γ− γ) (M −m) .

Proof. Follows by (4.36) applied for the 1
2

(Γ− γ)-Lipshitzian function f − Γ+γ
2
·

e. �
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5. Other Ostrowski Inequalities for Continuous Functions

5.1. Inequalities for Absolutely Continuous Functions of Selfadjoint Op-
erators. We start with the following scalar inequality that is of interest in itself
since it provides a generalization of the Ostrowski inequality when upper and
lower bounds for the derivative are provided:

Lemma 5.1 (Dragomir, 2010, [29]). Let f : [a, b] → R be an absolutely contin-
uous function whose derivative is bounded above and below on [a, b] , i.e., there
exists the real constants γ and Γ, γ < Γ with the property that γ ≤ f ′ (s) ≤ Γ
for almost every s ∈ [a, b] . Then we have the double inequality

− 1

2
· Γ− γ
b− a

[(
s− bΓ− aγ

Γ− γ

)2

− Γγ

(
b− a
Γ− γ

)2
]

(5.1)

≤ f (s)− 1

b− a

∫ b

a

f (t) dt

≤ 1

2
· Γ− γ
b− a

[(
s− aΓ− bγ

Γ− γ

)2

− Γγ

(
b− a
Γ− γ

)2
]

for any s ∈ [a, b] . The inequalities are sharp.

Proof. We start with Montgomery’s identity

f (s)− 1

b− a

∫ b

a

f (t) dt (5.2)

=
1

b− a

∫ s

a

(t− a) f ′ (t) dt+
1

b− a

∫ b

s

(t− b) f ′ (t) dt

that holds for any s ∈ [a, b] .
Since γ ≤ f ′ (t) ≤ Γ for almost every t ∈ [a, b] , then

γ

b− a

∫ s

a

(t− a) dt ≤ 1

b− a

∫ s

a

(t− a) f ′ (t) dt ≤ Γ

b− a

∫ s

a

(t− a) dt

and

Γ

b− a

∫ b

s

(b− t) dt ≤ 1

b− a

∫ b

s

(b− t) f ′ (t) dt ≤ Γ

b− a

∫ b

s

(b− t) dt

for any s ∈ [a, b] .
Now, due to the fact that∫ s

a

(t− a) dt =
1

2
(s− a)2 and

∫ b

s

(b− t) dt =
1

2
(b− s)2
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then by (5.2) we deduce the following inequality that is of interest in itself:

− 1

2 (b− a)

[
Γ (b− s)2 − γ (s− a)2] (5.3)

≤ f (s)− 1

b− a

∫ b

a

f (t) dt

≤ 1

2 (b− a)

[
Γ (s− a)2 − γ (b− s)2]

for any s ∈ [a, b] .
Further on, if we denote by

A := γ (s− a)2 − Γ (b− s)2 and B := Γ (s− a)2 − γ (b− s)2

then, after some elementary calculations, we derive that

A = − (Γ− γ)

(
s− bΓ− aγ

Γ− γ

)2

+
Γγ

Γ− γ
(b− a)2

and

B = (Γ− γ)

(
s− aΓ− bγ

Γ− γ

)2

− Γγ

Γ− γ
(b− a)2

which, together with (5.3), produces the desired result (5.1).
The sharpness of the inequalities follow from the sharpness of some particular

cases outlined below. The details are omitted. �

Corollary 5.2. With the assumptions of Lemma 5.1 we have the inequalities

1

2
γ (b− a) ≤ 1

b− a

∫ b

a

f (t) dt− f (a) ≤ 1

2
Γ (b− a) (5.4)

and
1

2
γ (b− a) ≤ f (b)− 1

b− a

∫ b

a

f (t) dt ≤ 1

2
Γ (b− a) (5.5)

and ∣∣∣∣f (a+ b

2

)
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤ 1

8
(Γ− γ) (b− a) (5.6)

respectively. The constant 1
8

is best possible in (5.6).

The proof is obvious from (5.1) on choosing s = a, s = b and s = a+b
2
, respec-

tively.

Corollary 5.3 (Dragomir, 2010, [29]). With the assumptions of Lemma 5.1 and
if, in addition γ = −α and Γ = β with α, β > 0 then

1

b− a

∫ b

a

f (t) dt− f
(
bβ + aα

β + α

)
≤ 1

2
· αβ

(
b− a
β + α

)
(5.7)

and

f

(
aβ + bα

β + α

)
− 1

b− a

∫ b

a

f (t) dt ≤ 1

2
· αβ

(
b− a
β + α

)
. (5.8)
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The proof follows from (5.1) on choosing s = bβ+aα
β+α

∈ [a, b] and s = aβ+bα
β+α

∈
[a, b] , respectively.

Remark 5.4. If f : [a, b]→ R is absolutely continuous and

‖f ′‖∞ := ess sup
t∈[a,b]

|f ′ (t)| <∞,

then by choosing γ = −‖f ′‖∞ and Γ = ‖f ′‖∞ in (5.1) we deduce the classical
Ostrowski’s inequality for absolutely continuous functions. The constant 1

4
in

Ostrowski’s inequality is best possible.

We are able now to state the following result providing upper and lower bounds
for absolutely convex functions of selfadjoint operators in Hilbert spaces whose
derivatives are bounded below and above:

Theorem 5.5 (Dragomir, 2010, [29]). Let A be a selfadjoint operator in the
Hilbert space H with the spectrum Sp (A) ⊆ [m,M ] for some real numbers m <
M. If f : [m,M ]→ R is an absolutely continuous function such that there exists
the real constants γ and Γ, γ < Γ with the property that γ ≤ f ′ (s) ≤ Γ for almost
every s ∈ [m,M ] , then we have the following double inequality in the operator
order of B (H) :

− 1

2
· Γ− γ
M −m

[(
A− MΓ−mγ

Γ− γ
· 1H

)2

− Γγ

(
M −m
Γ− γ

)2

· 1H

]
(5.9)

≤ f (A)−
(

1

M −m

∫ M

m

f (t) dt

)
· 1H

≤ 1

2
· Γ− γ
M −m

[(
A− mΓ−Mγ

Γ− γ
· 1H

)2

− Γγ

(
M −m
Γ− γ

)2

· 1H

]
.

The proof follows by the property (P) applied for the inequality (5.1) in Lemma
5.1.

Theorem 5.6 (Dragomir, 2010, [29]). With the assumptions in Theorem 5.5 we
have in the operator order the following inequalities∣∣∣∣f (A)−

(
1

M −m

∫ M

m

f (t) dt

)
· 1H

∣∣∣∣ (5.10)

≤



[
1
4
1H +

(
A−m+M

2
1H

M−m

)2
]

(M −m) ‖f ′‖∞ if f ′ ∈ L∞ [m,M ] ;

1

(p+1)
1
p

[(
A−m1H
M−m

)p+1
+
(
M1H−A
M−m

)p+1
]

(M −m)
1
q ‖f ′‖q

if f ′ ∈ Lp [m,M ] , 1
p

+ 1
q

= 1, p > 1;[
1
2
1H +

∣∣∣A−m+M
2

1H
M−m

∣∣∣] ‖f ′‖1 .

The proof is obvious by the scalar inequalities from Theorem 1.2 and the prop-
erty (P).
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The third inequality in (5.10) can be naturally generalized for functions of
bounded variation as follows:

Theorem 5.7 (Dragomir, 2010, [29]). Let A be a selfadjoint operator in the
Hilbert space H with the spectrum Sp (A) ⊆ [m,M ] for some real numbers m <
M. If f : [m,M ] → R is a continuous function of bounded variation on [m,M ] ,
then we have the inequality∣∣∣∣f (A)−

(
1

M −m

∫ M

m

f (t) dt

)
· 1H

∣∣∣∣ (5.11)

≤

[
1

2
1H +

∣∣∣∣∣A− m+M
2

1H

M −m

∣∣∣∣∣
]

M∨
m

(f)

where
M∨
m

(f) denotes the total variation of f on [m,M ] . The constant 1
2

is best

possible in (5.11).

Proof. Follows from the scalar inequality obtained by the author in [25], namely∣∣∣∣f (s)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤
[

1

2
+

∣∣∣∣∣s− a+b
2

b− a

∣∣∣∣∣
]

b∨
a

(f) (5.12)

for any s ∈ [a, b] , where f is a function of bounded variation on [a, b] . The
constant 1

2
is best possible in (5.12). �

5.2. Inequalities for Convex Functions of Selfadjoint Operators. The
case of convex functions is important for applications.

We need the following lemma.

Lemma 5.8 (Dragomir, 2010, [29]). Let f : [a, b]→ R be a differentiable convex
function such that the derivative f ′ is continuous on (a, b) and with the lateral
derivative finite and f ′− (b) 6= f ′+ (a). Then we have the following double inequality

− 1

2
·
f ′− (b)− f ′+ (a)

b− a
(5.13)

×

[(
s−

bf ′− (b)− af ′+ (a)

f ′− (b)− f ′+ (a)

)2

− f ′− (b) f ′+ (a)

(
b− a

f ′− (b)− f ′+ (a)

)2
]

≤ f (s)− 1

b− a

∫ b

a

f (t) dt ≤ f ′ (s)

(
s− a+ b

2

)
for any s ∈ [a, b] .

Proof. Since f is convex, then by the fact that f ′ is monotonic nondecreasing, we
have

f ′+ (a)

b− a

∫ s

a

(t− a) dt ≤ 1

b− a

∫ s

a

(t− a) f ′ (t) dt ≤ f ′ (s)

b− a

∫ s

a

(t− a) dt

and

f ′ (s)

b− a

∫ b

s

(b− t) dt ≤ 1

b− a

∫ b

s

(b− t) f ′ (t) dt ≤
f ′− (b)

b− a

∫ b

s

(b− t) dt
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for any s ∈ [a, b] , where f ′+ (a) and f ′− (b) are the lateral derivatives in a and b
respectively.

Utilising the Montgomery identity (5.2) we then have

f ′+ (a)

b− a

∫ s

a

(t− a) dt−
f ′− (b)

b− a

∫ b

s

(b− t) dt

≤ f (s)− 1

b− a

∫ b

a

f (t) dt

≤ f ′ (s)

b− a

∫ s

a

(t− a) dt− f ′ (s)

b− a

∫ b

s

(b− t) dt

which is equivalent with the following inequality that is of interest in itself

1

2 (b− a)

[
f ′+ (a) (s− a)2 − f ′− (b) (b− s)2] (5.14)

≤ f (s)− 1

b− a

∫ b

a

f (t) dt ≤ f ′ (s)

(
s− a+ b

2

)
for any s ∈ [a, b] .

A simple calculation reveals now that the left side of (5.14) coincides with the
same side of the desired inequality (5.13). �

We are able now to sate our result for convex functions of selfadjoint operators:

Theorem 5.9 (Dragomir, 2010, [29]). Let A be a selfadjoint operator in the
Hilbert space H with the spectrum Sp (A) ⊆ [m,M ] for some real numbers m <
M. If f : [m,M ]→ R is a differentiable convex function such that the derivative
f ′ is continuous on (m,M) and with the lateral derivative finite and f ′− (M) 6=
f ′+ (m) , then we have the double inequality in the operator order of B (H)

− 1

2
·
f ′− (M)− f ′+ (m)

M −m
(5.15)[

×
(
A−

Mf ′− (M)−mf ′+ (m)

f ′− (M)− f ′+ (m)
· 1H

)2

−f ′− (M) f ′+ (m)

(
M −m

f ′− (M)− f ′+ (m)

)2

· 1H

]

≤ f (A)−
(

1

M −m

∫ M

m

f (t) dt

)
· 1H ≤

(
A− m+M

2
· 1H

)
f ′ (A) .

The proof follows from the scalar case in Lemma 5.8.

Remark 5.10. We observe that one can drop the assumption of differentiability of
the convex function and will still have the first inequality in (5.15). This follows
from the fact that the class of differentiable convex functions is dense in the class
of all convex functions defined on a given interval.
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A different lower bound for the quantity

f (A)−
(

1

M −m

∫ M

m

f (t) dt

)
· 1H

expressed only in terms of the operator A and not its second power as above, also
holds:

Theorem 5.11 (Dragomir, 2010, [29]). Let A be a selfadjoint operator in the
Hilbert space H with the spectrum Sp (A) ⊆ [m,M ] for some real numbers m <
M. If f : [m,M ]→ R is a convex function on [m,M ] , then we have the following
inequality in the operator order of B (H)

f (A)−
(

1

M −m

∫ M

m

f (t) dt

)
· 1H (5.16)

≥
(

1

M −m

∫ M

m

f (t) dt

)
· 1H

− f (M) (M · 1H − A) + f (m) (A−m · 1H)

M −m
.

Proof. It suffices to prove for the case of differentiable convex functions defined
on (m,M) .

So, by the gradient inequality we have that

f (t)− f (s) ≥ (t− s) f ′ (s)
for any t, s ∈ (m,M) .

Now, if we integrate this inequality over s ∈ [m,M ] we get

(M −m) f (t)−
∫ M

m

f (s) ds (5.17)

≥
∫ M

m

(t− s) f ′ (s) ds

=

∫ M

m

f (s) ds− (M − t) f (M)− (t−m) f (m)

for each s ∈ [m,M ] .
Finally, if we apply to the inequality (5.17) the property (P), we deduce the

desired result (5.16). �

Corollary 5.12 (Dragomir, 2010, [29]). With the assumptions of Theorem 5.11
we have the following double inequality in the operator order

f (m) + f (M)

2
· 1H (5.18)

≥ 1

2

[
f (A) +

f (M) (M · 1H − A) + f (m) (A−m · 1H)

M −m

]
≥
(

1

M −m

∫ M

m

f (t) dt

)
· 1H .
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Proof. The second inequality is equivalent with (5.16).
For the first inequality, we observe, by the convexity of f we have that

f (M) (t−m) + f (m) (M − t)
M −m

≥ f (t)

for any t ∈ [m,M ] , which produces the operator inequality

f (M) (A−m · 1H) + f (m) (M · 1H − A)

M −m
≥ f (A) . (5.19)

Now, if in both sides of (5.19) we add the same quantity

f (M) (M · 1H − A) + f (m) (A−m · 1H)

M −m
and perform the calculations, then we obtain the first part of (5.18) and the proof
is complete. �

5.3. Some Vector Inequalities. The following result holds:

Theorem 5.13 (Dragomir, 2010, [29]). Let A be a selfadjoint operator in the
Hilbert space H with the spectrum Sp (A) ⊆ [m,M ] for some real numbers m < M
and let {Eλ}λ be its spectral family. If f : [m,M ]→ R is an absolutely continuous
function on [m,M ], then we have the inequalities

|f (s) 〈x, y〉 − 〈f (A)x, y〉| (5.20)

≤
M∨
m

(〈
E(·)x, y

〉)

×


[

1
2

(M −m) +
∣∣s− m+M

2

∣∣] ‖f ′‖∞ if f ′ ∈ L∞ [m,M ]

[
1
2

(M −m) +
∣∣s− m+M

2

∣∣]1/q ‖f ′‖p if f ′ ∈ Lp [m,M ] , p > 1,
1
p

+ 1
q

= 1,

≤ ‖x‖ ‖y‖

×


[

1
2

(M −m) +
∣∣s− m+M

2

∣∣] ‖f ′‖∞ if f ′ ∈ L∞ [m,M ]

[
1
2

(M −m) +
∣∣s− m+M

2

∣∣]1/q ‖f ′‖p if f ′ ∈ Lp [m,M ] , p > 1,
1
p

+ 1
q

= 1,

for any x, y ∈ H and s ∈ [m,M ] .

Proof. Since f is absolutely continuous, then we have

|f (s)− f (t)| (5.21)

=

∣∣∣∣∫ t

s

f ′ (u) du

∣∣∣∣ ≤ ∣∣∣∣∫ t

s

|f ′ (u)| du
∣∣∣∣

≤


|t− s| ‖f ′‖∞ if f ′ ∈ L∞ [m,M ]

|t− s|1/q ‖f ′‖p if f ′ ∈ Lp [m,M ] , p > 1, 1
p

+ 1
q

= 1,

for any s, t ∈ [m,M ] .
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It is well known that if p : [a, b]→ C is a continuous functions and v : [a, b]→ C
is of bounded variation, then the Riemann–Stieltjes integral

∫ b
a
p (t) dv (t) exists

and the following inequality holds

∣∣∣∣∫ b

a

p (t) dv (t)

∣∣∣∣ ≤ max
t∈[a,b]

|p (t)|
b∨
a

(v) ,

where
b∨
a

(v) denotes the total variation of v on [a, b] .

Now, by the above property of the Riemann–Stieltjes integral we have from
the representation (5.27) that

|f (s) 〈x, y〉 − 〈f (A)x, y〉| (5.22)

=

∣∣∣∣∫ M

m−0

[f (s)− f (t)] d (〈Etx, y〉)
∣∣∣∣

≤ max
t∈[m,M ]

|f (s)− f (t)|
M∨
m

(〈
E(·)x, y

〉)
≤

M∨
m

(〈
E(·)x, y

〉)

×


maxt∈[m,M ] |t− s| ‖f ′‖∞ if f ′ ∈ L∞ [m,M ]

maxt∈[m,M ] |t− s|1/q ‖f ′‖p
if f ′ ∈ Lp [m,M ] , p > 1,

1
p

+ 1
q

= 1,

:= F

where
M∨
m

(〈
E(·)x, y

〉)
denotes the total variation of

〈
E(·)x, y

〉
and x, y ∈ H.

Since, obviously, we have maxt∈[m,M ] |t− s| = 1
2

(M −m) +
∣∣s− m+M

2

∣∣ , then

F =
M∨
m

(〈
E(·)x, y

〉)
(5.23)

×


[

1
2

(M −m) +
∣∣s− m+M

2

∣∣] ‖f ′‖∞ if f ′ ∈ L∞ [m,M ]

[
1
2

(M −m) +
∣∣s− m+M

2

∣∣]1/q ‖f ′‖p if f ′ ∈ Lp [m,M ] , p > 1,
1
p

+ 1
q

= 1,

for any x, y ∈ H.
The last part follows by the Total Variation Schwarz’s inequality and the details

are omitted. �
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Corollary 5.14 (Dragomir, 2010, [29]). With the assumptions of Theorem 5.13
we have the following inequalities∣∣∣∣f (〈Ax, x〉‖x‖2

)
〈x, y〉 − 〈f (A)x, y〉

∣∣∣∣ (5.24)

≤ ‖x‖ ‖y‖

×


[

1
2

(M −m) +
∣∣∣ 〈Ax,x〉‖x‖2 −

m+M
2

∣∣∣] ‖f ′‖∞ if f ′ ∈ L∞ [m,M ]

[
1
2

(M −m) +
∣∣∣ 〈Ax,x〉‖x‖2 −

m+M
2

∣∣∣]1/q

‖f ′‖p
if f ′ ∈ Lp [m,M ] , p > 1,

1
p

+ 1
q

= 1,

and ∣∣∣∣f (m+M

2

)
〈x, y〉 − 〈f (A)x, y〉

∣∣∣∣ (5.25)

≤ ‖x‖ ‖y‖

×


1
2

(M −m) ‖f ′‖∞ if f ′ ∈ L∞ [m,M ]

1
21/q

(M −m)1/q ‖f ′‖p
if f ′ ∈ Lp [m,M ] , p > 1,

1
p

+ 1
q

= 1,

for any x, y ∈ H.

Remark 5.15. In particular, we obtain from (5.8) the following inequalities

|f (〈Ax, x〉)− 〈f (A)x, x〉| (5.26)

≤


[

1
2

(M −m) +
∣∣〈Ax, x〉 − m+M

2

∣∣] ‖f ′‖∞ if f ′ ∈ L∞ [m,M ]

[
1
2

(M −m) +
∣∣〈Ax, x〉 − m+M

2

∣∣]1/q ‖f ′‖p if f ′ ∈ Lp [m,M ] ,
p > 1, 1

p
+ 1

q
= 1,

and ∣∣∣∣f (m+M

2

)
− 〈f (A)x, x〉

∣∣∣∣ (5.27)

≤


1
2

(M −m) ‖f ′‖∞ if f ′ ∈ L∞ [m,M ]

1
21/q

(M −m)1/q ‖f ′‖p
if f ′ ∈ Lp [m,M ] , p > 1,

1
p

+ 1
q

= 1,

for any x ∈ H with ‖x‖ = 1.

Theorem 5.16 (Dragomir, 2010, [29]). Let A be a selfadjoint operator in the
Hilbert space H with the spectrum Sp (A) ⊆ [m,M ] for some real numbers m < M
and let {Eλ}λ be its spectral family. If f : [m,M ]→ R is r−H-Hölder continuous
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on [m,M ], then we have the inequality

|f (s) 〈x, y〉 − 〈f (A)x, y〉| (5.28)

≤ H

M∨
m

(〈
E(·)x, y

〉) [1

2
(M −m) +

∣∣∣∣s− m+M

2

∣∣∣∣]r
≤ H ‖x‖ ‖y‖

[
1

2
(M −m) +

∣∣∣∣s− m+M

2

∣∣∣∣]r
for any x, y ∈ H and s ∈ [m,M ] .

In particular, we have the inequalities∣∣∣∣f (〈Ax, x〉‖x‖2

)
〈x, y〉 − 〈f (A)x, y〉

∣∣∣∣ (5.29)

≤ H ‖x‖ ‖y‖
[

1

2
(M −m) +

∣∣∣∣〈Ax, x〉‖x‖2 −
m+M

2

∣∣∣∣]r
and ∣∣∣∣f (m+M

2

)
〈x, y〉 − 〈f (A)x, y〉

∣∣∣∣ ≤ 1

2r
H ‖x‖ ‖y‖ (M −m)r (5.30)

for any x, y ∈ H.

Proof. Utilising the inequality (5.22) and the fact that f is r−H-Hölder contin-
uous we have successively

|f (s) 〈x, y〉 − 〈f (A)x, y〉| (5.31)

=

∣∣∣∣∫ M

m−0

[f (s)− f (t)] d (〈Etx, y〉)
∣∣∣∣

≤ max
t∈[m,M ]

|f (s)− f (t)|
M∨
m

(〈
E(·)x, y

〉)
≤ H max

t∈[m,M ]
|s− t|r

M∨
m

(〈
E(·)x, y

〉)
= H

[
1

2
(M −m) +

∣∣∣∣s− m+M

2

∣∣∣∣]r M∨
m

(〈
E(·)x, y

〉)
for any x, y ∈ H and s ∈ [m,M ] .

The argument follows now as in the proof of Theorem 5.13 and the details are
omitted. �

6. More Ostrowski’s Type Inequalities

6.1. Some Vector Inequalities for Functions of Bounded Variation. The
following result holds:

Theorem 6.1 (Dragomir, 2010, [18]). Let A be a selfadjoint operator in the
Hilbert space H with the spectrum Sp (A) ⊆ [m,M ] for some real numbers m < M
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and let {Eλ}λ be its spectral family. If f : [m,M ] → R is a continuous function
of bounded variation on [m,M ], then we have the inequality

|f (s) 〈x, y〉 − 〈f (A)x, y〉| (6.1)

≤ 〈Esx, x〉1/2 〈Esy, y〉1/2
s∨
m

(f)

+ 〈(1H − Es)x, x〉1/2 〈(1H − Es) y, y〉1/2
M∨
s

(f)

≤ ‖x‖ ‖y‖

(
1

2

M∨
m

(f) +
1

2

∣∣∣∣∣
s∨
m

(f)−
M∨
s

(f)

∣∣∣∣∣
)(
≤ ‖x‖ ‖y‖

M∨
m

(f)

)

for any x, y ∈ H and for any s ∈ [m,M ] .

Proof. We use the following identity for the Riemann–Stieltjes integral established
by the author in 2000 in [12] (see also [34, p. 452]):

[u (b)− u (a)] f (s)−
∫ b

a

f (t) du (t) (6.2)

=

∫ s

a

[u (t)− u (a)] df (t) +

∫ b

s

[u (t)− u (b)] df (t) ,

for any s ∈ [a, b] , provided the Riemann–Stieltjes integral
∫ b
a
f (t) du (t) exists.

A simple proof can be done by utilizing the integration by parts formula and
starting from the right hand side of (6.2).

If we choose in (6.2) a = m, b = M and u (t) = 〈Etx, y〉 , then we have the
following identity of interest in itself

f (s) 〈x, y〉−〈f (A)x, y〉 =

∫ s

m−0

〈Etx, y〉 df (t)+

∫ M

s

〈(Et − 1H)x, y〉 df (t) (6.3)

for any x, y ∈ H and for any s ∈ [m,M ] .
It is well known that if p : [a, b]→ C is a continuous function and v : [a, b]→ C

is of bounded variation, then the Riemann–Stieltjes integral
∫ b
a
p (t) dv (t) exists

and the following inequality holds

∣∣∣∣∫ b

a

p (t) dv (t)

∣∣∣∣ ≤ max
t∈[a,b]

|p (t)|
b∨
a

(v)

where
b∨
a

(v) denotes the total variation of v on [a, b] .
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Utilising this property we have from (6.3) that

|f (s) 〈x, y〉 − 〈f (A)x, y〉| (6.4)

≤
∣∣∣∣∫ s

m−0

〈Etx, y〉 df (t)

∣∣∣∣+

∣∣∣∣∫ M

s

〈(Et − 1H)x, y〉 df (t)

∣∣∣∣
≤ max

t∈[m,s]
|〈Etx, y〉|

s∨
m

(f) + max
t∈[s,M ]

|〈(Et − 1H)x, y〉|
M∨
s

(f) := T

for any x, y ∈ H and for any s ∈ [m,M ] .
If P is a nonnegative operator on H, i.e., 〈Px, x〉 ≥ 0 for any x ∈ H, then the

following inequality is a generalization of the Schwarz inequality in H

|〈Px, y〉|2 ≤ 〈Px, x〉 〈Py, y〉 (6.5)

for any x, y ∈ H.
On applying the inequality (6.5) we have

|〈Etx, y〉| ≤ 〈Etx, x〉1/2 〈Ety, y〉1/2

and

|〈(1H − Et)x, y〉| ≤ 〈(1H − Et)x, x〉1/2 〈(1H − Et) y, y〉1/2

for any x, y ∈ H and t ∈ [m,M ] .
Therefore

T ≤ max
t∈[m,s]

[
〈Etx, x〉1/2 〈Ety, y〉1/2

] s∨
m

(f) (6.6)

+ max
t∈[s,M ]

[
〈(1H − Et)x, x〉1/2 〈(1H − Et) y, y〉1/2

] M∨
s

(f)

≤ max
t∈[m,s]

〈Etx, x〉1/2 max
t∈[m,s]

〈Ety, y〉1/2
s∨
m

(f)

+ max
t∈[s,M ]

〈(1H − Et)x, x〉1/2 max
t∈[s,M ]

〈(1H − Et) y, y〉1/2
M∨
s

(f)

= 〈Esx, x〉1/2 〈Esy, y〉1/2
s∨
m

(f)

+ 〈(1H − Es)x, x〉1/2 〈(1H − Es) y, y〉1/2
M∨
s

(f)

:= V

for any x, y ∈ H and for any s ∈ [m,M ] , proving the first inequality in (6.1).
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Now, observe that

V ≤ max

{
s∨
m

(f) ,
M∨
s

(f)

}
×
[
〈Esx, x〉1/2 〈Esy, y〉1/2 + 〈(1H − Es)x, x〉1/2 〈(1H − Es) y, y〉1/2

]
.

Since

max

{
s∨
m

(f) ,
M∨
s

(f)

}
=

1

2

M∨
m

(f) +
1

2

∣∣∣∣∣
s∨
m

(f)−
M∨
s

(f)

∣∣∣∣∣
and by the Cauchy-Buniakovski–Schwarz inequality for positive real numbers
a1, b1, a2, b2

a1b1 + a2b2 ≤
(
a2

1 + a2
2

)1/2 (
b2

1 + b2
2

)1/2
(6.7)

we have

〈Esx, x〉1/2 〈Esy, y〉1/2 + 〈(1H − Es)x, x〉1/2 〈(1H − Es) y, y〉1/2

≤ [〈Esx, x〉+ 〈(1H − Es)x, x〉]1/2 [〈Esy, y〉+ 〈(1H − Es) y, y〉]1/2

= ‖x‖ ‖y‖

for any x, y ∈ H and s ∈ [m,M ] , then the last part of (6.1) is proven as well. �

Remark 6.2. For the continuous function with bounded variation f : [m,M ]→ R
if p ∈ [m,M ] is a point with the property that

p∨
m

(f) =
M∨
p

(f)

then from (6.1) we get the interesting inequality

|f (p) 〈x, y〉 − 〈f (A)x, y〉| ≤ 1

2
‖x‖ ‖y‖

M∨
m

(f) (6.8)

for any x, y ∈ H.
If the continuous function f : [m,M ] → R is monotonic nondecreasing and

therefore of bounded variation, we get from (6.1) the following inequality as well

|f (s) 〈x, y〉 − 〈f (A)x, y〉| (6.9)

≤ 〈Esx, x〉1/2 〈Esy, y〉1/2 (f (s)− f (m))

+ 〈(1H − Es)x, x〉1/2 〈(1H − Es) y, y〉1/2 (f (M)− f (s))

≤ ‖x‖ ‖y‖
(

1

2
(f (M)− f (m)) +

∣∣∣∣f (s)− f (m) + f (M)

2

∣∣∣∣)
(≤ ‖x‖ ‖y‖ f (M)− f (m))

for any x, y ∈ H and s ∈ [m,M ] .
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Moreover, if the continuous function f : [m,M ] → R is nondecreasing on
[m,M ] , then the equation

f (s) =
f (m) + f (M)

2

has got at least a solution in [m,M ] . In his case we get from (6.9) the following
trapezoidal type inequality∣∣∣∣f (m) + f (M)

2
〈x, y〉 − 〈f (A)x, y〉

∣∣∣∣ ≤ 1

2
‖x‖ ‖y‖ (f (M)− f (m)) (6.10)

for any x, y ∈ H.

6.2. Some Vector Inequalities for Lipshitzian Functions. The following
result that incorporates the case of Lipschitzian functions also holds

Theorem 6.3 (Dragomir, 2010, [18]). Let A be a selfadjoint operator in the
Hilbert space H with the spectrum Sp (A) ⊆ [m,M ] for some real numbers m < M
and let {Eλ}λ be its spectral family. If f : [m,M ] → R is Lipschitzian with the
constant L > 0 on [m,M ], i.e.,

|f (s)− f (t)| ≤ L |s− t| for any s, t ∈ [m,M ] ,

then we have the inequality

|f (s) 〈x, y〉 − 〈f (A)x, y〉| (6.11)

≤ L

[(∫ s

m−0

〈Etx, x〉 dt
)1/2(∫ s

m−0

〈Ety, y〉 dt
)1/2

+

(∫ M

s

〈(1H − Et)x, x〉 dt
)1/2(∫ M

s

〈(1H − Et) y, y〉 dt
)1/2

]
≤ L 〈|A− s1H |x, x〉1/2 〈|A− s1H | y, y〉1/2

≤ L
[
D2 (A;x) +

(
s ‖x‖2 − 〈Ax, x〉

)2
]1/4

×
[
D2 (A; y) +

(
s ‖y‖2 − 〈Ay, y〉

)2
]1/4

for any x, y ∈ H and s ∈ [m,M ] , where D (A;x) is the variance of the selfadjoint
operator A in x and is defined by

D (A;x) :=
(
‖Ax‖2 ‖x‖2 − 〈Ax, x〉2

)1/2
.

Proof. It is well known that if p : [a, b]→ C is a Riemann integrable function and
v : [a, b]→ C is Lipschitzian with the constant L > 0, i.e.,

|f (s)− f (t)| ≤ L |s− t| for any t, s ∈ [a, b] ,

then the Riemann–Stieltjes integral
∫ b
a
p (t) dv (t) exists and the following inequal-

ity holds ∣∣∣∣∫ b

a

p (t) dv (t)

∣∣∣∣ ≤ L

∫ b

a

|p (t)| dt.
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Now, on applying this property of the Riemann–Stieltjes integral, we have from
the representation (6.3) that

|f (s) 〈x, y〉 − 〈f (A)x, y〉|

≤
∣∣∣∣∫ s

m−0

〈Etx, y〉 df (t)

∣∣∣∣+

∣∣∣∣∫ M

s

〈(Et − 1H)x, y〉 df (t)

∣∣∣∣
≤ L

[∫ s

m−0

|〈Etx, y〉| dt+

∫ M

s

|〈(Et − 1H)x, y〉| dt
]

:= LW

for any x, y ∈ H and s ∈ [m,M ] .
By utilizing the generalized Schwarz inequality for nonnegative operators (6.5)

and the Cauchy-Buniakovski–Schwarz inequality for the Riemann integral we
have

W ≤
∫ s

m−0

〈Etx, x〉1/2 〈Ety, y〉1/2 dt (6.12)

+

∫ M

s

〈(1H − Et)x, x〉1/2 〈(1H − Et) y, y〉1/2 dt

≤
(∫ s

m−0

〈Etx, x〉 dt
)1/2(∫ s

m−0

〈Ety, y〉 dt
)1/2

+

(∫ M

s

〈(1H − Et)x, x〉 dt
)1/2(∫ M

s

〈(1H − Et) y, y〉 dt
)1/2

:= Z

for any x, y ∈ H and s ∈ [m,M ] .
On the other hand, by making use of the elementary inequality (6.7) we also

have

Z ≤
(∫ s

m−0

〈Etx, x〉 dt+

∫ M

s

〈(1H − Et)x, x〉 dt
)1/2

(6.13)

×
(∫ s

m−0

〈Ety, y〉 dt+

∫ M

s

〈(1H − Et) y, y〉 dt
)1/2

for any x, y ∈ H and s ∈ [m,M ] .
Now, observe that, by the use of the representation (6.3) for the continuous

function f : [m,M ] → R, f (t) = |t− s| where s is fixed in [m,M ] we have the
following identity that is of interest in itself

〈|A− s · 1H |x, y〉 =

∫ s

m−0

〈Etx, y〉 dt+

∫ M

s

〈(1H − Et)x, y〉 dt (6.14)

for any x, y ∈ H.
On utilizing (6.14) for x and then for y we deduce the second part of (6.11).
Finally, by the well known inequality for the modulus of a bounded linear

operator

〈|T |x, x〉 ≤ ‖Tx‖ ‖x‖ , x ∈ H
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we have

〈|A− s · 1H |x, x〉1/2 ≤ ‖Ax− sx‖1/2 ‖x‖1/2

=
(
‖Ax‖2 − 2s 〈Ax, x〉+ s2 ‖x‖2)1/4 ‖x‖1/2

=
[
‖Ax‖2 ‖x‖2 − 〈Ax, x〉2 +

(
s ‖x‖2 − 〈Ax, x〉

)2
]1/4

=
[
D2 (A;x) +

(
s ‖x‖2 − 〈Ax, x〉

)2
]1/4

and a similar relation for y. The proof is thus complete. �

Remark 6.4. Since A is a selfadjoint operator in the Hilbert space H with the
spectrum Sp (A) ⊆ [m,M ] , then∣∣∣∣A− m+M

2
· 1H

∣∣∣∣ ≤ M −m
2

1H

giving from (6.11) that∣∣∣∣f (m+M

2

)
〈x, y〉 − 〈f (A)x, y〉

∣∣∣∣ (6.15)

≤ L

(∫ m+M
2

m−0

〈Etx, x〉 dt

)1/2(∫ m+M
2

m−0

〈Ety, y〉 dt

)1/2

+

(∫ M

m+M
2

〈(1H − Et)x, x〉 dt

)1/2(∫ M

m+M
2

〈(1H − Et) y, y〉 dt

)1/2


≤ L

〈∣∣∣∣A− m+M

2
· 1H

∣∣∣∣x, x〉1/2〈∣∣∣∣A− m+M

2
· 1H

∣∣∣∣ y, y〉1/2

≤ 1

2
L (M −m) ‖x‖ ‖y‖

for any x, y ∈ H.

The particular case of equal vectors is of interest:

Corollary 6.5 (Dragomir, 2010, [18]). Let A be a selfadjoint operator in the
Hilbert space H with the spectrum Sp (A) ⊆ [m,M ] for some real numbers m <
M . If f : [m,M ] → R is Lipschitzian with the constant L > 0 on [m,M ], then
we have the inequality∣∣f (s) ‖x‖2 − 〈f (A)x, x〉

∣∣ ≤ L 〈|A− s · 1H |x, x〉 (6.16)

≤ L
[
D2 (A;x) +

(
s ‖x‖2 − 〈Ax, x〉

)2
]1/2

for any x ∈ H and s ∈ [m,M ] .
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Remark 6.6. An important particular case that can be obtained from (6.16) is

the one when s = 〈Ax,x〉
‖x‖2 , x 6= 0, giving the inequality∣∣∣∣f (〈Ax, x〉‖x‖2

)
‖x‖2 − 〈f (A)x, x〉

∣∣∣∣ ≤ L

〈∣∣∣∣A− 〈Ax, x〉‖x‖2 · 1H
∣∣∣∣x, x〉 (6.17)

≤ LD (A;x) ≤ 1

2
L (M −m) ‖x‖2

for any x ∈ H, x 6= 0.

We are able now to provide the following corollary:

Corollary 6.7 (Dragomir, 2010, [18]). Let A be a selfadjoint operator in the
Hilbert space H with the spectrum Sp (A) ⊆ [m,M ] for some real numbers m < M
and let {Eλ}λ be its spectral family. If f : [m,M ]→ R is a (ϕ,Φ)−Lipschitzian
functions on [m,M ] with Φ > ϕ, then we have the inequality∣∣∣∣〈f (A)x, y〉 − Φ + ϕ

2
〈Ax, y〉+

Φ + ϕ

2
s 〈x, y〉 − f (s) 〈x, y〉

∣∣∣∣ (6.18)

≤ 1

2
(Φ− ϕ)

[(∫ s

m−0

〈Etx, x〉 dt
)1/2(∫ s

m−0

〈Ety, y〉 dt
)1/2

+

(∫ M

s

〈(1H − Et)x, x〉 dt
)1/2(∫ M

s

〈(1H − Et) y, y〉 dt
)1/2

]
≤ 1

2
(Φ− ϕ) 〈|A− s1H |x, x〉1/2 〈|A− s1H | y, y〉1/2

≤ 1

2
(Φ− ϕ)

[
D2 (A;x) +

(
s ‖x‖2 − 〈Ax, x〉

)2
]1/4

×
[
D2 (A; y) +

(
s ‖y‖2 − 〈Ay, y〉

)2
]1/4

for any x, y ∈ H.

Remark 6.8. Various particular cases can be stated by utilizing the inequality
(6.18), however the details are left to the interested reader.

7. Some Vector Inequalities for Monotonic Functions

The case of monotonic functions is of interest as well. The corresponding result
is incorporated in the following

Theorem 7.1 (Dragomir, 2010, [18]). Let A be a selfadjoint operator in the
Hilbert space H with the spectrum Sp (A) ⊆ [m,M ] for some real numbers m < M
and let {Eλ}λ be its spectral family. If f : [m,M ]→ R is a continuous monotonic
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nondecreasing function on [m,M ], then we have the inequality

|f (s) 〈x, y〉 − 〈f (A)x, y〉| (7.1)

≤
(∫ s

m−0

〈Etx, x〉 df (t)

)1/2(∫ s

m−0

〈Ety, y〉 df (t)

)1/2

+

(∫ M

s

〈(1H − Et)x, x〉 df (t)

)1/2(∫ M

s

〈(1H − Et) y, y〉 df (t)

)1/2

≤ 〈|f (A)− f (s) 1H |x, x〉1/2 〈|f (A)− f (s) 1H | y, y〉1/2

≤
[
D2 (f (A) ;x) +

(
f (s) ‖x‖2 − 〈f (A)x, x〉

)2
]1/4

×
[
D2 (f (A) ; y) +

(
f (s) ‖y‖2 − 〈f (A) y, y〉

)2
]1/4

for any x, y ∈ H and s ∈ [m,M ] , where, as above D (f (A) ;x) is the variance of
the selfadjoint operator f (A) in x.

Proof. From the theory of Riemann–Stieltjes integral is well known that if p :
[a, b]→ C is of bounded variation and v : [a, b]→ R is continuous and monotonic

nondecreasing, then the Riemann–Stieltjes integrals
∫ b
a
p (t) dv (t) and

∫ b
a
|p (t)| dv (t)

exist and ∣∣∣∣∫ b

a

p (t) dv (t)

∣∣∣∣ ≤ ∫ b

a

|p (t)| dv (t) .

On utilizing this property and the representation (6.3) we have successively

|f (s) 〈x, y〉 − 〈f (A)x, y〉| (7.2)

≤
∣∣∣∣∫ s

m−0

〈Etx, y〉 df (t)

∣∣∣∣+

∣∣∣∣∫ M

s

〈(Et − 1H)x, y〉 df (t)

∣∣∣∣
≤
∫ s

m−0

|〈Etx, y〉| df (t) +

∫ M

s

|〈(Et − 1H)x, y〉| df (t)

≤
∫ s

m−0

〈Etx, x〉1/2 〈Ety, y〉1/2 df (t)

+

∫ M

s

〈(1H − Et)x, x〉1/2 〈(1H − Et) y, y〉1/2 df (t)

:= Y,

for any x, y ∈ H and s ∈ [m,M ] .
We use now the following version of the Cauchy-Buniakovski–Schwarz inequal-

ity for the Riemann–Stieltjes integral with monotonic nondecreasing integrators(∫ b

a

p (t) q (t) dv (t)

)2

≤
∫ b

a

p2 (t) dv (t)

∫ b

a

q2 (t) dv (t)
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to get that ∫ s

m−0

〈Etx, x〉1/2 〈Ety, y〉1/2 df (t)

≤
(∫ s

m−0

〈Etx, x〉 df (t)

)1/2(∫ s

m−0

〈Ety, y〉 df (t)

)1/2

and ∫ M

s

〈(1H − Et)x, x〉1/2 〈(1H − Et) y, y〉1/2 df (t)

≤
(∫ M

s

〈(1H − Et)x, x〉 df (t)

)1/2(∫ M

s

〈(1H − Et) y, y〉 df (t)

)1/2

for any x, y ∈ H and s ∈ [m,M ] .
Therefore

Y ≤
(∫ s

m−0

〈Etx, x〉 df (t)

)1/2(∫ s

m−0

〈Ety, y〉 df (t)

)1/2

+

(∫ M

s

〈(1H − Et)x, x〉 df (t)

)1/2(∫ M

s

〈(1H − Et) y, y〉 df (t)

)1/2

≤
(∫ s

m−0

〈Etx, x〉 df (t) +

∫ M

s

〈(1H − Et)x, x〉 df (t)

)1/2

×
(∫ s

m−0

〈Ety, y〉 df (t) +

∫ M

s

〈(1H − Et) y, y〉 df (t)

)1/2

for any x, y ∈ H and s ∈ [m,M ] , where, to get the last inequality we have used
the elementary inequality (6.7).

Now, since f is monotonic nondecreasing, on applying the representation (6.3)
for the function |f (·)− f (s)| with s fixed in [m,M ] we deduce the following
identity that is of interest in itself as well:

〈|f (A)− f (s)|x, y〉 =

∫ s

m−0

〈Etx, y〉 df (t) +

∫ M

s

〈(1H − Et)x, y〉 df (t) (7.3)

for any x, y ∈ H.
The second part of (7.1) follows then by writing (7.3) for x then by y and

utilizing the relevant inequalities from above.
The last part is similar to the corresponding one from the proof of Theorem

6.3 and the details are omitted. �

The following corollary is of interest:
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Corollary 7.2 (Dragomir, 2010, [18]). With the assumption of Theorem 7.1 we
have the inequalities∣∣∣∣f (m) + f (M)

2
〈x, y〉 − 〈f (A)x, y〉

∣∣∣∣ (7.4)

≤
〈∣∣∣∣f (A)− f (m) + f (M)

2
· 1H

∣∣∣∣x, x〉1/2

×
〈∣∣∣∣f (A)− f (m) + f (M)

2
· 1H

∣∣∣∣ y, y〉1/2

≤ 1

2
(f (M)− f (m)) ‖x‖ ‖y‖ ,

for any x, y ∈ H.

Proof. Since f is monotonic nondecreasing, then f (u) ∈ [f (m) , f (M)] for any
u ∈ [m,M ] . By the continuity of f it follows that there exists at list one s ∈
[m,M ] such that

f (s) =
f (m) + f (M)

2
.

Now, on utilizing the inequality (7.1) for this s we deduce the first inequality in
(7.4). The second part follows as above and the details are omitted. �

8. Ostrowski’s Type Vector Inequalities

8.1. Some Vector Inequalities. The following result holds:

Theorem 8.1 (Dragomir, 2010, [28]). Let A be a selfadjoint operator in the
Hilbert space H with the spectrum Sp (A) ⊆ [m,M ] for some real numbers m < M
and let {Eλ}λ be its spectral family. If f : [m,M ] → C is a continuous function
of bounded variation on [m,M ], then we have the inequality∣∣∣∣〈x, y〉 1

M −m

∫ M

m

f (s) ds− 〈f (A)x, y〉
∣∣∣∣ (8.1)

≤ 1

M −m

M∨
m

(f) max
t∈[m,M ]

[
(M − t) 〈Etx, x〉1/2 〈Ety, y〉1/2

+ (t−m) 〈(1H − Et)x, x〉1/2 〈(1H − Et) y, y〉1/2
]

≤ ‖x‖ ‖y‖
M∨
m

(f)

for any x, y ∈ H.

Proof. Assume that f : [m,M ] → C is a continuous function on [m,M ] . Then
under the assumptions of the theorem for A and {Eλ}λ , we have the following
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representation

〈x, y〉 1

M −m

∫ M

m

f (s) ds− 〈f (A)x, y〉 (8.2)

=
1

M −m

∫ M

m−0

〈[(M − t)Et + (t−m) (Et − 1H)]x, y〉 df (t)

for any x, y ∈ H.
Indeed, integrating by parts in the Riemann–Stieltjes integral and using the

spectral representation theorem we have

1

M −m

∫ M

m−0

〈[(M − t)Et + (t−m) (Et − 1H)]x, y〉 df (t)

=

∫ M

m−0

(
〈Etx, y〉 −

t−m
M −m

〈x, y〉
)
df (t)

=

(
〈Etx, y〉 −

t−m
M −m

〈x, y〉
)
f (t)

∣∣∣∣M
m−0

−
∫ M

m−0

f (t) d

(
〈Etx, y〉 −

t−m
M −m

〈x, y〉
)

= −
∫ M

m−0

f (t) d 〈Etx, y〉+ 〈x, y〉 1

M −m

∫ M

m

f (t) dt

= 〈x, y〉 1

M −m

∫ M

m

f (t) dt− 〈f (A)x, y〉

for any x, y ∈ H and the equality (8.2) is proved.
It is well known that if p : [a, b]→ C is a continuous function and v : [a, b]→ C

is of bounded variation, then the Riemann–Stieltjes integral
∫ b
a
p (t) dv (t) exists

and the following inequality holds∣∣∣∣∫ b

a

p (t) dv (t)

∣∣∣∣ ≤ max
t∈[a,b]

|p (t)|
b∨
a

(v)

where
b∨
a

(v) denotes the total variation of v on [a, b] .

Utilising this property we have from (8.2) that∣∣∣∣〈x, y〉 1

M −m

∫ M

m

f (s) ds− 〈f (A)x, y〉
∣∣∣∣ (8.3)

≤ 1

M −m
max
t∈[m,M ]

|〈[(M − t)Et + (t−m) (Et − 1H)]x, y〉|
M∨
m

(f)

for any x, y ∈ H.
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Now observe that

|〈[(M − t)Et + (t−m) (Et − 1H)]x, y〉| (8.4)

= |(M − t) 〈Etx, y〉+ (t−m) 〈(Et − 1H)x, y〉|
≤ (M − t) |〈Etx, y〉|+ (t−m) |〈(Et − 1H)x, y〉|

for any x, y ∈ H and t ∈ [m,M ] .
If P is a nonnegative operator on H, i.e., 〈Px, x〉 ≥ 0 for any x ∈ H, then the

following inequality is a generalization of the Schwarz inequality in H

|〈Px, y〉|2 ≤ 〈Px, x〉 〈Py, y〉 (8.5)

for any x, y ∈ H.
On applying the inequality (8.5) we have

(M − t) |〈Etx, y〉|+ (t−m) |〈(Et − 1H)x, y〉| (8.6)

≤ (M − t) 〈Etx, x〉1/2 〈Ety, y〉1/2

+ (t−m) 〈(1H − Et)x, x〉1/2 〈(1H − Et) y, y〉1/2

≤ max {M − t, t−m}

×
[
〈Etx, x〉1/2 〈Ety, y〉1/2 + 〈(1H − Et)x, x〉1/2 〈(1H − Et) y, y〉1/2

]
≤ max {M − t, t−m}

× [〈Esx, x〉+ 〈(1H − Es)x, x〉]1/2 [〈Esy, y〉+ 〈(1H − Es) y, y〉]1/2

= max {M − t, t−m} ‖x‖ ‖y‖ ,
where for the last inequality we used the elementary fact

a1b1 + a2b2 ≤
(
a2

1 + a2
2

)1/2 (
b2

1 + b2
2

)1/2
(8.7)

that holds for a1, b1, a2, b2 positive real numbers.
Utilising the inequalities (8.3), (8.4) and (8.6) we deduce the desired result

(8.1). �

The case of Lipschitzian functions is embodied in the following result:

Theorem 8.2 (Dragomir, 2010, [28]). Let A be a selfadjoint operator in the
Hilbert space H with the spectrum Sp (A) ⊆ [m,M ] for some real numbers m < M
and let {Eλ}λ be its spectral family. If f : [m,M ]→ C is a Lipschitzian function
with the constant L > 0 on [m,M ], then we have the inequality∣∣∣∣〈x, y〉 1

M −m

∫ M

m

f (s) ds− 〈f (A)x, y〉
∣∣∣∣ (8.8)

≤ L

M −m

∫ M

m

[
(M − t) 〈Etx, x〉1/2 〈Ety, y〉1/2

+ (t−m) 〈(1H − Et)x, x〉1/2 〈(1H − Et) y, y〉1/2
]
dt

≤ 3

4
L (M −m) ‖x‖ ‖y‖

for any x, y ∈ H.
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Proof. It is well known that if p : [a, b]→ C is a Riemann integrable function and
v : [a, b]→ C is Lipschitzian with the constant L > 0, i.e.,

|f (s)− f (t)| ≤ L |s− t| for any t, s ∈ [a, b] ,

then the Riemann–Stieltjes integral
∫ b
a
p (t) dv (t) exists and the following inequal-

ity holds ∣∣∣∣∫ b

a

p (t) dv (t)

∣∣∣∣ ≤ L

∫ b

a

|p (t)| dt.

Now, on applying this property of the Riemann–Stieltjes integral, we have from
the representation (8.2) that∣∣∣∣〈x, y〉 1

M −m

∫ M

m

f (s) ds− 〈f (A)x, y〉
∣∣∣∣ (8.9)

≤ L

M −m

∫ M

m−0

|〈[(M − t)Et + (t−m) (Et − 1H)]x, y〉| dt.

Since, from the proof of Theorem 8.1, we have

|〈[(M − t)Et + (t−m) (Et − 1H)]x, y〉| (8.10)

≤ (M − t) 〈Etx, x〉1/2 〈Ety, y〉1/2

+ (t−m) 〈(1H − Et)x, x〉1/2 〈(1H − Et) y, y〉1/2

≤ max {M − t, t−m} ‖x‖ ‖y‖

=

[
1

2
(M −m) +

∣∣∣∣t− m+M

2

∣∣∣∣] ‖x‖ ‖y‖
for any x, y ∈ H and t ∈ [m,M ] , then integrating (8.10) and taking into account
that ∫ M

m

∣∣∣∣t− m+M

2

∣∣∣∣ dt =
1

4
(M −m)2

we deduce the desired result (8.8). �

Finally for the section, we provide here the case of monotonic nondecreasing
functions as well:

Theorem 8.3 (Dragomir, 2010, [28]). Let A be a selfadjoint operator in the
Hilbert space H with the spectrum Sp (A) ⊆ [m,M ] for some real numbers m < M
and let {Eλ}λ be its spectral family. If f : [m,M ]→ R is a continuous monotonic
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nondecreasing function on [m,M ], then we have the inequality

∣∣∣∣〈x, y〉 1

M −m

∫ M

m

f (s) ds− 〈f (A)x, y〉
∣∣∣∣ (8.11)

≤ 1

M −m

∫ M

m

[
(M − t) 〈Etx, x〉1/2 〈Ety, y〉1/2

+ (t−m) 〈(1H − Et)x, x〉1/2 〈(1H − Et) y, y〉1/2
]
df (t)

≤
[
f (M)− f (m)− 1

M −m

∫ M

m

sgn

(
t− m+M

2

)
f (t) dt

]
‖x‖ ‖y‖

≤ [f (M)− f (m)] ‖x‖ ‖y‖

for any x, y ∈ H.

Proof. From the theory of Riemann–Stieltjes integral is well known that if p :
[a, b]→ C is of bounded variation and v : [a, b]→ R is continuous and monotonic

nondecreasing, then the Riemann–Stieltjes integrals
∫ b
a
p (t) dv (t) and

∫ b
a
|p (t)| dv (t)

exist and ∣∣∣∣∫ b

a

p (t) dv (t)

∣∣∣∣ ≤ ∫ b

a

|p (t)| dv (t) .

Now, on applying this property of the Riemann–Stieltjes integral, we have from
the representation (8.2) that

∣∣∣∣〈x, y〉 1

M −m

∫ M

m

f (s) ds− 〈f (A)x, y〉
∣∣∣∣ (8.12)

≤ 1

M −m

∫ M

m−0

|〈[(M − t)Et + (t−m) (Et − 1H)]x, y〉| df (t) .

Further on, by utilizing the inequality (8.10) we also have that

∫ M

m−0

|〈[(M − t)Et + (t−m) (Et − 1H)]x, y〉| df (t) (8.13)

≤
∫ M

m

[
(M − t) 〈Etx, x〉1/2 〈Ety, y〉1/2

+ (t−m) 〈(1H − Et)x, x〉1/2 〈(1H − Et) y, y〉1/2
]
df (t)

≤
[

1

2
(M −m) [f (M)− f (m)] +

∫ M

m

∣∣∣∣t− m+M

2

∣∣∣∣ df (t)

]
‖x‖ ‖y‖ .
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Now, integrating by parts in the Riemann–Stieltjes integral we have∫ M

m

∣∣∣∣t− m+M

2

∣∣∣∣ df (t)

=

∫ M+m
2

m

(
m+M

2
− t
)
df (t) +

∫ M

m+M
2

(
t− m+M

2

)
df (t)

=

(
m+M

2
− t
)
f (t)

∣∣∣∣M+m
2

m

+

∫ M+m
2

m

f (t) dt

+

(
t− m+M

2

)
f (t)

∣∣∣∣M
m+M

2

−
∫ M

m+M
2

f (t) dt

=
1

2
(M −m) [f (M)− f (m)]−

∫ M

m

sgn

(
t− m+M

2

)
f (t) dt,

which together with (8.13) produces the second inequality in (8.11).
Since the functions sgn

(
· − m+M

2

)
and f (·) have the same monotonicity, then

by the Čebyšev inequality we have∫ M

m

sgn

(
t− m+M

2

)
f (t) dt

≥ 1

M −m

∫ M

m

sgn

(
t− m+M

2

)
dt

∫ M

m

f (t) dt = 0

and the last part of (8.11) is proved. �

9. Bounds for the Difference Between Functions and Integral
Means

9.1. Vector Inequalities Via Ostrowski’s Type Bounds. The following re-
sult holds:

Theorem 9.1 (Dragomir, 2010, [24]). Let A be a selfadjoint operator in the
Hilbert space H with the spectrum Sp (A) ⊆ [m,M ] for some real numbers m < M
and let {Eλ}λ be its spectral family. If f : [m,M ] → R is a continuous function
on [m,M ], then we have the inequality∣∣∣∣〈f (A)x, y〉 − 〈x, y〉 1

M −m

∫ M

m

f (s) ds

∣∣∣∣ (9.1)

≤ max
t∈[m,M ]

∣∣∣∣f (t)− 1

M −m

∫ M

m

f (s) ds

∣∣∣∣ M∨
m

(〈
E(·)x, y

〉)
≤ max

t∈[m,M ]

∣∣∣∣f (t)− 1

M −m

∫ M

m

f (s) ds

∣∣∣∣ ‖x‖ ‖y‖
for any x, y ∈ H.
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Proof. Utilising the spectral representation theorem we have the following equal-
ity of interest

〈f (A)x, y〉 − 〈x, y〉 1

M −m

∫ M

m

f (s) ds (9.2)

=

∫ M

m−0

[
f (t)− 1

M −m

∫ M

m

f (s) ds

]
d (〈Etx, y〉)

for any x, y ∈ H.
It is well known that if p : [a, b]→ C is a continuous function and v : [a, b]→ C

is of bounded variation, then the Riemann–Stieltjes integral
∫ b
a
p (t) dv (t) exists

and the following inequality holds∣∣∣∣∫ b

a

p (t) dv (t)

∣∣∣∣ ≤ max
t∈[a,b]

|p (t)|
b∨
a

(v) , (9.3)

where
b∨
a

(v) denotes the total variation of v on [a, b] .

Utilising these two facts we get the first part of (9.1).
The last part follows by the Total Variation Schwarz’s inequality and we omit

the details. �

For particular classes of continuous functions f : [m,M ] → C we are able to
provide simpler bounds as incorporated in the following corollary:

Corollary 9.2 (Dragomir, 2010, [24]). Let A be a selfadjoint operator in the
Hilbert space H with the spectrum Sp (A) ⊆ [m,M ] for some real numbers m <
M, {Eλ}λ be its spectral family and f : [m,M ] → C a continuous function on
[m,M ] .

1. If f is of bounded variation on [m,M ] , then∣∣∣∣〈f (A)x, y〉 − 〈x, y〉 1

M −m

∫ M

m

f (s) ds

∣∣∣∣ (9.4)

≤
M∨
m

(f)
M∨
m

(〈
E(·)x, y

〉)
≤ ‖x‖ ‖y‖

M∨
m

(f)

for any x, y ∈ H.
2. If f : [m,M ] −→ C is of r−H−Hölder type, i.e., for a given r ∈ (0, 1] and

H > 0 we have

|f (s)− f (t)| ≤ H |s− t|r for any s, t ∈ [m,M ] , (9.5)

then we have the inequality:∣∣∣∣〈f (A)x, y〉 − 〈x, y〉 1

M −m

∫ M

m

f (s) ds

∣∣∣∣ (9.6)

≤ 1

r + 1
H (M −m)r

M∨
m

(〈
E(·)x, y

〉)
≤ 1

r + 1
H (M −m)r ‖x‖ ‖y‖

for any x, y ∈ H.
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In particular, if f : [m,M ] −→ C is Lipschitzian with the constant L > 0, then∣∣∣∣〈f (A)x, y〉 − 〈x, y〉 1

M −m

∫ M

m

f (s) ds

∣∣∣∣ (9.7)

≤ 1

2
L (M −m)

M∨
m

(〈
E(·)x, y

〉)
≤ 1

2
L (M −m) ‖x‖ ‖y‖

for any x, y ∈ H.
3. If f : [m,M ] −→ C is absolutely continuous, then∣∣∣∣〈f (A)x, y〉 − 〈x, y〉 1

M −m

∫ M

m

f (s) ds

∣∣∣∣ (9.8)

≤
M∨
m

(〈
E(·)x, y

〉)

×



1
2

(M −m) ‖f ′‖∞ if f ′ ∈ L∞ [m,M ]

1

(q+1)1/q
(M −m)1/q ‖f ′‖p

if f ′ ∈ Lp [m,M ]
p > 1, 1/p+ 1/q = 1;

‖f ′‖1

≤ ‖x‖ ‖y‖

×



1
2

(M −m) ‖f ′‖∞ if f ′ ∈ L∞ [m,M ]

1

(q+1)1/q
(M −m)1/q ‖f ′‖p

if f ′ ∈ Lp [m,M ]
p > 1, 1/p+ 1/q = 1;

‖f ′‖1

for any x, y ∈ H, where ‖f ′‖p are the Lebesgue norms, i.e., we recall that

‖f ′‖p :=


ess sups∈[m,M ] |f ′ (s)| if p =∞;(∫M

m
|f (s)|p ds

)1/p

if p ≥ 1.

Proof. We use the Ostrowski type inequalities in order to provide upper bounds
for the quantity

max
t∈[m,M ]

∣∣∣∣f (t)− 1

M −m

∫ M

m

f (s) ds

∣∣∣∣
where f : [m,M ] −→ C is a continuous function.

The following result may be stated (see [25]) for functions of bounded variation:
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Lemma 9.3. Assume that f : [m,M ] → C is of bounded variation and denote

by
M∨
m

(f) its total variation. Then

∣∣∣∣f (t)− 1

M −m

∫ M

m

f (s) ds

∣∣∣∣ ≤
[

1

2
+

∣∣∣∣∣t− m+M
2

M −m

∣∣∣∣∣
]

M∨
m

(f) (9.9)

for all t ∈ [m,M ]. The constant 1
2

is the best possible.

Now, taking the maximum over x ∈ [m,M ] in (9.9) we deduce (9.4).
If f is Hölder continuous, then one may state the result:

Lemma 9.4. Let f : [m,M ]→ C be of r−H−Hölder type, where r ∈ (0, 1] and
H > 0 are fixed, then, for all x ∈ [m,M ] , we have the inequality:∣∣∣∣f (t)− 1

M −m

∫ M

m

f (s) ds

∣∣∣∣ (9.10)

≤ H

r + 1

[(
M − t
M −m

)r+1

+

(
t−m
M −m

)r+1
]

(M −m)r .

The constant 1
r+1

is also sharp in the above sense.

Note that if r = 1, i.e., f is Lipschitz continuous, then we get the following
version of Ostrowski’s inequality for Lipschitzian functions (with L instead of H)
(see for instance [19])∣∣∣∣f (t)− 1

M −m

∫ M

m

f (s) ds

∣∣∣∣ ≤
1

4
+

(
t− m+M

2

M −m

)2
 (M −m)L, (9.11)

for any x ∈ [m,M ] . Here the constant 1
4

is also best.
Taking the maximum over x ∈ [m,M ] in (9.10) we deduce (9.6) and the second

part of the corollary is proved.
The following Ostrowski type result for absolutely continuous functions holds.

Lemma 9.5. Let f : [a, b] → R be absolutely continuous on [a, b]. Then, for all
t ∈ [a, b], we have:∣∣∣∣f (t)− 1

M −m

∫ M

m

f (s) ds

∣∣∣∣

≤



[
1
4

+
(
t−m+M

2

M−m

)2
]

(M −m) ‖f ′‖∞ if f ′ ∈ L∞ [m,M ] ;

1

(q+1)
1
q

[(
t−m
M−m

)q+1
+
(
M−t
M−m

)q+1
] 1

q
(M −m)

1
q ‖f ′‖p if f ′ ∈ Lp [m,M ] ,

1
p

+ 1
q

= 1, p > 1;[
1
2

+
∣∣∣ t−m+M

2

M−m

∣∣∣] ‖f ′‖1 .

(9.12)
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The constants 1
4
, 1

(p+1)
1
p

and 1
2

respectively are sharp in the sense presented above.

The above inequalities can also be obtained from the Fink result in [40] on
choosing n = 1 and performing some appropriate computations.

Taking the maximum in these inequalities we deduce (9.8). �

For other scalar Ostrowski’s type inequalities, see [1] and [20].

9.2. Other Vector Inequalities. In [38], the authors have considered the fol-
lowing functional

D (f ;u) :=

∫ b

a

f (s) du (s)− [u (b)− u (a)] · 1

b− a

∫ b

a

f (t) dt, (9.13)

provided that the Stieltjes integral
∫ b
a
f (s) du (s) exists.

This functional plays an important role in approximating the Stieltjes inte-

gral
∫ b
a
f (s) du (s) in terms of the Riemann integral

∫ b
a
f (t) dt and the divided

difference of the integrator u.
In [38], the following result in estimating the above functional D (f ;u) has been

obtained:

|D (f ;u)| ≤ 1

2
L (M −m) (b− a) , (9.14)

provided u is L−Lipschitzian and f is Riemann integrable and with the property
that there exists the constants m,M ∈ R such that

m ≤ f (t) ≤M for any t ∈ [a, b] . (9.15)

The constant 1
2

is best possible in (9.14) in the sense that it cannot be replaced
by a smaller quantity.

If one assumes that u is of bounded variation and f is K−Lipschitzian, then
D (f, u) satisfies the inequality [39]

|D (f ;u)| ≤ 1

2
K (b− a)

b∨
a

(u) . (9.16)

Here the constant 1
2

is also best possible.
Now, for the function u : [a, b]→ C, consider the following auxiliary mappings

Φ,Γ and ∆ [21]:

Φ (t) :=
(t− a)u (b) + (b− t)u (a)

b− a
− u (t) , t ∈ [a, b] ,

Γ (t) := (t− a) [u (b)− u (t)]− (b− t) [u (t)− u (a)] , t ∈ [a, b] ,

∆ (t) := [u; b, t]− [u; t, a] , t ∈ (a, b) ,

where [u;α, β] is the divided difference of u in α, β, i.e.,

[u;α, β] :=
u (α)− u (β)

α− β
.

The following representation of D (f, u) may be stated, see [21] and [22]. Due
to its importance in proving our new results we present here a short proof as well.
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Lemma 9.6. Let f, u : [a, b]→ C be such that the Stieltjes integral
∫ b
a
f (t) du (t)

and the Riemann integral
∫ b
a
f (t) dt exist. Then

D (f, u) =

∫ b

a

Φ (t) df (t) =
1

b− a

∫ b

a

Γ (t) df (t) (9.17)

=
1

b− a

∫ b

a

(t− a) (b− t) ∆ (t) df (t) .

Proof. Since
∫ b
a
f (t) du (t) exists, hence

∫ b
a

Φ (t) df (t) also exists, and the integra-
tion by parts formula for Riemann–Stieltjes integrals gives that∫ b

a

Φ (t) df (t) =

∫ b

a

[
(t− a)u (b) + (b− t)u (a)

b− a
− u (t)

]
df (t)

=

[
(t− a)u (b) + (b− t)u (a)

b− a
− u (t)

]
f (t)

∣∣∣∣b
a

−
∫ b

a

f (t) d

[
(t− a)u (b) + (b− t)u (a)

b− a
− u (t)

]
= −

∫ b

a

f (t)

[
u (b)− u (a)

b− a
dt− du (t)

]
= D (f, u) ,

proving the required identity. �

For recent inequalities related to D (f ;u) for various pairs of functions (f, u) ,
see [23].

The following representation for a continuous function of selfadjoint operator
may be stated:

Lemma 9.7 (Dragomir, 2010, [24]). Let A be a selfadjoint operator in the Hilbert
space H with the spectrum Sp (A) ⊆ [m,M ] for some real numbers m < M,
{Eλ}λ be its spectral family and f : [m,M ]→ C a continuous function on [m,M ] .
If x, y ∈ H, then we have the representation

〈f (A)x, y〉 = 〈x, y〉 1

M −m

∫ M

m

f (s) ds (9.18)

+
1

M −m

∫ M

m−0

〈[(t−m) (1H − Et)− (M − t)Et]x, y〉 df (t) .

Proof. Utilising Lemma 9.6 we have∫ M

m

f (t) du (t) = [u (M)− u (m)] · 1

M −m

∫ M

m

f (s) ds (9.19)

+

∫ M

m

[
(t−m)u (M) + (M − t)u (m)

M −m
− u (t)

]
df (t) ,

for any continuous function f : [m,M ] → C and any function of bounded varia-
tion u : [m,M ]→ C.
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Now, if we write the equality (9.19) for u (t) = 〈Etx, y〉 with x, y ∈ H, then we
get

∫ M

m−0

f (t) d 〈Etx, y〉 = 〈x, y〉 · 1

M −m

∫ M

m

f (s) ds (9.20)

+

∫ M

m−0

[
(t−m) 〈x, y〉
M −m

− 〈Etx, y〉
]
df (t) ,

which, by the spectral representation theorem, produces the desired result (9.18).
�

The following result may be stated:

Theorem 9.8 (Dragomir, 2010, [24]). Let A be a selfadjoint operator in the
Hilbert space H with the spectrum Sp (A) ⊆ [m,M ] for some real numbers m < M
{Eλ}λ be its spectral family and f : [m,M ]→ C a continuous function on [m,M ] .

1. If f is of bounded variation, then

∣∣∣∣〈f (A)x, y〉 − 〈x, y〉 1

M −m

∫ M

m

f (s) ds

∣∣∣∣ (9.21)

≤ ‖y‖
M∨
m

(f)

× max
t∈[m,M ]

[(
t−m
M −m

)2

‖(1H − Et)x‖2 +

(
M − t
M −m

)2

‖Etx‖2

]1/2

≤ ‖x‖ ‖y‖
M∨
m

(f)

for any x, y ∈ H.
2. If f is Lipschitzian with the constant L > 0, then

∣∣∣∣〈f (A)x, y〉 − 〈x, y〉 1

M −m

∫ M

m

f (s) ds

∣∣∣∣ (9.22)

≤ L ‖y‖
M −m

∫ M

m−0

[
(t−m)2 ‖(1H − Et)x‖2 + (M − t)2 ‖Etx‖2]1/2 dt

≤ 1

2

[
1 +

√
2

2
ln
(√

2 + 1
)]

(M −m)L ‖y‖ ‖x‖

for any x, y ∈ H.
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3. If f : [m,M ]→ R is monotonic nondecreasing, then∣∣∣∣〈f (A)x, y〉 − 〈x, y〉 1

M −m

∫ M

m

f (s) ds

∣∣∣∣ (9.23)

≤ ‖y‖
M −m

∫ M

m−0

[
(t−m)2 ‖(1H − Et)x‖2 + (M − t)2 ‖Etx‖2]1/2 df (t)

≤ ‖y‖ ‖x‖
∫ M

m

[(
t−m
M −m

)2

+

(
M − t
M −m

)2
]1/2

df (t)

≤ ‖y‖ ‖x‖ [f (M)− f (m)]1/2

×
[
f (M)− f (m)− 4

M −m

∫ M

m

(
t− m+M

2

)
f (t) dt

]1/2

≤ ‖y‖ ‖x‖ [f (M)− f (m)]

for any x, y ∈ H.

Proof. If we assume that f is of bounded variation, then on applying the property
(9.3) to the representation (9.18) we get∣∣∣∣〈f (A)x, y〉 − 〈x, y〉 1

M −m

∫ M

m

f (s) ds

∣∣∣∣ (9.24)

≤ 1

M −m
max
t∈[m,M ]

|〈[(t−m) (1H − Et)− (M − t)Et]x, y〉|
M∨
m

(f) .

Now, on utilizing the Schwarz inequality and the fact that Et is a projector for
any t ∈ [m,M ] , then we have

|〈[(t−m) (1H − Et)− (M − t)Et]x, y〉| (9.25)

≤ ‖[(t−m) (1H − Et)− (M − t)Et]x‖ ‖y‖

=
[
(t−m)2 ‖(1H − Et)x‖2 + (M − t)2 ‖Etx‖2]1/2 ‖y‖

≤
[
(t−m)2 + (M − t)2]1/2 ‖x‖ ‖y‖

for any x, y ∈ H and for any t ∈ [m,M ] .
Taking the maximum in (9.25) we deduce the desired inequality (9.21).
It is well known that if p : [a, b] → C is a Riemann integrable function and

v : [a, b]→ C is Lipschitzian with the constant L > 0, i.e.,

|f (s)− f (t)| ≤ L |s− t| for any t, s ∈ [a, b] ,

then the Riemann–Stieltjes integral
∫ b
a
p (t) dv (t) exists and the following inequal-

ity holds ∣∣∣∣∫ b

a

p (t) dv (t)

∣∣∣∣ ≤ L

∫ b

a

|p (t)| dt.
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Now, on applying this property of the Riemann–Stieltjes integral to the repre-
sentation (9.18), we get∣∣∣∣〈f (A)x, y〉 − 〈x, y〉 1

M −m

∫ M

m

f (s) ds

∣∣∣∣ (9.26)

≤ L

M −m

∫ M

m−0

|〈[(t−m) (1H − Et)− (M − t)Et]x, y〉| dt

≤ L ‖y‖
M −m

∫ M

m−0

[
(t−m)2 ‖(1H − Et)x‖2 + (M − t)2 ‖Etx‖2]1/2 dt

≤ L ‖y‖ ‖x‖
∫ M

m

[(
t−m
M −m

)2

+

(
M − t
M −m

)2
]1/2

dt,

for any x, y ∈ H.
Now, if we change the variable in the integral by choosing u = t−m

M−m then we
get ∫ M

m

[(
t−m
M −m

)2

+

(
M − t
M −m

)2
]1/2

dt

= (M −m)

∫ 1

0

[
u2 + (1− u)2]1/2 du

=
1

2
(M −m)

[
1 +

√
2

2
ln
(√

2 + 1
)]

,

which together with (9.26) produces the desired result (9.22).
From the theory of Riemann–Stieltjes integral is well known that if p : [a, b]→

C is of bounded variation and v : [a, b] → R is continuous and monotonic non-

decreasing, then the Riemann–Stieltjes integrals
∫ b
a
p (t) dv (t) and

∫ b
a
|p (t)| dv (t)

exist and ∣∣∣∣∫ b

a

p (t) dv (t)

∣∣∣∣ ≤ ∫ b

a

|p (t)| dv (t) .

Now, on applying this property of the Riemann–Stieltjes integral, we have from
the representation (9.18)∣∣∣∣〈f (A)x, y〉 − 〈x, y〉 1

M −m

∫ M

m

f (s) ds

∣∣∣∣ (9.27)

≤ 1

M −m

∫ M

m−0

|〈[(t−m) (1H − Et)− (M − t)Et]x, y〉| df (t)

≤ ‖y‖
M −m

∫ M

m−0

[
(t−m)2 ‖(1H − Et)x‖2 + (M − t)2 ‖Etx‖2]1/2 df (t)

≤ ‖y‖ ‖x‖
∫ M

m

[(
t−m
M −m

)2

+

(
M − t
M −m

)2
]1/2

df (t) ,
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for any x, y ∈ H and the proof of the first and second inequality in (9.23) is
completed.

For the last part we use the following Cauchy-Buniakowski–Schwarz integral
inequality for the Riemann–Stieltjes integral with monotonic nondecreasing inte-
grator v∣∣∣∣∫ b

a

p (t) q (t) dv (t)

∣∣∣∣ ≤ [∫ b

a

|p (t)|2 dv (t)

]1/2 [∫ b

a

|q (t)|2 dv (t)

]1/2

where p, q : [a, b]→ C are continuous on [a, b] .
By applying this inequality we conclude that

∫ M

m

[(
t−m
M −m

)2

+

(
M − t
M −m

)2
]1/2

df (t) (9.28)

≤
[∫ M

m

df (t)

]1/2
[∫ M

m

[(
t−m
M −m

)2

+

(
M − t
M −m

)2
]
df (t)

]1/2

.

Further, integrating by parts in the Riemann–Stieltjes integral we also have that∫ M

m

[(
t−m
M −m

)2

+

(
M − t
M −m

)2
]
df (t) (9.29)

= f (M)− f (m)− 4

M −m

∫ M

m

(
t− m+M

2

)
f (t) dt

≤ f (M)− f (m)

where for the last part we used the fact that by the Čebyšev integral inequality
for monotonic functions with the same monotonicity we have that∫ M

m

(
t− m+M

2

)
f (t) dt

≥ 1

M −m

∫ M

m

(
t− m+M

2

)
dt

∫ M

m

f (t) dt = 0.

�

10. Ostrowski’s Type Inequalities for n-Time Differentiable
Functions

10.1. Some Identities. In [7], the authors have pointed out the following inte-
gral identity:

Lemma 10.1 ( Cerone-Dragomir-Roumeliotis, 1999, [7]). Let f : [a, b] → R be
a mapping such that the (n− 1)-derivative f (n−1) (where n ≥ 1) is absolutely
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continuous on [a, b]. Then for all x ∈ [a, b], we have the identity:

∫ b

a

f (t) dt =
n−1∑
k=0

[
(b− x)k+1 + (−1)k (x− a)k+1

(k + 1)!

]
f (k) (x) (10.1)

+ (−1)n
∫ b

a

Kn (x, t) f (n) (t) dt

where the kernel Kn : [a, b]2 → R is given by

Kn (x, t) :=


(t−a)n

n!
, a ≤ t ≤ x ≤ b

(t−b)n
n!

, a ≤ x < t ≤ b.

(10.2)

The identity (10.2) can be written in the following equivalent form as:

f (z) =
1

b− a

∫ b

a

f (t) dt (10.3)

− 1

b− a

n−1∑
k=1

1

(k + 1)!

[
(b− z)k+1 + (−1)k (z − a)k+1

]
f (k) (z)

+
(−1)n−1

(b− a)n!

[∫ z

a

(t− a)n f (n) (t) dt+

∫ b

z

(t− b)n f (n) (t) dt

]

for all z ∈ [a, b].
Note that for n = 1, the sum

∑n−1
k=1 is empty and we obtain the well known

Montgomery’s identity (see for example [4])

f (z) =
1

b− a

∫ b

a

f (t) dt (10.4)

+
1

b− a

[∫ z

a

(t− a) f (1) (t) dt+

∫ b

z

(t− b) f (1) (t) dt

]
,

for any z ∈ [a, b] .
In a slightly more general setting, by the use of the identity (10.3), we can state

the following result as well:

Lemma 10.2 (Dragomir, 2010, [10]). Let f : [a, b]→ R be a mapping such that
the n-derivative f (n) (where n ≥ 1) is of bounded variation on [a, b]. Then for all
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λ ∈ [a, b], we have the identity:

f (λ) =
1

b− a

∫ b

a

f (t) dt (10.5)

− 1

b− a

n∑
k=1

1

(k + 1)!

[
(b− λ)k+1 + (−1)k (λ− a)k+1

]
f (k) (λ)

+
(−1)n

(b− a) (n+ 1)!

×
[∫ λ

a

(t− a)n+1 d
(
f (n) (t)

)
+

∫ b

λ

(t− b)n+1 d
(
f (n) (t)

)]
.

Now we can state the following representation result for functions of selfadjoint
operators:

Theorem 10.3 (Dragomir, 2010, [10]). Let A be a selfadjoint operator in the
Hilbert space H with the spectrum Sp (A) ⊆ [m,M ] for some real numbers m <

M , {Eλ}λ be its spectral family, I be a closed subinterval on R with [m,M ] ⊂ I̊
(the interior of I) and let n be an integer with n ≥ 1. If f : I → C is such that
the n-th derivative f (n) is of bounded variation on the interval [m,M ], then we
have the representation

f (A) =

(
1

M −m

∫ M

m

f (t) dt

)
1H −

1

M −m
(10.6)

×
n∑
k=1

1

(k + 1)!

[
(M1H − A)k+1 + (−1)k (A−m1H)k+1

]
f (k) (A)

+ Tn (A,m,M)

where the remainder is given by

Tn (A,m,M) :=
(−1)n

(M −m) (n+ 1)!
(10.7)

×
[∫ M

m−0

(∫ λ

m

(t−m)n+1 d
(
f (n) (t)

))
dEλ

+

∫ M

m−0

(∫ M

λ

(t−M)n+1 d
(
f (n) (t)

))
dEλ

]
.

In particular, if the n-th derivative f (n) is absolutely continuous on [m,M ],
then the remainder can be represented as

Tn (A,m,M) (10.8)

=
(−1)n

(M −m) (n+ 1)!

×
∫ M

m−0

[
(λ−m)n+1 (1H − Eλ) + (λ−M)n+1Eλ

]
f (n+1) (λ) dλ.
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Proof. By Lemma 10.2 we have

f (λ) =
1

M −m

∫ M

m

f (t) dt− 1

M −m
(10.9)

×
n∑
k=1

1

(k + 1)!

[
(M − λ)k+1 + (−1)k (λ−m)k+1

]
f (k) (λ)

+
(−1)n

(M −m) (n+ 1)!

×
[∫ λ

m

(t−m)n+1 d
(
f (n) (t)

)
+

∫ M

λ

(t−M)n+1 d
(
f (n) (t)

)]
for any λ ∈ [m,M ] .

Integrating the identity (10.9) in the Riemann–Stieltjes sense with the integra-
tor Eλ we get∫ M

m

f (λ) dEλ (10.10)

=
1

M −m

∫ M

m

f (t) dt

∫ M

m

dEλ −
1

M −m

×
n∑
k=1

1

(k + 1)!

∫ M

m

[
(M − λ)k+1 + (−1)k (λ−m)k+1

]
f (k) (λ) dEλ

+ Tn (A,m,M) .

Since, by the spectral representation theorem we have∫ M

m−0

f (λ) dEλ = f (A) ,

∫ M

m−0

dEλ = 1H

and ∫ M

m−0

[
(M − λ)k+1 + (−1)k (λ−m)k+1

]
f (k) (λ) dEλ

=
[
(M1H − A)k+1 + (−1)k (A−m1H)k+1

]
f (k) (A) ,

then by (10.10) we deduce the representation (10.6).
Now, if the n-th derivative f (n) is absolutely continuous on [m,M ] , then∫ λ

m

(t−m)n+1 d
(
f (n) (t)

)
=

∫ λ

m

(t−m)n+1 f (n+1) (t) dt

and ∫ M

λ

(t−M)n+1 d
(
f (n) (t)

)
=

∫ M

λ

(t−M)n+1 f (n+1) (t) dt

where the integrals in the right hand side are taken in the Lebesgue sense.
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Utilising the integration by parts formula for the Riemann–Stieltjes integral
and the differentiation rule for the Stieltjes integral we have successively∫ M

m−0

(∫ λ

m

(t−m)n+1 f (n+1) (t) dt

)
dEλ

=

(∫ λ

m

(t−m)n+1 f (n+1) (t) dt

)
Eλ

∣∣∣∣M
m−0

−
∫ M

m−0

(λ−m)n+1 f (n+1) (λ)Eλdλ

=

(∫ M

m

(t−m)n+1 f (n+1) (t) dt

)
1H −

∫ M

m−0

(λ−m)n+1 f (n+1) (λ)Eλdλ

=

∫ M

m−0

(λ−m)n+1 f (n+1) (λ) (1H − Eλ) dλ

and ∫ M

m−0

(∫ M

λ

(t−M)n+1 f (n+1) (t) dt

)
dEλ

=

(∫ M

λ

(t−M)n+1 f (n+1) (t) dt

)
Eλ

∣∣∣∣M
m−0

+

∫ M

m−0

(λ−M)n+1 f (n+1) (λ)Eλdλ

=

∫ M

m−0

(λ−M)n+1 f (n+1) (λ)Eλdλ

and the representation (10.8) is thus obtained. �

10.2. Error Bounds for f (n) of Bounded Variation. From the identity (10.6),
we define for any x, y ∈ H

Tn (A,m,M ;x, y) (10.11)

:= 〈f (A)x, y〉+
1

M −m

n∑
k=1

1

(k + 1)!

×
[〈

(M1H − A)k+1 f (k) (A)x, y
〉

+ (−1)k
〈

(A−m1H)k+1 f (k) (A)x, y
〉]

−
(

1

M −m

∫ M

m

f (t) dt

)
〈x, y〉 .

We have the following result concerning bounds for the absolute value of Tn
when the n-th derivative f (n) is of bounded variation:

Theorem 10.4 (Dragomir, 2010, [10]). Let A be a selfadjoint operator in the
Hilbert space H with the spectrum Sp (A) ⊆ [m,M ] for some real numbers m <

M , {Eλ}λ be its spectral family, I be a closed subinterval on R with [m,M ] ⊂ I̊
and let n be an integer with n ≥ 1.
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1. If f : I → C is such that the n-th derivative f (n) is of bounded variation on
the interval [m,M ], then we have the inequalities

|Tn (A,m,M ;x, y)| (10.12)

≤ 1

(M −m) (n+ 1)!

M∨
m

(〈
E(·)x, y

〉)
× max

λ∈[m,M ]

[
(λ−m)n+1

λ∨
m

(
f (n)

)
+ (M − λ)n+1

M∨
λ

(
f (n)

)]

≤ (M −m)n

(n+ 1)!

M∨
m

(〈
E(·)x, y

〉) M∨
m

(
f (n)

)
≤ (M −m)n

(n+ 1)!

M∨
m

(
f (n)

)
‖x‖ ‖y‖

for any x, y ∈ H.
2. If f : I → C is such that the n-th derivative f (n) is Lipschitzian with the

constant Ln > 0 on the interval [m,M ], then we have the inequalities

|Tn (A,m,M ;x, y)| ≤ Ln (M −m)n+1

(n+ 2)!

M∨
m

(〈
E(·)x, y

〉)
(10.13)

≤ Ln (M −m)n+1

(n+ 2)!
‖x‖ ‖y‖

for any x, y ∈ H.
3. If f : I → R is such that the n-th derivative f (n) is monotonic nondecreasing

on the interval [m,M ], then we have the inequalities

|Tn (A,m,M ;x, y)| (10.14)

≤ 1

(M −m) (n+ 1)!

M∨
m

(〈
E(·)x, y

〉)
× max

λ∈[m,M ]

[
f (n) (λ)

(
(λ−m)n+1 − (M − λ)n+1)

+ (n+ 1)

[∫ M

λ

(M − t)n f (n) (t) dt−
∫ λ

m

(t−m)n f (n) (t) dt

]]
≤ 1

(M −m) (n+ 1)!
max

λ∈[m,M ]

[
(λ−m)n+1 [f (n) (λ)− f (n) (m)

]
+ (M − λ)n+1 [f (n) (M)− f (n) (λ)

]] M∨
m

(〈
E(·)x, y

〉)
≤ (M −m)n

(n+ 1)!

M∨
m

(〈
E(·)x, y

〉) [
f (n) (M)− f (n) (m)

]
≤ (M −m)n

(n+ 1)!

[
f (n) (M)− f (n) (m)

]
‖x‖ ‖y‖

for any x, y ∈ H.
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Proof. 1. By the identity (10.7) we have for any x, y ∈ H that

Tn (A,m,M ;x, y) :=
(−1)n

(M −m) (n+ 1)!
(10.15)

×
[∫ M

m−0

(∫ λ

m

(t−m)n+1 d
(
f (n) (t)

))
d 〈Eλx, y〉

+

∫ M

m−0

(∫ M

λ

(t−M)n+1 d
(
f (n) (t)

))
d 〈Eλx, y〉

]
.

It is well known that if p : [a, b]→ C is a continuous function, v : [a, b]→ C is

of bounded variation then the Riemann–Stieltjes integral
∫ b
a
p (t) dv (t) exists and

the following inequality holds∣∣∣∣∫ b

a

p (t) dv (t)

∣∣∣∣ ≤ max
t∈[a,b]

|p (t)|
b∨
a

(v) , (10.16)

where
b∨
a

(v) denotes the total variation of v on [a, b] .

Taking the modulus in (10.15) and utilizing the property (10.16), we have
successively that

|Tn (A,m,M ;x, y)| = 1

(M −m) (n+ 1)!

×
∣∣∣∣∫ M

m−0

[(∫ λ

m

(t−m)n+1 d
(
f (n) (t)

)
+

(∫ M

λ

(t−M)n+1 d
(
f (n) (t)

)))]
× d 〈Eλx, y〉| ≤

1

(M −m) (n+ 1)!

M∨
m

(〈
E(·)x, y

〉)
× max

λ∈[m,M ]

∣∣∣∣∫ λ

m

(t−m)n+1 d
(
f (n) (t)

)
+

∫ M

λ

(t−M)n+1 d
(
f (n) (t)

)∣∣∣∣ (10.17)

for any x, y ∈ H.
By the same property (10.16) we have for λ ∈ (m,M) that∣∣∣∣∫ λ

m

(t−m)n+1 d
(
f (n) (t)

)∣∣∣∣ ≤ max
t∈[m,λ]

(t−m)n+1
λ∨
m

(
f (n)

)
= (λ−m)n+1

λ∨
m

(
f (n)

)
and ∣∣∣∣∫ M

λ

(t−M)n+1 d
(
f (n) (t)

)∣∣∣∣ ≤ max
t∈[λ,M ]

(M − t)n+1
M∨
λ

(
f (n)

)
= (M − λ)n+1

M∨
λ

(
f (n)

)
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which produce the inequality∣∣∣∣∫ λ

m

(t−m)n+1 d
(
f (n) (t)

)
+

∫ M

λ

(t−M)n+1 d
(
f (n) (t)

)∣∣∣∣ (10.18)

≤ (λ−m)n+1
λ∨
m

(
f (n)

)
+ (M − λ)n+1

M∨
λ

(
f (n)

)
.

Taking the maximum over λ ∈ [m,M ] in (10.18) and utilizing (10.17) we deduce
the first inequality in (10.12).

Now observe that

(λ−m)n+1
λ∨
m

(
f (n)

)
+ (M − λ)n+1

M∨
λ

(
f (n)

)
≤ max

{
(λ−m)n+1 , (M − λ)n+1}[ λ∨

m

(
f (n)

)
+

M∨
λ

(
f (n)

)]

= max
{

(λ−m)n+1 , (M − λ)n+1} M∨
m

(
f (n)

)
=

[
1

2
(M −m) +

∣∣∣∣λ− m+M

2

∣∣∣∣]n+1 M∨
m

(
f (n)

)
giving that

max
λ∈[m,M ]

[
(λ−m)n+1

λ∨
m

(
f (n)

)
+ (M − λ)n+1

M∨
λ

(
f (n)

)]

≤ (M −m)n+1
M∨
m

(
f (n)

)
and the second inequality in (10.12) is proved.

The last part of (10.12) follows by the Total Variation Schwarz’s inequality and
we omit the details.

2. Now, recall that if p : [a, b] → C is a Riemann integrable function and
v : [a, b]→ C is Lipschitzian with the constant L > 0, i.e.,

|f (s)− f (t)| ≤ L |s− t| for any t, s ∈ [a, b] ,

then the Riemann–Stieltjes integral
∫ b
a
p (t) dv (t) exists and the following inequal-

ity holds ∣∣∣∣∫ b

a

p (t) dv (t)

∣∣∣∣ ≤ L

∫ b

a

|p (t)| dt. (10.19)

By the property (10.19) we have for λ ∈ (m,M) that∣∣∣∣∫ λ

m

(t−m)n+1 d
(
f (n) (t)

)∣∣∣∣ ≤ Ln

∫ λ

m

(t−m)n+1 d (t) =
Ln
n+ 2

(λ−m)n+2
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and∣∣∣∣∫ M

λ

(t−M)n+1 d
(
f (n) (t)

)∣∣∣∣ ≤ Ln

∫ M

λ

(M − t)n+1 dt =
Ln
n+ 2

(M − λ)n+2 .

By the inequality (10.17) we then have

|Tn (A,m,M ;x, y)| (10.20)

≤ 1

(M −m) (n+ 1)!

M∨
m

(〈
E(·)x, y

〉)
× max

λ∈[m,M ]

[
Ln
n+ 2

(λ−m)n+2 +
Ln
n+ 2

(M − λ)n+2

]
=
Ln (M −m)n+1

(n+ 2)!

M∨
m

(〈
E(·)x, y

〉)
≤ Ln (M −m)n+1

(n+ 2)!
‖x‖ ‖y‖

for any x, y ∈ H and the inequality (10.13) is proved.
3. Further, from the theory of Riemann–Stieltjes integral it is also well known

that if p : [a, b]→ C is continuous and v : [a, b]→ R is monotonic nondecreasing,

then the Riemann–Stieltjes integrals
∫ b
a
p (t) dv (t) and

∫ b
a
|p (t)| dv (t) exist and∣∣∣∣∫ b

a

p (t) dv (t)

∣∣∣∣ ≤ ∫ b

a

|p (t)| dv (t) ≤ max
t∈[a,b]

|p (t)| [v (b)− v (a)] . (10.21)

On making use of (10.21) we have∣∣∣∣∫ λ

m

(t−m)n+1 d
(
f (n) (t)

)∣∣∣∣ ≤ ∫ λ

m

(t−m)n+1 d
(
f (n) (t)

)
(10.22)

≤ (λ−m)n+1 [f (n) (λ)− f (n) (m)
]

and ∣∣∣∣∫ M

λ

(t−M)n+1 d
(
f (n) (t)

)∣∣∣∣ ≤ ∫ M

λ

(M − t)n+1 d
(
f (n) (t)

)
(10.23)

≤ (M − λ)n+1 [f (n) (M)− f (n) (λ)
]

for any λ ∈ (m,M) .
Integrating by parts in the Riemann–Stieltjes integral, we also have∫ λ

m

(t−m)n+1 d
(
f (n) (t)

)
= (λ−m)n+1 f (n) (λ)− (n+ 1)

∫ λ

m

(t−m)n f (n) (t) dt

and ∫ M

λ

(M − t)n+1 d
(
f (n) (t)

)
= (n+ 1)

∫ M

λ

(M − t)n f (n) (t) dt− (M − λ)n+1 f (n) (λ)
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for any λ ∈ (m,M) .
Therefore, by adding (10.22) with (10.23) we get∣∣∣∣∫ λ

m

(t−m)n+1 d
(
f (n) (t)

)∣∣∣∣+

∣∣∣∣∫ M

λ

(t−M)n+1 d
(
f (n) (t)

)∣∣∣∣
≤
[
f (n) (λ)

(
(λ−m)n+1 − (M − λ)n+1)]

+ (n+ 1)

[∫ M

λ

(M − t)n f (n) (t) dt−
∫ λ

m

(t−m)n f (n) (t) dt

]
≤ (λ−m)n+1 [f (n) (λ)− f (n) (m)

]
+ (M − λ)n+1 [f (n) (M)− f (n) (λ)

]
for any λ ∈ (m,M) .

Now, on making use of the inequality (10.17) we deduce (10.14). �

10.3. Error Bounds for f (n) Absolutely Continuous. We consider the Lebesgue
norms defined by

‖g‖[a,b],∞ := ess sup
t∈[a,b]

|g (t)| if g ∈ L∞ [a, b]

and

‖g‖[a,b],p :=

(∫ b

a

|g (t)|p dt
)1/p

if g ∈ Lp [a, b] , p ≥ 1.

Theorem 10.5 (Dragomir, 2010, [10]). Let A be a selfadjoint operator in the
Hilbert space H with the spectrum Sp (A) ⊆ [m,M ] for some real numbers m <
M , {Eλ}λ be its spectral family, I be a closed subinterval on R with [m,M ] ⊂
I̊ and let n be an integer with n ≥ 1. If the n-th derivative f (n) is absolutely
continuous on [m,M ], then

|Tn (A,m,M ;x, y)| ≤ 1

(M −m) (n+ 1)!

×
∫ M

m−0

∣∣(λ−m)n+1 〈(1H − Eλ)x, y〉+ (λ−M)n+1 〈Eλx, y〉
∣∣ ∣∣f (n+1) (λ)

∣∣ dλ.
≤ 1

(M −m) (n+ 1)!

×



Bn,1 (A,m,M ;x, y)
∥∥f (n)

∥∥
[m,M ],∞ if f (n) ∈ L∞ [m,M ] ,

Bn,p (A,m,M ;x, y)
∥∥f (n)

∥∥
[m,M ],q

if f (n) ∈ Lq [m,M ] , p > 1, 1
p

+ 1
q

= 1,

Bn,∞ (A,m,M ;x, y)
∥∥f (n)

∥∥
[m,M ],1

,

(10.24)

for any x, y ∈ H, where

Bn,p (A,m,M ;x, y)

:=

(∫ M

m−0

∣∣(λ−m)n+1 〈(1H − Eλ)x, y〉+ (λ−M)n+1 〈Eλx, y〉
∣∣p dλ)1/p

, p ≥ 1
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and

Bn,∞ (A,m,M ;x, y)

:= sup
t∈[m,M ]

∣∣(λ−m)n+1 〈(1H − Eλ)x, y〉+ (λ−M)n+1 〈Eλx, y〉
∣∣ .

Proof. Follows from the representation

Tn (A,m,M ;x, y)

=
(−1)n

(M −m) (n+ 1)!

×
∫ M

m−0

[
(λ−m)n+1 〈(1H − Eλ)x, y〉+ (λ−M)n+1 〈Eλx, y〉

]
f (n+1) (λ) dλ

for any x, y ∈ H, by taking the modulus and utilizing the Hölder integral inequal-
ity.

The details are omitted. �

The bounds provided by Bn,p (A,m,M ;x, y) are not useful for applications,
therefore we will establish in the following some simpler, however coarser bounds.

Proposition 10.6 (Dragomir, 2010, [10]). With the above notations, we have

Bn,∞ (A,m,M ;x, y) ≤ (M −m)n+1 ‖x‖ ‖y‖ , (10.25)

Bn,1 (A,m,M ;x, y) ≤ (2n+2 − 1)

(n+ 2) 2n+1
(M −m)n+2 ‖x‖ ‖y‖ (10.26)

and for p > 1

Bn,p (A,m,M ;x, y) ≤
(
2(n+1)p+1 − 1

)1/p

2n+1 [(n+ 1) p+ 1]1/p
(M −m)n+1+1/p ‖x‖ ‖y‖ (10.27)

for any x, y ∈ H.

Proof. Utilising the triangle inequality for the modulus we have∣∣(λ−m)n+1 〈(1H − Eλ)x, y〉+ (λ−M)n+1 〈Eλx, y〉
∣∣ (10.28)

≤ (λ−m)n+1 |〈(1H − Eλ)x, y〉|+ (M − λ)n+1 |〈Eλx, y〉|
≤ max

{
(λ−m)n+1 , (M − λ)n+1} [|〈(1H − Eλ)x, y〉|+ |〈Eλx, y〉|]

for any x, y ∈ H.
Utilising the generalization of Schwarz’s inequality for nonnegative selfadjoint

operators we have

|〈(1H − Eλ)x, y〉| ≤ 〈(1H − Eλ)x, x〉1/2 〈(1H − Eλ) y, y〉1/2

and
|〈Eλx, y〉| ≤ 〈Eλx, x〉1/2 〈Eλy, y〉1/2

for any x, y ∈ H and λ ∈ [m,M ] .
Further, by making use of the elementary inequality

ac+ bd ≤
(
a2 + b2

)1/2 (
c2 + d2

)1/2
, a, b, c, d ≥ 0
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we have

|〈(1H − Eλ)x, y〉|+ |〈Eλx, y〉| (10.29)

≤ 〈(1H − Eλ)x, x〉1/2 〈(1H − Eλ) y, y〉1/2 + 〈Eλx, x〉1/2 〈Eλy, y〉1/2

≤ (〈(1H − Eλ)x, x〉+ 〈Eλx, x〉)1/2 (〈(1H − Eλ) y, y〉+ 〈Eλy, y〉)1/2

= ‖x‖ ‖y‖
for any x, y ∈ H and λ ∈ [m,M ] .

Combining (10.28) with (10.29) we deduce that∣∣(λ−m)n+1 〈(1H − Eλ)x, y〉+ (λ−M)n+1 〈Eλx, y〉
∣∣ (10.30)

≤ max
{

(λ−m)n+1 , (M − λ)n+1} ‖x‖ ‖y‖
for any x, y ∈ H and λ ∈ [m,M ] .

Taking the supremum over λ ∈ [m,M ] in (10.30) we deduce the inequality
(10.25).

Now, if we take the power r ≥ 1 in (10.30) and integrate, then we get∫ M

m−0

∣∣(λ−m)n+1 〈(1H − Eλ)x, y〉+ (λ−M)n+1 〈Eλx, y〉
∣∣r dλ (10.31)

≤ ‖x‖r ‖y‖r
∫ M

m

max
{

(λ−m)(n+1)r , (M − λ)(n+1)r
}
dλ

= ‖x‖r ‖y‖r
[∫ M+m

2

m

(M − λ)(n+1)r dλ+

∫ M

M+m
2

(λ−m)(n+1)r dλ

]

=

(
2(n+1)r+1 − 1

)
[(n+ 1) r + 1] 2(n+1)r

(M −m)(n+1)r+1 ‖x‖r ‖y‖r

for any x, y ∈ H.
Utilizing (10.31) for r = 1 we deduce the bound (10.26). Also, by making r = p

and then taking the power 1/p, we deduce the last inequality (10.27). �

The following result provides refinements of the inequalities in Proposition 10.6:

Proposition 10.7 (Dragomir, 2010, [10]). With the above notations, we have

Bn,∞ (A,m,M ;x, y)

≤ ‖y‖ max
λ∈[m,M ]

[
(λ−m)2(n+1) 〈(1H − Eλ)x, x〉+ (M − λ)2(n+1) 〈Eλx, x〉

]1/2

≤ (M −m)n+1 ‖x‖ ‖y‖ , (10.32)

Bn,1 (A,m,M ;x, y)

≤ ‖y‖
∫ M

m−0

[
(λ−m)2(n+1) 〈(1H − Eλ)x, x〉+ (M − λ)2(n+1) 〈Eλx, x〉

]1/2

dλ

≤ (2n+2 − 1)

(n+ 2) 2n+1
(M −m)n+2 ‖x‖ ‖y‖ (10.33)



202 S.S. DRAGOMIR

and for p > 1

Bn,p (A,m,M ;x, y)

≤ ‖y‖
(∫ M

m−0

[
(λ−m)2(n+1) 〈(1H − Eλ)x, x〉+ (M − λ)2(n+1) 〈Eλx, x〉

]p/2
dλ

)1/p

≤
(
2(n+1)p+1 − 1

)1/p

2n+1 [(n+ 1) p+ 1]1/p
(M −m)n+1+1/p ‖x‖ ‖y‖ (10.34)

for any x, y ∈ H.

Proof. Utilising the Schwarz inequality in H, we have∣∣〈(λ−m)n+1 (1H − Eλ)x+ (λ−M)n+1 Eλx, y
〉∣∣ (10.35)

≤ ‖y‖
∥∥(λ−m)n+1 (1H − Eλ)x+ (λ−M)n+1 Eλx

∥∥
for any x, y ∈ H.

Since Eλ are projectors for each λ ∈ [m,M ] , then we have∥∥(λ−m)n+1 (1H − Eλ)x+ (λ−M)n+1Eλx
∥∥2

(10.36)

= (λ−m)2(n+1) ‖(1H − Eλ)x‖2

+ 2 (λ−m)n+1 (λ−M)n+1 Re 〈(1H − Eλ)x,Eλx〉

+ (M − λ)2(n+1) ‖Eλx‖2

= (λ−m)2(n+1) ‖(1H − Eλ)x‖2 + (M − λ)2(n+1) ‖Eλx‖2

= (λ−m)2(n+1) 〈(1H − Eλ)x, x〉+ (M − λ)2(n+1) 〈Eλx, x〉

≤ ‖x‖2 max
{

(λ−m)2(n+1) , (M − λ)2(n+1)
}

for any x, y ∈ H and λ ∈ [m,M ] .
On making use of (10.35) and (10.36) we obtain the following refinement of

(10.30) ∣∣〈(λ−m)n+1 (1H − Eλ)x+ (λ−M)n+1Eλx, y
〉∣∣ (10.37)

≤ ‖y‖
[
(λ−m)2(n+1) 〈(1H − Eλ)x, x〉+ (M − λ)2(n+1) 〈Eλx, x〉

]1/2

≤ max
{

(λ−m)n+1 , (M − λ)n+1} ‖x‖ ‖y‖
for any x, y ∈ H and λ ∈ [m,M ] .

The proof now follows the lines of the proof from Proposition 10.6 and we omit
the details. �

Remark 10.8. One can apply Theorem 10.5 and Proposition 10.6 for particular
functions including the exponential and logarithmic function. However the details
are left to the interested reader.
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