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Abstract. We obtain uniform boundedness principles for a new class of fam-
ilies of mappings from topological vector spaces to ordered topological vector
spaces. The new class of families of mappings includes the family of linear
mappings and many other families which consist of nonlinear mappings.

1. Introduction and preliminaries

The uniform boundedness principle is well known as one of the foundation stones
of functional analysis. Its basic form [3] asserts that a pointwise boundedness
family of continuous linear operators from a Banach space X to a normed space
Y is equicontinuous at each x ∈ X, and uniformly bounded on each bounded
subset of X. For its importance there has been a lot of work (see books [1, 16])
on uniform boundedness principles since Banach and Steinhaus gave the above
version of uniform boundedness principles in 1927. Especially, today we can find
various versions [2], [4]-[11], [13]-[15] of uniform boundedness principles in many
different mathematical fields.

In this paper, we will give two uniform boundedness principles for a new class of
families of mappings from topological vector spaces to ordered topological vector
spaces, and point out that the new class of families of mappings includes the
family of linear mappings and many other families which consist of nonlinear
mappings. Our results have strongly generalized the above version of uniform
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boundedness principle, but are very different from any of the results in relevant
literature.

In the whole paper, all topological vector spaces are Hausdorff and over the
real scalar field R. For a topological vector space X, denote by N (X) the family
of neighborhoods of 0 ∈ X.

Definition 1.1. Let X, Y be topological vector spaces. A family Γ of mappings
from X to Y is said to be UB if there exist U ∈ N (X), δ, M > 0 and ϕ : (0, δ)→
(0,+∞) with limt→0 ϕ(t) = 0 such that for all f ∈ Γ:

(1) f(0) = 0;
(2) For all u ∈ U and x ∈ X, there exist r, s ∈ [−M,M ] such that f(x−u) =

rf(x) + sf(u);
(3) For all u ∈ U and 0 < t < δ, there exists a real s such that |s| ≤ ϕ(t) and

f(tu) = sf(u).

Remark 1.2. The family Γ which consists of linear mappings from X to Y is UB
with U = X, M = 1 and ϕ(t) = t.

Example 1.3. Let (X, ‖ · ‖) be a normed space. Then the mapping ‖ · ‖ : X →
[0,+∞) belongs to the UB family of mappings from X to R with U = X, M = 1
and ϕ(t) = t.

In fact, since ‖x‖ − ‖u‖ ≤ ‖x − u‖ ≤ ‖x‖ + ‖u‖ for all x, u ∈ X we have
‖x− u‖ = ‖x‖+ s‖u‖ for some |s| ≤ 1.

Example 1.4. Let (X, ‖ · ‖) be a normed space and Y a vector space. For a
linear mapping T from X to Y , define fT : X → Y by

fT (x) =
1

1 + ‖x‖
T (x), ∀x ∈ X.

Then the family Γ = {fT : X → Y |T : X → Y is linear} is UB with U = {x ∈
X : ‖x‖ < 1}, M = 2 and ϕ(t) = 2 t.

For each fT ∈ Γ, fT (0) = 0 is obvious. For x ∈ X and u ∈ U ,

fT (x− u) =
1

1 + ‖x− u‖
T (x− u) =

1

1 + ‖x− u‖
T (x)− 1

1 + ‖x− u‖
T (u)

=
1 + ‖x‖

1 + ‖x− u‖
fT (x)− 1 + ‖u‖

1 + ‖x− u‖
fT (u)

and
1 + ‖x‖

1 + ‖x− u‖
< 2 = M,

1 + ‖u‖
1 + ‖x− u‖

< 2 = M

since 2(1 + ‖x− u‖) ≥ 2 + ‖x− u‖+ ‖x‖ − ‖u‖ ≥ 1 + ‖x‖+ 1− ‖u‖ > 1 + ‖x‖
and 2(1 + ‖x− u‖) ≥ 2 > 1 + ‖u‖.

For u ∈ U and t > 0,

fT (tu) =
1

1 + ‖tu‖
T (tu) =

1

1 + ‖tu‖
tT (u) =

1 + ‖u‖
1 + ‖tu‖

tfT (u)
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where ∣∣∣ 1 + ‖u‖
1 + ‖tu‖

t
∣∣∣ < 2|t| = ϕ(t) with t > 0.

Remark 1.5. Each fT ∈ Γ in Example 1.4 is nonlinear.

Remark 1.6. The family of demi-linear mappings [9] from X to Y related to γ
and U is UB with U , δ = 1, M = 1 + |γ(−1)|, ϕ = |γ|

∣∣
(0,δ)

: (0, δ)→ (0,+∞).

Definition 1.7. [12] Let Y be a topological vector space and an ordered vector
space. Y is called an ordered topological vector space if the positive cone C =
{y ∈ Y : y ≥ 0} is closed in Y .

For topological vector spaces X and Y , a family Γ ⊂ Y X is said to be pointwise
bounded if for each x ∈ X the set {f(x) : f ∈ Γ} is bounded in Y . If for each
bounded subset B ⊂ X the set {f(x) : f ∈ Γ, x ∈ B} is bounded in Y , then Γ is
said to be uniformly bounded on each bounded subset of X.

And for Y an ordered topological vector space, a family Γ ⊂ Y X is said to
be pointwise order bounded if for each x ∈ X the set {f(x) : f ∈ Γ} is order
bounded in Y . If for each bounded subset B ⊂ X the set {f(x) : f ∈ Γ, x ∈ B}
is order bounded in Y , then Γ is said to be uniformly order bounded on each
bounded subset of X.

For more notations and terminologies in topological vector spaces or ordered
topological vector spaces, we can refer to [16] or [12].

2. Main results

Theorem 2.1. Let X be a topological vector space of second category and Y
an ordered topological vector space with an order unit e. If the UB family Γ of
continuous mappings from X to Y with U ∈ N (X), δ, M > 0 and ϕ : (0, δ) →
(0,+∞) satisfying limt→0 ϕ(t) = 0 is pointwise order bounded, then Γ is uniformly
order bounded on each bounded subset of X.

Proof. Let U be balanced and closed, and x ∈ X. Then there exists θ ∈ (0, 1)
such that θx ∈ U and {f(θx) : f ∈ Γ} is order bounded in Y . Pick a, b ∈ Y with

{f(θx) : f ∈ Γ} ⊂ [a, b] := {y ∈ Y : a ≤ y ≤ b}.
Since e is an order unit in Y , there exists n ∈ N for which

[a, b] ⊂ [−ne, ne] = n[−e, e].
Thus

{f(θx) : f ∈ Γ} ⊂ n[−e, e].
Since limt→0 ϕ(t) = 0 there exists m ∈ N such that 1/m < δ and ϕ(1/m) ≤ (1/n).
But f((1/m)θx) = sff(θx) , where |sf | ≤ ϕ(1/m) ≤ (1/n) and sfn[−e, e] ⊂
[−e, e] for all f ∈ Γ. Then

{f((1/m)θx) : f ∈ Γ} = {sff(θx) : f ∈ Γ} ⊂ ∪f∈Γ(sfn[−e, e]) ⊂ [−e, e]
and (1/m)θx ∈ ∩f∈Γf

−1([−e, e]).



16 S. ZHONG, R. LI

Obviously, (1/m)θx ∈ U . Let

W = U ∩ (∩f∈Γf
−1([−e, e])).

From the above deducing process, we know X = ∪∞n=1nW . By Definition 1.7, the
positive cone C = {y ∈ Y : y ≥ 0} is closed in Y . So [−e, e] is also closed in Y .
Then f−1([−e, e]) is closed in X since each f ∈ Γ is continuous. Thus

W = U ∩ (∩f∈Γf
−1([−e, e]))

is closed in X. But X is a topological vector space of second category. There
exists n0 ∈ N with n0W having nonempty interior. So W has nonempty interior
and W −W = {x− z : x, z ∈ W} ∈ N (X).

Let x, z ∈ W and f ∈ Γ. Then f(x), f(z) ∈ [−e, e] and

f(x− z) = rff(x) + sff(z)

where |rf | ≤ M and |sf | ≤ M . Pick p ∈ N with p > M . It is easy to know
rff(x), sff(z) ∈ p[−e, e]. Thus

f(x− z) = rff(x) + sff(z) ∈ 2p[−e, e].

So f(W −W ) ⊂ 2p[−e, e] for all f ∈ Γ.

Let B ⊂ X be bounded, and without loss of generality suppose that W −W
is balanced. Since (W −W ) ∩ U ∈ N (X), pick q ∈ N for which

(1/q)B ⊂ (W −W ) ∩ U.

Observe that q is independent of every individual x ∈ B. For x ∈ B and f ∈ Γ,
x = q(x/q) where (x/q) ∈ (W −W ) ∩ U and f(−(x/q)) ∈ 2p[−e, e].

f(x) = f(q
x

q
) = f [(q − 1)

x

q
+
x

q
]

= r1ff [(q − 1)
x

q
] + s1ff(−x

q
)

= r1fr2ff [(q − 2)
x

q
] + r1fs2ff(−x

q
) + s1ff(−x

q
)

· · · · · ·

= r1f · · · rq−1ff(
x

q
) + (r1f · · · rq−2fsq−1f + · · ·+ r1fs2f + s1f )f(−x

q
)

= r1f · · · rq−1frqff(0) + (r1f · · · rq−1fsqf + · · ·+ r1fs2f + s1f )f(−x
q

)

= (r1f · · · rq−1fsqf + · · ·+ r1fs2f + s1f )f(−x
q

),

where

|rif | ≤M, i = 1, 2, · · · , q − 1

and

|sif | ≤M, i = 1, 2, · · · , q.
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Obviously,

|r1fr2f · · · rq−1fsqf + · · ·+ r1fs2f + s1f | ≤M q +M q−1 + · · ·+M2 +M

< pq + pq−1 + · · ·+ p2 + p

=
p(1− pq)

1− p
.

So

f(x) = (r1fr2f · · · rq−1fsqf + · · ·+ r1fs2f + s1f )f(−x/q) ∈ p(1− p
q)

1− p
2p[−e, e]

for all f ∈ Γ and x ∈ B. Thus, Γ is uniformly order bounded on B ⊂ X and is
uniformly order bounded on each bounded subset of X. �

Theorem 2.2. Let X be a topological vector space of second category and Y an
ordered topological vector space with the positive cone having nonempty interior. If
the UB family Γ of continuous mappings from X to Y with U ∈ N (X), δ, M > 0
and ϕ : (0, δ) → (0,+∞) satisfying limt→0 ϕ(t) = 0 is pointwise bounded or
pointwise order bounded, then Γ is uniformly order bounded on each bounded
subset of X.

Proof. Let U be balanced and closed, and C = {y ∈ Y : y ≥ 0} the positive cone
in Y . By the hypothesis, C is closed in Y and there exists y0 in the interior of
C. Obviously, C − y0 and y0 − C are both neighborhoods of 0 ∈ Y . Then

V = (C − y0) ∩ (y0 − C)

is also a neighborhood of 0 ∈ Y , and a closed and balanced convex set. Let
x ∈ X. There exists θ ∈ (0, 1) such that θx ∈ U . And since {f(θx) : f ∈ Γ} is
bounded in Y there exists n ∈ N such that {f(θx) : f ∈ Γ} ⊂ nV . In another
case, we know {f(θx) : f ∈ Γ} is order bounded in Y . Then there exist a, b ∈ Y
such that

{f(θx) : f ∈ Γ} ⊂ [a, b] := {y ∈ Y : a ≤ y ≤ b}.
But C − y0 and y0 − C absorbs [a, b]. Pick m ∈ N with m > n and

[a, b] ⊂ [−my0,my0] = m[−y0, y0].

Hence {f(θx) : f ∈ Γ} ⊂ m[−y0, y0] = mV . Observing nV ⊂ mV we obtain
{f(θx) : f ∈ Γ} ⊂ mV in two cases.

Since limt→0 ϕ(t) = 0 there exists p ∈ N such that 1/p < δ and ϕ(1/p) ≤ (1/m).
But

f((1/p)θx) = sff(θx), where |sf | ≤ ϕ(1/p) ≤ (1/m).

Then |msf | ≤ 1 for all f ∈ Γ and

{f((1/m)θx) : f ∈ Γ} = {sff(θx) : f ∈ Γ} ⊂ ∪f∈ΓsfmV ⊂ V

Thus (1/m)θx ∈ ∩f∈Γf
−1(V ). Let

W = U ∩ (∩f∈Γf
−1(V ))

where
V = (C − y0) ∩ (y0 − C) = [−y0, y0].
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Obviously, (1/m)θx ∈ U . Hence, X = ∪∞n=1nW . Since V is closed in Y , each
f ∈ Γ is continuous and U is closed in X, we know W is closed in X. But X is
of second category. So W −W = {x− z : x, z ∈ W} ∈ N (X).

As the same in the proof of Theorem 2.1, we can obtain the result. �

Remark 2.3. In Theorem 2.2, if the positive cone C in Y is normal in the weak
topology, then Γ is uniformly bounded on each bounded subset of X. In fact,
Y ′ = C ′ − C ′ where C ′ = {f ∈ Y ′ : f(y) ≥ 0 for all y ∈ C}. Then an order
bounded subset in Y must be bounded in Y . See details for [12].

Acknowledgement. The authors wish to thank the editor and referee for
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