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Abstract. Let S be a semigroup and X a Banach space. The functional
equation ϕ(xyz) + ϕ(x) + ϕ(y) + ϕ(z) = ϕ(xy) + ϕ(yz) + ϕ(xz) is said to be
stable for the pair (X,S) if and only if f : S → X satisfying ‖f(xyz) + f(x) +
f(y) + f(z)− f(xy)− f(yz)− f(xz)‖ ≤ δ for some positive real number δ and
all x, y, z ∈ S, there is a solution ϕ : S → X such that f − ϕ is bounded.
In this paper, among others, we prove the following results: 1) this functional
equation, in general, is not stable on an arbitrary semigroup; 2) this equation is
stable on periodic semigroups; 3) this equation is stable on abelian semigroups;
4) any semigroup with left (or right) law of reduction can be embedded into a
semigroup with left (or right) law of reduction where this equation is stable.
The main results of this paper generalize the works of Jung [J. Math. Anal.
Appl. 222 (1998), 126–137], Kannappan [Results Math. 27 (1995), 368–372]
and Fechner [J. Math. Anal. Appl. 322 (2006), 774–786].

1. Introduction

If f : V → X is a function from a normed vector space V into a Banach
space X, and ‖f(x + y) − f(x) − f(y)‖ ≤ δ for some nonnegative real number
δ, Hyers [16], answering a question of Ulam [24], proved that there exists an
additive function A : V → X such that ‖f(x) − A(x)‖ ≤ δ. Taking this result
into account, the additive Cauchy functional equation is said to stable in the sense
of Hyers-Ulam on (V, X) if for each function f : V→ X satisfying the inequality
‖f(x + y) − f(x) − f(y)‖ ≤ δ for some δ ≥ 0 and for all x, y ∈ V there exists
an additive function A : V → X such that f − A is bounded on V. Since then,
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the stability problems of various functional equations have been studied by many
authors (see the survey paper [22] and references therein). Among them, Skof
[23] first considered the Hyers-Ulam stability of the quadratic functional equation

f(xy) + f(xy−1) = 2f(x) + 2f(y) (1.1)

where f maps a group G to an abelian group H. As usual, each solution of equa-
tion (1.1) is called a quadratic function. But Skof restricted herself to studying
the case where f maps a normed space to a Banach space. In [2] Cholewa noticed
that the theorem of Skof’s is true if the relevant domain is replaced by an abelian
group. The results of Skof and Cholewa were further generalized by Czerwik [3].
Further works on stability of the quadratic functional equation can be found in
Fenyő [13], Czerwik [4], Czerwik and Dlutek [5, 6], Ger [15], Jung [18], and Jung
and Sahoo [19].

Let R denote the set of real numbers. Let G be a group and X and Y be
any two arbitrary Banach spaces over reals. Faiziev and Sahoo [8] proved that
the quadratic functional equation is stable for the pair (G,X) if and only if it
is stable for the pair (G, Y ). In view of this result it is not important which
Banach space is used on the range. Thus one may consider the stability of the
quadratic functional equation on the pair (G,R). Faiziev and Sahoo [8] proved
that quadratic functional equation is not stable on the pair (G,R) when G is
any arbitrary group. It is well known (see Skof [23] and Cholewa [2]) that the
quadratic functional equation is stable on the pair (G,R) when G is an abelian
group. Thus it is interesting to know on which noncommutative groups the
quadratic functional equation is stable in the sense of Hyers-Ulam. Faiziev and
Sahoo [8] proved that quadratic functional equation is stable on n-abelian groups
and T (2,K), where K is a commutative field. Further they also proved that every
group can be embedded into a group in which the quadratic functional equation
is stable. Yang [27] proved the stability of quadratic functional equation on
amenable groups.

In an American Mathematical Society meeting, E. Y. Deeba of the University
of Houston asked to find the general solution f : R→ R of the functional equation

f(x+ y + z) + f(x) + f(y) + f(z) = f(x+ y) + f(y + z) + f(x+ z). (1.2)

This functional equation is a variation of the quadratic functional equation and
it was first appeared in a paper of Whitehead [25]. Kannappan [20] showed that
the general solution f : V→ K of the above functional equation is of the form

f(x) = B(x, x) + A(x)

where B : V × V → K is a symmetric biadditive function and A : V → K is an
additive function, V is a vector space, and K is a field of characteristic different
from two (or of characteristic zero).

The Hyers-Ulam stability of the equation (1.2) was investigated by Jung [17].
He proved the following theorem.

Theorem 1.1. Suppose V is a real normed space and X a real Banach space.
Let f : V→ X satisfy the inequalities

‖f(x+ y + z) + f(x) + f(y) + f(z)− f(x+ y)− f(y + z)− f(x+ z)‖ ≤ δ (1.3)



34 V.A. FAĬZIEV, P.K. SAHOO

and

‖f(x)− f(−x)‖ ≤ θ (1.4)

for some δ, θ ≥ 0 and for all x, y, z ∈ V. Then there exists a unique quadratic
mapping Q : V→ X which satisfies

‖f(x)−Q(x)‖ ≤ 3 δ (1.5)

for all x ∈ V. If, moreover, f is measurable or f(tx) is continuous in t for each
fixed x ∈ V, then Q(tx) = t2Q(x) for all x ∈ V and t ∈ R.

Jung [17] proved another theorem replacing the inequality ‖f(x)−f(−x)‖ ≤ θ
by ‖f(x) + f(−x)‖ ≤ θ. Fechner [12] proved the stability of the functional
equation (1.2) on abelian group. For this functional equation (1.2), Kim [21]
proved a generalized stability result in the spirit of Gavruta [14]. Chang and
Kim [1] generalized the theorem of Jung [17] and proved the following theorem.

Theorem 1.2. Suppose V is a real normed space and X a real Banach space.
Let H : R3

+ → R+ be a function such that H(tu, tv, tw) ≤ tpH(u, v, w) for all
t, u, v, w ∈ R+ and for some p ∈ R. Further, let E : R+ → R+ satisfying
E(tx) ≤ tqE(x) for all t, x ∈ R+. Let p, q < 1 be real numbers and let f : V→ X
satisfy the inequalities

‖f(x+ y + z) + f(x) + f(y) + f(z)

− f(x+ y)− f(y + z)− f(z + x)‖ ≤ H(‖x‖, ‖y‖, ‖z‖) (1.6)

and

‖f(x)− f(−x)‖ ≤ E(‖x‖) (1.7)

for some δ, θ ≥ 0 and for all x, y, z ∈ V. Then there exists a unique quadratic
mapping Q : V→ X which satisfies

‖f(x)−Q(x)‖ ≤ H(‖x‖, ‖x‖, ‖x‖)
2− 2p

+ 2‖f(0)‖ (1.8)

for all x ∈ V. If, moreover, f is measurable or f(tx) is continuous in t for each
fixed x ∈ V, then Q(tx) = t2Q(x) for all x ∈ V and t ∈ R.

Chang and Kim [1] also proved another similar theorem replacing the inequality
‖f(x)− f(−x)‖ ≤ E(‖x‖) by ‖f(x) + f(−x)‖ ≤ E(‖x‖).

The functional equation (1.2) is takes the form

f(xyz) + f(x) + f(y) + f(z) = f(xy) + f(yz) + f(xz) (1.9)

on an arbitrary group G or on a semigroup S. In this sequel, we will write the
arbitrary semigroup S in multiplicative notation. Similarly, the arbitrary group
G will be written in multiplicative notation so that 1 will denote the identity
element of G. This functional equation implies the Drygas functional equation
f(xy) + f(xy−1) = 2f(x) + f(y) + f(y−1) whose general solution was presented
in Ebanks, Kannappan and Sahoo [7]. The stability of the Drygas functional
equation was studied by Jung and Sahoo [19] and also by Yang [26]. The system
of equations f(xy) + f(xy−1) = 2f(x) + f(y) + f(y−1) and f(yx) + f(y−1x) =
2f(x) + f(y) + f(y−1) generalizes the Drygas functional equation on groups. The
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stability of this system of equation was investigated by Faiziev and Sahoo (see
[9, 10, 11]) on nonabelian groups.

In the present paper, we consider the stability of the functional equation (1.9)
for the pair (S,E) when S is an arbitrary semigroup and E is a real Banach
space. If X is another real Banach space, then we prove that the functional
equation (1.9) is stable for the pair (S,X) if and only if it is stable for the pair
(S,E). We show that, in general, the equation (1.9) is not stable on semigroups.
However, this equation (1.9) is stable on periodic semigroups as well as abelian
semigroups. We also show that any semigroup with left (or right) cancellation
law can be embedded into a semigroup with left (or right) cancellation law where
the equation (1.9) is stable. The main results of this paper generalize the works
of Jung [17], Kannappan [20], and Fechner [12].

2. Decomposition

Let S be a semigroup and X be a Banach space. Let N be the set of natural
numbers and Z be the set of integers.

Definition 2.1. A mapping f : S → X is said to be a kannappan mapping if it
satisfies equation

f(xyz) + f(x) + f(y) + f(z)− f(xy)− f(xz)− f(yz) = 0 (2.1)

for all x, y, z ∈ S.

Definition 2.2. We will say that f : S → X is a quasikannappan mapping if
there is c > 0 such that

‖f(xyz) + f(x) + f(y) + f(z)− f(xy)− f(xz)− f(yz)‖ ≤ c (2.2)

for all x, y, z ∈ S.

The set of kannappan and quasikannappan mappings will be denote by K(S,X)
and KK(S,X), respectively.

Lemma 2.3. If f ∈ KK(S,X), then for any n ≥ 3 and x1, . . . , xn ∈ S the
inequality∥∥∥∥ f(x1x2 · · ·xn) + (n− 2)

n∑
i=1

f(xi)−
∑

1≤i<j≤n

f(xixj)

∥∥∥∥ ≤ (n− 2)(n− 1)

2
c (2.3)

holds.

Proof. We prove this lemma by induction. First we show that the inequality (2.3)
is true for n = 4. Since f ∈ KK(S,X), we obtain from (2.2)

‖ f(x1x2x3x4) + f(x1) + f(x2) + f(x3x4)

− f(x1x2)− f(x1x3x4)− f(x2x3x4) ‖ ≤ c,

‖ f(x2x3x4) + f(x2) + f(x3) + f(x4)− f(x2x3)− f(x2x4)− f(x3x4) ‖ ≤ c,

and

‖ f(x1x3x4) + f(x1) + f(x3) + f(x4)− f(x1x3)− f(x1x4)− f(x3x4) ‖ ≤ c.
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Therefore from the above three inequalities we have

‖ f(x1x2x3x4) + f(x1) + f(x2) + f(x3x4)− f(x1x2)

+f(x1) + f(x3) + f(x4)− f(x1x3)− f(x1x4)− f(x3x4)

+f(x2) + f(x3) + f(x4)− f(x2x3)− f(x2x4)− f(x3x4) ‖ ≤ 3c.

Simplifying we see that

‖ f(x1x2x3x4) + 2[f(x1) + f(x2) + f(x3) + f(x4)]− f(x1x2)
− f(x1x3)− f(x1x4)− f(x2x3)− f(x2x4)− f(x3x4) ‖ ≤ 3c

and this shows that inequality (2.3) holds for n = 4. We will rewrite the above
inequality as

‖ f(x1x2x3x4) + 2[f(x1) + f(x2) + f(x3) + f(x4)]− f(x1x2)
− f(x1x3)− f(x1x4)− f(x2x3)− f(x2x4)− f(x3x4) ‖ ≤ c4

where c4 = 3 c. Next suppose the above inequality holds for a positive integer n.
That is ∥∥∥∥ f(x1x2 · · ·xn) + (n− 2)

n∑
i=1

f(xi)−
∑

1≤i<j≤n

f(xixj)

∥∥∥∥ ≤ cn.

Consider∥∥∥∥ f(x1x2 · · · xnxn+1) + (n− 1)
n+1∑
i=1

f(xi)−
∑

1≤i<j≤n+1

f(xixj)

∥∥∥∥.
By our supposition we have∥∥∥∥ f(x1x2 · · · (xnxn+1)) + (n− 2)

[
n−1∑
i=1

f(xi) + f(xnxn+1)

]
−

∑
1≤i<j≤n−1

f(xixj)−
∑

1≤i≤n−1

f(xixnxn+1)

∥∥∥∥ ≤ cn.

Hence∥∥∥∥ f(x1x2 · · · (xnxn+1)) + (n− 2)

[
n−1∑
i=1

f(xi) + f(xnxn+1)

]
−

∑
1≤i<j≤n−1

f(xixj)

+
∑

1≤i≤n−1

[f(xi) + f(xn) + f(xn+1)− f(xixn)− f(xixn+1)− f(xnxn+1)]

∥∥∥∥
≤ cn + (n− 1) c.
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The last inequality can be rewritten as∥∥∥∥ f(x1x2 · · · (xnxn+1)) + (n− 1)
n+1∑
i=1

f(xi) + (n− 2)f(xnxn+1)

−
∑

1≤i<j≤n−1

f(xixj) +
∑

1≤i≤n−1

[− f(xixn)− f(xixn+1)− f(xnxn+1) ]

∥∥∥∥
≤ cn + (n− 1) c.

Hence∥∥∥∥ f(x1x2 · · ·xnxn+1) + (n− 1)
n+1∑
i=1

f(xi)−
∑

1≤i<j≤n+1

f(xixj)

∥∥∥∥ ≤ cn+1

where cn+1 = cn + (n− 1) c for n ≥ 3.
From the recurrence relations c3 = c and cn+1 = cn + (n − 1) c for n ≥ 3, we

get

cn+1 =
n (n− 1)

2
.

Thus we have proved the inequality (2.3) for all positive integers n. �

The following lemma follows from the above lemma.

Lemma 2.4. If f ∈ KK(S,X), then for any n ≥ 3, the inequality∥∥∥∥ f(xn) + (n− 2)n f(x)− (n− 1)n

2
f(x2)

∥∥∥∥ ≤ (n− 2) (n− 1)

2
c (2.4)

holds for all x ∈ S.

Proof. Letting x1 = x2 = · · · = xn = x in the inequality (2.3), we have the
asserted inequality (2.4). �

Lemma 2.5. Let the function φ : S → X be define by φ(x) = f(x2).

(1) If f ∈ KK(S,X), then φ ∈ KK(S,X).
(2) If f ∈ K(S,X), then φ ∈ K(S,X).

Proof. Since f ∈ KK(S,X), we have

‖ f(xyz) + f(x) + f(y) + f(z)− f(xy)− f(xz)− f(yz) ‖ ≤ c.

Consider

‖φ(xyz) + φ(x) + φ(y) + φ(z)− φ(xy)− φ(xz)− φ(yz) ‖
= ‖ f(xyzxyz) + f(xx) + f(yy) + f(zz)− f(xyxy)− f(xzxz)− f(yzyz) ‖.

We have

‖ f((xy)z(xy)z) + 4f(xy) + 4f(z)− f(xyz)− f(xyxy)

− f(xyz)− f(zxy)− f(zz)− f(xyz) ‖ ≤ 3c, (2.5)

‖ f((xy)z(xy)z) + 4f(xy) + 4f(z)

− 3f(xyz)− f(xyxy)− f(zxy)− f(zz) ‖ ≤ 3c, (2.6)



38 V.A. FAĬZIEV, P.K. SAHOO

‖ f(xzxz) + 4f(x) + 4f(z)− 3f(xz)− f(zx)− f(x2)− f(z2) ‖ ≤ 3c, (2.7)

‖ f(yzyz) + 4f(y) + 4f(z)− 3f(yz)− f(zy)− f(y2)− f(z2) ‖ ≤ 3c. (2.8)

From (2.5)–(2.8) we have

‖ f(xyzxyz) + f(xx) + f(yy) + f(zz)− f(xyxy)− f(xzxz)− f(yzyz) ‖
= ‖ f(xyzxyz) + 4f(xy) + 4f(z)− 3f(xyz)− f(xyxy)− f(zxy)

− f(zz)− 4f(xy)− 4f(z) + 3f(xyz) + f(xyxy) + f(zxy)

+ f(zz) + f(xx) + f(yy) + f(zz)− f(xyxy)

− f(xzxz)− 4f(x)− 4f(z) + 3f(xz) + f(x2) + f(zx) + f(z2)

+ 4f(x) + 4f(z)− 3f(xz)− f(x2)− f(zx)− f(z2)

− f(yzyz)− 4f(y)− 4f(z) + 3f(yz) + f(y2) + f(zy) + f(z2)

+ 4f(y) + 4f(z)− 3f(yz)− f(y2)− f(zy)− f(z2) ‖.
Therefore

‖ f(xyzxyz) + f(xx) + f(yy) + f(zz)− f(xyxy)− f(xzxz)− f(yzyz) ‖
≤ ‖ f(xyzxyz) + 4f(xy) + 4f(z)− 3f(xyz)− f(xyxy)− f(zxy)− f(zz)‖

+ ‖ − f(xzxz)− 4f(x)− 4f(z) + 3f(xz) + f(x2) + f(zx) + f(z2)‖
+ ‖ − f(yzyz)− 4f(y)− 4f(z) + 3f(yz) + f(y2) + f(zy) + f(z2)‖
+ ‖ − 4f(xy)− 4f(z) + 3f(xyz) + f(xyxy) + f(zxy)

+ f(zz) + f(xx) + f(yy) + f(zz)− f(xyxy)
+ 4f(x) + 4f(z)− 3f(xz)− f(x2)− f(zx)− f(z2)
+ 4f(y) + 4f(z)− 3f(yz)− f(y2)− f(zy)− f(z2) ‖.

Notice that

‖ − 4f(xy)− 4f(z) + 3f(xyz) + f(xyxy) + f(zxy) + f(zz) + f(xx)
+ f(yy) + f(zz)− f(xyxy) + 4f(x) + 4f(z)− 3f(xz)
− f(x2)− f(zx)− f(z2) + 4f(y) + 4f(z)
− 3f(yz)− f(y2)− f(zy)− f(z2) ‖

= ‖ 3f(xyz) + f(zxy) + 4f(z) + 4f(x) + 4f(y)− 4f(xy)− 3f(xz)− 3f(yz)
−f(zx)− f(zy) ‖

≤ ‖ f(zxy) + f(z) + f(x) + f(y)− f(xy)− f(zx)− f(zy) ‖
+‖ 3f(xyz) + 3f(z) + 3f(x) + 3f(y)− 3f(xy)− 3f(xz)− 3f(yz) ‖

≤ 3c+ 9c = 12c.

Hence

‖ f(xyzxyz) + f(xx) + f(yy) + f(zz)− f(xyxy)− f(xzxz)− f(yzyz) ‖
≤ 3c+ 3c+ 3c+ 12c = 21c.

Thus from the last inequality we have

‖φ(xyz) + φ(x) + φ(y) + φ(z)− φ(xy)− φ(xz)− φ(yz) ‖ ≤ 21c.

The proof of (2) follows similarly. �

Lemma 2.6. Let
{
ak
}∞
1

be a sequence in X such that for any m, k ∈ N

‖ am+k − 2ak+1 + ak ‖ ≤
d

4k
(2.9)
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holds. Then
{
ak
}∞
1

is a Cauchy sequence.

Proof. For any positive integers n,m we have

‖ am+k − 2ak+1 + ak ‖ ≤
d

4k
,

and

‖ an+k − 2ak+1 + ak ‖ ≤
d

4k
.

Hence

‖ an+k − am+k ‖ ≤
2d

4k
.

The latter inequality implies that
{
ak
}∞
1

is a Cauchy sequence. �

Lemma 2.7. Suppose f ∈ KK(S,X). For any x ∈ S, the limit

lim
n→∞

1

4n
f(x2

n

) = f̂(x), (2.10)

exists and it satisfies the relations

f̂(xn) = n2 f̂(x), (2.11)∥∥∥∥ f̂(x)−
[

1

2
f(x2)− f(x)

] ∥∥∥∥ ≤ 1

2
c (2.12)

for all x ∈ S and n ∈ N.

Proof. From (2.4) it follows that∥∥∥∥ 1

n2
f(xn) +

(
1− 2

n

)
f(x)− 1

2

(
1− 1

n

)
f(x2)

∥∥∥∥ ≤ 1

2

(
1− 3

n
+

2

n2

)
c,∥∥∥∥ 1

n2
f(xn)−

[
1

2
f(x2)− f(x)

]
+

1

2n
f(x2)− 2

n
f(x)

∥∥∥∥ ≤ 1

2
c. (2.13)

Therefore, there is an n0 such that if n > n0, then∥∥∥∥ 1

n2
f(xn)−

[
1

2
f(x2)− f(x)

] ∥∥∥∥ ≤ c. (2.14)

Therefore, in (2.13) and (2.14) replacing n by 2m, we have∥∥∥∥ 1

4m
f(x2

m

)−
[

1

2
f(x2)− f(x)

] ∥∥∥∥ ≤ c, (2.15)

and ∥∥∥∥ 1

4m+k
f(x2

m+k

)−
[

2

4k+1
f(x2

k+1

)− 1

4k
f(x2

k

)

] ∥∥∥∥ ≤ 1

4k
c. (2.16)

Denote 1
4k
f(x2

k
) by ak. Then from (2.16) we have

‖ am+k − 2ak+1 + ak ‖ ≤
1

4k
c.
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Now from Lemma 2.6 it follows that the sequence{
ak :=

1

4k
f
(
x2

k
) }∞

k=1

is a Cauchy sequence and thus has a limit. We denote this limit by f2(x). So

f2(x) = lim
k→∞

1

4k
f
(
x2

k
)
.

Hence we have

f2
(
x2

m)
= lim

k→∞

1

4k
f
(
x2

k+m
)

= lim
k→∞

4m

4k+m
f
(
x2

k+m
)

= 4m lim
k→∞

1

4k+m
f
(
x2

k+m
)

= 4m f2(x).

From the relation (2.15) it follows that∥∥∥∥ f2(x)−
[

1

2
f(x2)− f(x)

] ∥∥∥∥ ≤ c.

Taking into account Lemma 2.5 we see that f2 ∈ KK(S,X).
Now let m ≥ 3 be a positive integer. Then for any x ∈ S we have∥∥∥∥ f2 (xmn)

+ (mn − 2)mn f2(x)− (mn − 1)mn

2
f2
(
x2
) ∥∥∥∥ ≤ (mn − 2) (mn − 1)

2
c.

Dividing the both sides of the last inequality by m2n and simplifying, we have∥∥∥∥ 1

m2n
f2
(
xm

n)
+

(
1− 2

mn

)
f2(x)−

(
1

2
− 1

2mn

)
f2
(
x2
) ∥∥∥∥ ≤ (mn − 2) (mn − 1)

2m2n
c.

Hence we have∥∥∥∥ 1

m2n
f2
(
xm

n)− [1

2
f2(x

2)− f2(x)

]
− 2

mn
f2(x) +

1

2mn
f2(x

2)

∥∥∥∥ ≤ 1

2
c.

Therefore, there is an n0 such that if n ≥ n0, then∥∥∥∥ 1

m2n
f2
(
xm

n)− [1

2
f2
(
x2
)
− f2(x)

] ∥∥∥∥ ≤ c.

From the later relation it follows that∥∥∥∥ 1

m2n
f2

(
xm

n+k
)
−
[

1

2
f2

((
xm

k)2)− f2 (xmk
)]∥∥∥∥ ≤ c.

Now dividing the both sides of the last inequality by m2k, we obtain∥∥∥∥ 1

m2(n+k)
f2

(
xm

n+k
)
− 1

m2k

[
4

2
f2

(
xm

k
)
− f2

(
xm

k
)]∥∥∥∥ ≤ 1

m2k
c

and thus ∥∥∥∥ 1

m2(n+k)
f2

(
xm

n+k
)
− 1

m2k
f2

(
xm

k
) ∥∥∥∥ ≤ 1

m2k
c.
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From the last relation it follows that there is a limit

fm(x) = lim
n→∞

1

m2k
f2

(
xm

k
)
.

It is clear that for any q ∈ N and x ∈ S the following relations hold:

fm
(
xm

q)
= m2q fm(x), fm

(
x2

q)
= 4q fm(x).

Moreover we have ∥∥∥∥ fm(x)−
[

1

2
f2(x

2)− f2(x)

] ∥∥∥∥ ≤ c.

Taking into account relation f2(x
2k) = 4kf2(x) we get

‖ fm(x)− f2(x) ‖ ≤ 2c.

Now taking into account relation fm(x2
k
) = 4kfm(x) we get

fm(x) = f2(x) ∀x ∈ S.

Now if we denote f2(x) by f̂(x) we obtain f̂(xn) = n2f̂(x) and the proof of the
lemma is now complete. �

Corollary 2.8. If f ∈ K(S,X), then the limit f̂(x) = lim
n→∞

1

4n
f(x2

n

) exists and

satisfies f̂(xn) = n2 f̂(x) for all x ∈ S and n ∈ N. Moreover, f̂(x) ∈ K(S,X)

and f̂(x) = 1
2
f(x2)− f(x).

Lemma 2.9. Let the function f : S → X satisfy the condition

‖ f(x2)− 2f(x) ‖ ≤ c

for some c > 0 and all x ∈ S. Then there is a limit

f̃(x) = lim
k→∞

1

2k
f
(
x2

k
)
,

and for any m ∈ N and x ∈ S the following relations

f̃(xm) = m f̃(x),

‖ f̃(x)− f(x) ‖ ≤ c.

hold.

Proof. The proof is similar to the proof of the previous lemma. �

Lemma 2.10. For any f ∈ KK(S,X), the function ϕ = f−f̂ satisfies inequality

‖ ϕ(x2)− 2ϕ(x) ‖ ≤ c (2.17)

for some positive c and any x ∈ S.

Proof. Let f ∈ KK(S,X). Then f satisfies relation (2.2). Hence from (2.12), we
get

‖ 2f̂(x)− f(x2) + 2f(x) ‖ ≤ c.
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Now we obtain

‖ ϕ(x2)− 2ϕ(x) ‖ = ‖ f(x2)− f̂(x2)− 2f(x) + 2f̂(x) ‖

= ‖ f(x2)− 4f̂(x)− 2f(x) + 2f̂(x) ‖

= ‖ f(x2)− 2f(x)− 2f̂(x) ‖
≤ c

and the proof of the lemma is complete. �

From above lemma and Corollary 2.8 we get the following Corollary.

Corollary 2.11. If f ∈ K(S,X), then the function defined by φ = f− f̂ satisfies
φ(x2) = 2φ(x) for all x ∈ S and belongs to K(S,X).

Denote by PK4(S,X) and PK2(S,X) the subspaces of KK(S,X) consisting
of functions f satisfying

f(xk) = k2f(x) ∀ k ∈ N, ∀x ∈ S,

and

f(xk) = kf(x) ∀ k ∈ N, ∀x ∈ S,
respectively.

Theorem 2.12. For any semigroup S we have the following decomposition:

KK(S,X) = PK4(S,X)⊕ PK2(S,X)⊕B(S,X),

where B(S,X) denotes the space of all bounded mappings from S to X.

Proof. It is clear that KK(S,X) is the direct sum of PK4(S,X), PK2(S,X)
and B(S,X). To see this, let f be a quasikannappan function satisfying inequal-

ity (2.2). Then function ϕ = f − f̂ belongs to KK(S,X) and satisfies relation
(2.17). Now from Lemma 2.9 and Lemma 2.10 it follows that ϕ̃ ∈ KK(S,X) and

‖ ϕ̃(x)− ϕ(x) ‖ ≤ c

for any x ∈ S. So, the function δ(x) = f(x) − f̂(x) − ϕ̃(x) is bounded. We can

rewrite the last relation as f(x) = f̂(x) + ϕ̃(x) + δ(x) and hence KK(S,X) =
PK4(S,X)⊕ PK2(S,X)⊕B(S,X). �

3. Stability

Definition 3.1. Let S be a semigroup and X be a Banach space. The functional
equation (2.1) is said to be stable for the pair (S,X) if for any f : S → X
satisfying inequality

‖ f(xyz) + f(x) + f(y) + f(z)− f(xy)− f(xz)− f(yz) ‖ ≤ d (3.1)

for some positive real number d and all x, y, z ∈ S, then there is a solution ϕ
of (2.1) such that the difference f − ϕ is a bounded mapping.
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The subspace of K(S,X) consisting of functions belonging to PK4(S,X) will
be denoted by K4(S,X). In other words K4(S,X) consists of solutions of (2.1)
satisfying the additional condition

f(xk) = k2 f(x) ∀ k ∈ N, ∀x ∈ S.

The subspace of K(S,X) consisting of functions belonging to PK2(S,X) will
be denoted by K2(S,X). In other words K2(S,X) consists of solutions of (2.1)
satisfying the additional condition

f(xk) = k f(x) ∀ k ∈ N, ∀x ∈ S.

Proposition 3.2. K(S,X) = K4(S,X)⊕K2(S,X) for any semigroup S and any
Banach space X.

Proof. It is clear that K4(S,X) ∩K2(S,X) = {0}. Let f be a solution of (2.1).

From Lemma 2.5, Corollary 2.8 and Corollary 2.11 it follows that f = f̂ + ϕ,

where f̂ ∈ K4(S,X) and ϕ ∈ K2(S,X). �

Proposition 3.3. The equation (2.1) is stable for the pair (S,X) if and only if
PK4(S,X) = K4(S,X) and PK2(S,X) = K2(S,X).

Proof. Suppose that the equation (2.1) is stable for the pair (S,X), and as-
sume that PK4(S,X) 6= K4(S,X). Let f ∈ PK4(S,X) \ K4(S,X). Then
by Proposition 3.2 there are ϕ4 ∈ K4(S,X) and ϕ2 ∈ K2(S,X) such that for
some positive d we have |f(x) − ϕ4(x) − ϕ2(x)| ≤ d for all x ∈ S. Thus

the function ψ(x) = f(x) − ϕ4(x) − ϕ2(x) is bounded. Therefore we get ψ̂ =

f̂− ϕ̂4(x)− ϕ̂2(x) ≡ 0. Now taking into account f̂ = f, ϕ̂4(x) = ϕ4(x), ϕ̂2(x) ≡ 0
we obtain f = ϕ̂4(x) = ϕ4(x). Thus we obtain a contradiction to the assumption
f ∈ PK4(S,X) \K4(S,X).

Now assume that PK2(S,X) 6= K2(S,X). Let f ∈ PK2(S,X) \ K2(S,X).
Then by the last proposition there are ϕ4 ∈ K4(S,X) and ϕ2 ∈ K2(S,X) such
that for some positive d we have |f(x) − ϕ4(x) − ϕ2(x)| ≤ d for all x ∈ S. The

function ψ(x) = f(x) − ϕ4(x) − ϕ2(x) is bounded. Therefore we obtain ψ̂ =

f̂ − ϕ̂4(x)− ϕ̂2(x) ≡ 0. Now taking into account f̂ = 0, ϕ̂4(x) = ϕ4(x), ϕ̂2(x) ≡ 0
we get 0 = ϕ̂4(x) = ϕ4(x). Hence |f(x)− ϕ2(x)| ≤ d. The latter relation implies
k |f(x)−ϕ2(x)| = |f(xk)−ϕ2(x

k)| ≤ d for all k ∈ N and thus we see that f ≡ ϕ2.
So, we obtain a contradiction to the assumption f ∈ PK2(S,X) \K2(S,X).

Therefore if equation (2.1) is stable for the pair (S,X), then

PK4(S,X) = K4(S,X) and PK2(S,X) = K2(S,X).

Now suppose that PK4(S,X) = K4(S,X) and PK2(S,X) = K2(S,X). Let us
verify that equation (2.1) is stable for the pair (S,X). If f satisfies (3.1), then f ∈
KK(S,X) and there are f4 ∈ PK4(S,X), f2 ∈ PK2(S,X) and bounded function
δ such that f = f4 + f2 + δ. Now from the relations PK4(S,X) = K4(S,X) and
PK2(S,X) = K2(S,X) we get that ϕ = f4 + f2 is a solution of (2.1) such that
f −ϕ is a bounded function. This means that equation (2.1) is stable for the pair
(S,X). This completes the proof of the proposition. �
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Theorem 3.4. Let S be a semigroup, and X and E be two Banach spaces. Then
equation (2.1) is stable for the pair (S,X) if and only it is stable for the pair
(S,E).

Proof. It is clear that we can only consider the case when E is the set of real
numbers R. Suppose that the equation (2.1) is stable for the pair (S,X). Suppose
that (2.1) is not stable for the pair (S,R), then either PK4(S,R) 6= K4(S,R) or
PK2(S,R) 6= K2(S,R). First, consider the case PK4(S,R) 6= K4(S,R). Let
f ∈ PK4(S,R) \K4(S,R).

Let e ∈ X and ‖e‖ = 1. Consider the function ϕ : S → X given by the formula
ϕ(x) = f(x) · e. Then from relation

‖ ϕ(xyz) + ϕ(x) + ϕ(y) + ϕ(z)− ϕ(xy)− ϕ(xz)− ϕ(yz) ‖
= ‖ f(xyz) · e+ f(x) · e+ f(y) · e+ f(z) · e− f(xy) · e− f(xz) · e− f(yz) · e ‖
= ‖ [f(xyz) + f(x) + f(y) + f(z)− f(xy)− f(xz)− f(yz)] · e ‖
= | f(xyz) + f(x) + f(y) + f(z)− f(xy)− f(xz)− f(yz) | · ‖e‖

it follows that ϕ ∈ PK4(S,X) \ K4(S,X) which contradicts the fact that the
equation (2.1) is stable for the pair (S,X). Similarly we verify that PK2(S,R) =
K2(S,R). So, the equation (2.1) is stable for the pair (S,R).

Now suppose that the equation (2.1) is stable for the pair (S,R), that is

PK4(S,R) = K4(S,R) and PK2(S,R) = K2(S,R).

Denote by X∗ the space of linear bounded functionals on X endowed by functional
normed topology. It is clear that for any ψ ∈ PKi(S,X) and any λ ∈ X∗ the
function λ ◦ ψ belongs to the space PKi(S,R), i = 2, 4 . Indeed, let for some
c > 0 and any x, y, z ∈ S we have

‖ ψ(xyz) + ψ(x) + ψ(y) + ψ(z)− ψ(xy)− ψ(xz)− ψ(yz) ‖ ≤ c.

Hence

‖λ ◦ ψ(xyz) + λ ◦ ψ(x) + λ ◦ ψ(y) + λ ◦ ψ(z)− λ ◦ ψ(xy)

− λ ◦ ψ(xz)− λ ◦ ψ(yz)‖
= ‖ λ[ψ(xyz) + ψ(x) + ψ(y) + ψ(z)− ψ(xy)− ψ(xz)− ψ(yz)] ‖ ≤ c‖λ‖.

Obviously, λ ◦ψ(xn) = n2λ ◦ψ(x) if ψ ∈ PK4(S,X) and λ ◦ψ(xn) = nλ ◦ψ(x)
if ψ ∈ PK2(S,X) for any x ∈ S and for any n ∈ N.

Hence the function λ ◦ ψ belongs to the space PK4(S,R) ⊕ PK2(S,R). Let
f : S → X belongs to the set [PK4(S,X)⊕PK2(S,X)] \ [K4(S,X)⊕K2(S,X)].
Then there are x, y, z ∈ S such that f(xyz)+f(x)+f(y)+f(z)−f(xy)−f(xz)−
f(yz) 6= 0. Hahn–Banach Theorem implies that there is an ` ∈ X∗ such that
`(f(xyz) + f(x) + f(y) + f(z) − f(xy) − f(xz) − f(yz)) 6= 0, and we see that
` ◦ f belongs to the set [PK4(S,R) ⊕ PK2(S,R)] \ [K4(S,R) ⊕K2(S,R)]. This
contradiction proves the theorem. �

In view of Theorem 3.4, it is not important which Banach space is used on the
range. Thus one may consider the stability of the functional equation (2.1) on
the pair (S,R). Let us simplify the following notations: In the case X = R the
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spaces K(S,R), KK(S,R), KK4(S,R), KK2(S,R), PK4(S,R), PK2(S,R) will
be denoted by K(S), KK(S), KK4(S), KK2(S), PK4(S), PK2(S), respectively.

Theorem 3.5. In general, the functional equation (2.1) is not stable on semi-
groups.

Proof. Let F be a free semigroup of rank two with free generators a, b. For any
word w ∈ F . Denote by η(w) the number of occurrences of a2b2 in w. It is easy
to verify that for any u, v ∈ F

η(uv)− η(u)− η(v) ∈ { 0, 1 }.
So

η(uvw)− η(u)− η(v)− η(w) ∈ { 0, 1, 2 },
and

| η(xyz) + η(x) + η(y) + η(z)− η(xy)− η(xz)− η(xz) | ≤ 5.

Thus we see that η ∈ KK(F), and

| η(x2)− 2 η(x) | ≤ 1 ∀x ∈ F .
Therefore, function η̃ defined by

η̃(x) = lim
n→∞

1

2n
η(x2

n

)

belongs to PK2(F). Let us verify that η̃ dos not belong to K(F). Indeed, it is
clear that

η(aab2) = 1, η(a) = η(b) = η(b2) = η(a2) = η(ab2) = 0,

η̃(aab2) = 1, η̃(a) = η̃(b) = η̃(b2) = η̃(a2) = η̃(ab2) = 0.

Therefore letting x = a, y = a, z = b2, we get

η̃(xyz) + η̃(x) + η̃(y) + η̃(z)− η̃(xy)− η̃(xz)− η̃(xz)

= η̃(aab2) + η̃(a) + η̃(a) + η̃(b2)− η̃(aa)− η̃(ab2)− η̃(ab2) = 1 6= 0.

So PK2(F) 6= K2(F) and equation (2.1) is not stable on F . �

Definition 3.6. An element x of a semigroup S is said to be periodic if there
are n,m ∈ N such that n 6= m and xn = xm. We shall say that the semigroup is
periodic if every element of S is periodic.

Theorem 3.7. The equation (2.1) is stable for any periodic semigroup.

Proof. It is clear that if S is a periodic semigroup, then PK4(S) = {0} and
PK2(S) = {0}. Therefore by Theorem 2.12 we have KK(S) = B(S), and equa-
tion (2.1) is stable on S. �

Now let us show that equation (2.1) is stable on any abelian semigroup S. It
is clear that for any abelian group A and any real-valued symmetric bimorphism
B(x, y) of A×A, the function x→ B(x, x) belongs to K4(A). Denote by BM(A)
the set of all real-valued functions f on A defined by the rule f(x) = B(x, x),
where B(., .) is a symmetric bimorphism.
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Lemma 3.8. Let A3 be an abelian free semigroup of rank three. Then PK4(A3) =
K4(A3) = BM(A3).

Proof. Let A3 be a free abelian semigroup of rank three with free generators a, b, c.
The space of symmetric bimorphisms on A3 is six dimensional. For f ∈ K4(A3),
we choose a symmetric bimorphism B(x, y) such that B(a, a) = f(a), B(b, b) =
f(b), B(c, c) = f(c), B(a, b) = 1

2
[f(ab)− f(a)− f(b)], B(a, c) = 1

2
[f(ac)− f(a)−

f(c)], B(b, c) = 1
2
[f(bc)− f(b)− f(c)].

Hence, the function ϕ(x) = f(x)−B(x, x) belongs to PK4(A3), and

ϕ(a) = ϕ(b) = ϕ(c) = ϕ(ab) = ϕ(ac) = ϕ(bc) = 0.

We have ϕ(ak) = ϕ(bk) = ϕ(ck) = 0 for any k ∈ N. Let

| ϕ(xyz) + ϕ(x) + ϕ(y) + ϕ(z)− ϕ(xy)− ϕ(xz)− ϕ(yz) | ≤ δ.

Then for any p, q, k ∈ N we have

| ϕ(apkb2qk) + ϕ(apk) + 2ϕ(bqk)− 2ϕ(apkbqk)− ϕ(b2qk) | ≤ δ

which simplifies to
| ϕ(apkb2qk)− 2ϕ(apkbqk) | ≤ δ.

Hence
k2 | ϕ(apb2q)− 2ϕ(apbq) | ≤ δ

which is

| ϕ(apb2q)− 2ϕ(apbq) | ≤ 1

k2
δ.

Thus k →∞, we obtain ϕ(apb2q) = 2ϕ(apbq). Similarly, for any p, q, k, ` ∈ N, we
have∣∣∣∣ ϕ(apkb`qk)+(`−1)[ϕ(apk)+`ϕ(bqk)]−`ϕ(apkbqk)− `(`− 1)

2
ϕ(b2qk)

∣∣∣∣ ≤ `(`− 1)

2
δ

which is

| ϕ(apkb`qk)− `ϕ(apkbqk) | ≤ `(`− 1)

2
δ.

Hence

k2 | ϕ(apb`q)− `ϕ(apbq) | ≤ `(`− 1)

2
δ

which is

| ϕ(apb`q)− `ϕ(apbq) | ≤ `(`− 1)

2k2
δ.

Therefore as k →∞, we get ϕ(apb`q) = `ϕ(apbq). Similarly, we obtain ϕ(a`pbq) =
`ϕ(apbq). So, for any n,m ∈ N, we get ϕ(anbm) = nmϕ(ab) = 0.

The same way we obtain equalities ϕ(ancm) = nmϕ(ac) = 0 and ϕ(bncm) =
nmϕ(bc) = 0.

Now for any n,m, k, ` ∈ N we have

| ϕ(apkbqkc`k)−ϕ(apk)−ϕ(bqk)−ϕ(c`k)−ϕ(apkbqk)−ϕ(apkc`k)−ϕ(bqkc`k) | ≤ δ.

Hence | ϕ(apkbqkc`k) | ≤ δ, and we have k2 | ϕ(apbqc`) | ≤ δ. Thus

| ϕ(apbqc`) | ≤ 1

k2
δ.
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By taking the limit as k →∞, we see that ϕ(apbqc`) = 0. It means that

f(x) = B(x, x) ∈ BM(A3)

and the proof of the lemma is now finished. �

For any group G, we will denote by X(G) the set of real-valued additive char-
acters of G.

Lemma 3.9. Let A3 be an abelian free semigroup of rank three. Then PK2(A3) =
K2(A3) = X(A3).

Proof. Let f ∈ PK2(A3) and f(a) = p, f(b) = q, f(c) = r. Further, let ψ be
an additive character of A3 such that ψ(a) = p, ψ(b) = q, ψ(c) = r. Then
the function ϕ(x) = f(x)− ψ(x) belongs to PK2(A3) and satisfies the condition
ϕ(a) = ϕ(b) = ϕ(c) = 0. Let us show that ϕ ≡ 0.

Let δ be a positive number such that for any x, y, z ∈ A3

| ϕ(xyz) + ϕ(x) + ϕ(y) + ϕ(z)− ϕ(xy)− ϕ(xz)− ϕ(yz) | ≤ δ.

Then for any p, q, k, ` ∈ N we have∣∣∣∣ ϕ(apkb`qk)+(`−1)[ϕ(apk)+`ϕ(bqk)]−`ϕ(apkbqk)− `(`− 1)

2
ϕ(b2qk)

∣∣∣∣ ≤ `(`− 1)

2
δ

which is

| ϕ(apkb`qk)− `ϕ(apkbqk) | ≤ `(`− 1)

2
δ.

Hence

k | ϕ(apb`q)− `ϕ(apbq) | ≤ `(`− 1)

2
δ

which is

| ϕ(apb`q)− `ϕ(apbq) | ≤ `(`− 1)

2k
δ.

Therefore as k →∞, we get ϕ(apb`q) = `ϕ(apbq). Similarly we obtain ϕ(a`pbq) =
`ϕ(apbq). So, for any n,m ∈ N, we get ϕ(anbm) = nmϕ(ab). It follows that
for u = anbm we have ϕ(uk) = ϕ(aknbkm) = k2nmϕ(ab) = k2ϕ(u) But ϕ(x) ∈
PK2(A3), therefore we have ϕ(uk) = kϕ(u) = k2ϕ(u). The last relation implies
ϕ(u) = 0.

The same way we obtain equalities ϕ(ancm) = 0 and ϕ(bncm) = 0 for any
n,m ∈ N.

Now for any n,m, k, ` ∈ N we have

| ϕ(apkbqkc`k)−ϕ(apk)−ϕ(bqk)−ϕ(c`k)−ϕ(apkbqk)−ϕ(apkc`k)−ϕ(bqkc`k) | ≤ δ.

Hence | ϕ(apkbqkc`k) | ≤ δ, and we have k | ϕ(apbqc`) | ≤ δ. Thus

| ϕ(apbqc`) | ≤ 1

k2
δ.

By taking the limit as k →∞, we see that ϕ(apbqc`) = 0.
Therefore, ϕ ≡ 0 and f ≡ ψ ∈ X(A3). �

Theorem 3.10. Let A be any abelian group. Then PK(A) = K4(A)⊕K2(A).



48 V.A. FAĬZIEV, P.K. SAHOO

Proof. Let us show that PK4(A) = K4(A) and PK2(A) = K2(A). Suppose that

PK4(A) 6= K4(A). In this case there are f ∈ PK4(A) and x, y, z ∈ A such that

| f(xyz) + f(x) + f(y) + f(z)− f(xy)− f(xz)− f(yz) | = d > 0.

Denote by B the subsemigroup of A generated by three elements x, y, z. Let τ be
an epimorphism of A3 onto B given by the rule τ(a) = x, τ(b) = y, τ(c) = z. So,
if we consider function g(t) = f(τ(t)) we get an element of PK4(A3) such that

| g(abc) + g(a) + g(b) + g(c)− g(ab)− g(ac)− g(bc) | = d > 0

which contradicts Lemma 3.8.
Similarly, we come to a contradiction if we suppose that PK2(A) 6= K2(A).

Hence PK4(A) = K4(A), and PK2(A) = K2(A). �

Corollary 3.11. Suppose A is an abelian group. Then

K(A) = PK(A) = K4(A)⊕K2(A).

Now from Proposition 3.3 we get the following corollary.

Corollary 3.12. The equation (2.1) is stable on any abelian semigroup A.

For any group G, let Q(G) be the set of solutions of the quadratic functional
equation

f(xy) + f(xy−1) = 2f(x) + 2f(y).

Moreover, we denote by PK+(G) and by PK−(G) subspaces of PK(G) consisting
of functions f such that f(x−1) = f(x) and f(x−1) = −f(x), respectively.

Lemma 3.13. For any group G,

PK4(G) = PK+(G) and PK2(G) = PK−(G)

hold.

Proof. It is clear that PK4(G) ⊆ PK+(G), and PK2(G) ⊆ PK−(G). Let us
show that PK+(G) ⊆ PK4(G), and PK−(G) ⊆ PK2(G), respectively. Let
f ∈ PK(G), then there are ϕ ∈ PK4(G) and ψ ∈ PK2(G) such that f(x) =
ϕ(x) + ψ(x). If f ∈ PK+(G), then

f(x) = f(x−1) = ϕ(x−1) + ψ(x−1) = ϕ(x)− ψ(x),

so ϕ(x) + ψ(x) = ϕ(x) − ψ(x) and we see that ψ(x) ≡ 0 and f(x) = ϕ(x) ∈
PK4(G). Therefore PK+ ⊆ PK4(G).

Now if f ∈ PK−(G), then

f(x) = −f(x−1) = −ϕ(x−1)− ψ(x−1) = −ϕ(x) + ψ(x),

so ϕ(x)+ψ(x) = −ϕ(x)+ψ(x) and we see that ϕ ≡ 0 and f(x) = ψ(x) ∈ PK2(G).
Therefore PK−(G) ⊆ PK2(G). �

Lemma 3.14. Let G be an arbitrary group and f ∈ Q(G), then for any x, y, z ∈ G
we have

f(xyz) + f(xzy) = 2f(xy) + 2f(xz) + 2f(yz)− 2f(x)− 2f(y)− 2f(z). (3.2)
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Proof. Since f ∈ Q(G), we have

f(xyz) + f(xyz−1) = 2 f(xy) + 2 f(z),

f(xyz−1) + f(xzy−1) = 2 f(x) + 2 f(yz−1),

f(xzy−1) + f(xzy) = 2 f(xz) + 2 f(y)

for all x, y, z ∈ G. Therefore

f(xyz) + f(xzy) = 2f(xy) + 2f(z)− 2f(x)− 2f(yz−1) + 2f(xz) + 2f(y).

Using the equation
f(yz) + f(yz−1) = 2f(y) + 2f(z)

in the last equality, we get

f(xyz) + f(xzy)

= 2f(xy) + 2f(z)− 2f(x)− 4f(y)− 4f(z) + 2f(yz) + 2f(xz) + 2f(y)

= 2f(xy) + 2f(xz) + 2f(yz)− 2f(x)− 2f(y)− 2f(z).

This completes the proof of the lemma. �

Lemma 3.15. Let Ā3 be an abelian free group of rank 3. Then Q(Ā3) = BM(Ā3).

Proof. Let Ā3 be a free abelian group of rank three with free generators a, b, c. It
is clear that BM(Ā3) ⊆ Q(Ā3). The space of symmetric bimorphisms on Ā3 is
six dimensional. For f ∈ Q(Ā3), we choose a symmetric bimorphism B(x, y) such
that B(a, a) = f(a), B(b, b) = f(b), B(c, c) = f(c), B(a, b) = 1

2
[f(ab) − f(a) −

f(b)], B(a, c) = 1
2
[f(ac)− f(a)− f(c)], B(b, c) = 1

2
[f(bc)− f(b)− f(c)].

Hence, the function ϕ(x) = f(x)−B(x, x) belongs to Q(Ā3), and

ϕ(a) = ϕ(b) = ϕ(c) = ϕ(ab) = ϕ(ac) = ϕ(bc) = 0. (3.3)

We have ϕ(ak) = ϕ(bk) = ϕ(ck) = 0 for any k ∈ Z.
Since A3 is an abelian group, from (3.2), we get

ϕ(xyz) = ϕ(xy) + ϕ(xz) + ϕ(yz)− ϕ(x)− ϕ(y)− ϕ(z) (3.4)

for all x, y, z ∈ A3. From the equality (3.4), we obtain

ϕ(anbmbk) = ϕ(anbm) + ϕ(anbk) + ϕ(bmbk)− ϕ(an)− ϕ(bm)− ϕ(bk)

and therefore

ϕ(anbmbk) = ϕ(anbm) + ϕ(anbk).

Similarly, from the equality (3.4), we can obtain

ϕ(anakbm) = ϕ(anbm) + ϕ(akbm).

for all n,mk ∈ Z. The last two relations imply

ϕ(anbm) = nmϕ(ab)

for any n,m ∈ Z. Taking into account (3.3) we get ϕ(anbm) = 0. Now from (3.4)
we get

ϕ(anbmck) = ϕ(anbm) + ϕ(anck) + ϕ(bmck)− ϕ(an)− ϕ(bm)− ϕ(ck) = 0.
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It means that
f(x) = B(x, x) ∈ BM(Ā3)

and the proof of the lemma is now finished. �

Lemma 3.16. Let Ā3 be an abelian group of rank three, then K2(Ā3) = X(Ā3).

Proof. The proof is similar to the proof of Lemma 3.15. �

Proposition 3.17. Let A be an abelian group, then

PK(A) = PK4(A)⊕ PK2(A) = K4(A)⊕K2(A) = Q(A)⊕X(A).

Another words general solution f : A→ R of equation (2.1) is of the form

f(x) = B(x, x) + ψ(x),

where B(x, y) ∈ BM(A), ψ ∈ X(A).

Proof. First we verify equality K4(A) = Q(A). We have K4(A) ⊆ Q(A). Suppose
that there is f ∈ Q(A) \K4(A), then there are x, y, z ∈ A such that

f(xyz) + f(x) + f(y) + f(z) 6= f(xy) + f(xz) + f(yz). (3.5)

Now let Ā3 be a free abelian group with free generators a, b, c. LetB be a subgroup
of A generated by elements x, y, z and let π : Ā3 → B be an epimorphism such
that π(a) = x, π(b) = y, π(c) = z. Then the function ω(t) = f(π(t)) is an
element of Q(Ā3). By Lemma 3.15 we have ω ∈ BM(Ā3). But this contradicts
to (3.5) because

ω(abc) + ω(a) + ω(b) + ω(c)− ω(ab)− ω(ac)− ω(bc)

= f(xyz) + f(x) + f(y) + f(z)− f(xy)− f(xz)− f(yz) 6= 0.

Therefore, f ∈ K4(A). Similar way we verify that K2(A) = X(A). �

As a first corollary of Proposition 3.17 we obtain the following corollary that
generalizes Kannappan’s result [20] (see Section 1, Introduction) in the case K =
R.

Corollary 3.18. Let A be an abelian group, then general solution f : A→ R of
equation (2.1) is of the form

f(x) = B(x, x) + ψ(x),

where B(x, y) is an symmetric bimorphism and ψ ∈ X(A).

From Proposition 3.17 we obtain the following two theorems that generalize
the results of Jung [17] mentioned in the Introduction.

Theorem 3.19. Suppose that A is an abelian group, and X a real Banach space.
Let f : A→ X satisfies the inequalities

‖ f(xyz) + f(x) + f(y) + f(z)− f(xy)− f(xz)− f(yz) ‖ ≤ d

‖ f(x)− f(−x) ‖ ≤ θ

for some d, θ > 0 and for all x, y, z ∈ A. Then there exists a unique quadratic
mapping q : A→ X which satisfies

‖ f(x)− q(x) ‖ ≤ δ
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for some positive δ and all x ∈ A.

Proof. According to the Theorem 3.4 we can assume that X = R. From Theo-
rem 2.12 and Proposition 3.17 it follows that there are q(x) ∈ Q(A), ψ ∈ X(A)
and γ ∈ B(A) such that f(x) = q(x) + ψ(x) + γ(x). Therefore,

| f(x)− f(x−1) | = | q(x) + ψ(x) + γ(x)− q(x−1)− ψ(x−1)− γ(x−1) |
= | 2ψ(x) + γ(x)− γ(x−1) | ≤ θ,

and we see that ψ(x) is a bounded function. Hence, ψ ≡ 0 and f(x) = q(x)+γ(x).
If δ is a positive real number such that |γ(x)| ≤ δ for all x ∈ A, then we have
|f(x)− q(x)| ≤ δ for all x ∈ A. The proof is now complete. �

Theorem 3.20. Suppose that A is an abelian group, and X a real Banach space.
Let f : A→ X satisfies the inequalities

‖ f(xyz) + f(x) + f(y) + f(z)− f(xy)− f(xz)− f(yz) ‖ ≤ d

‖ f(x) + f(−x) ‖ ≤ θ

for some d, θ > 0 and for all x, y, z ∈ A. Then there exists a unique additive
mapping ψ : A→ X which satisfies

‖ f(x)− ψ(x) ‖ ≤ δ

for some positive δ and all x ∈ A.

Proof. The proof is similar to that of the previous theorem. �

4. Embedding

Remark 4.1. If S is a semigroup with zero and f ∈ KK(S), then f is bounded.

Proof. Since f ∈ KK(S), the function f satisfies

| f(xyz) + f(x) + f(y) + f(z)− f(xy)− f(xz)− f(yz) | ≤ d,

for all x, y, z ∈ S and for some d > 0. If we put y = z = 0 in the above inequality,
we obtain

| f(0) + f(x) + f(0) + f(0)− f(0)− f(0)− f(0) | ≤ d.

Therefore | f(x) | ≤ d. So f is a bounded function. �

The following corollary follows from the Remark 4.1.

Corollary 4.2. Let S0 be a semigroup obtained by adjoining the zero to the
arbitrary semigroup S. Then S can be embedded into the semigroup S0 such that
the equation (2.1) is stable on S0.

Proof. From Remark 4.1, we have KK(S0) = B(S0). Hence the equation (2.1) is
stable on S0. �

Definition 4.3. We shall say that in a semigroup S a left law of reduction is
fulfilled if any equality xy = xz in S implies y = z. Similarly, we shall say that
in a semigroup S a right law of reduction is fulfilled if any equality yx = zx in S
implies y = z.
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Obviously in a semigroup with zero neither left nor right law of reduction is
fulfilled.

The embedding presented in Corollary 4.2 does not preserve some important
properties of semigroup. For instance, if S is a group S0 is not necessarily a
group. Similarly, if S is a semigroup with law of reduction, then S0 does not have
the same property.

Our main goal in this section is to construct another embedding preserving
properties of semigroups such as laws of reduction and the axioms of a group.
From now on let S be an arbitrary semigroup with unit e.

Lemma 4.4. Let f ∈ KK(S) so that

| f(xyz) + f(x) + f(y) + f(z)− f(xy)− f(xz)− f(yz) | ≤ d (4.1)

for any x, y, z ∈ S and for some d > 0. Further, let c be an element of order two.
Then

| f(u)− f(cu) | ≤ 2 d, (4.2)

| f(u)− f(uc) | ≤ 2 d, (4.3)

| f(uc)− f(u) | ≤ 8 d

for any u ∈ S.

Proof. Letting x = y = z = e in (4.1), we obtain |f(e)| ≤ d. Similarly, letting
x = y = z = c in (4.1), we have | f(ccc) + 3f(c) − 3f(cc) | ≤ d. Since c is an
element of order two, the last inequality reduces to | 4f(c)− 3f(e) | ≤ d. Hence
we have | 4f(c) | ≤ d+ 3|f(e)| and consequently

| f(c) | ≤ 1

4
d+

3

4
f(e) ≤ d.

Next substituting x = c, y = c and z = u in (4.1), we have

| f(ccu) + f(c) + f(c) + f(u)− f(cc)− f(cu)− f(cu) | ≤ d.

Since c is an element of order two, the last inequality yields

| 2f(u) + 2f(c)− f(e)− 2f(cu) | ≤ d

and hence we have | 2f(u) − 2f(cu) | ≤ d + 3 d. Therefore simplifying, we see
that

| f(u)− f(cu) | ≤ 2 d

which is (4.2).
Similarly, letting x = u, y = c and z = c in (4.1), we get

| f(ucc) + f(c) + f(c) + f(u)− f(uc)− f(uc)− f(cc) | ≤ d.

Using the fact that c is of order two, we have

| 2f(u) + 2f(c)− 2f(uc)− f(e) | ≤ d.

This last inequality yields | 2f(u)− 2f(uc) | ≤ d+ 3 d. Simplifying, we get

| f(u)− f(uc) | ≤ 2 d

which is (4.3).
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Again, substituting x = c, y = u and z = c in (4.1), we obtain

| f(cuc) + f(c) + f(c) + f(u)− f(cu)− f(uc)− f(cc) | ≤ d.

Using the fact that c is of order two and simplifying, we have

| f(uc) + f(u)− f(cu)− f(uc) | ≤ d+ 3 d.

Using (4.2) we obtain

| f(uc)− f(uc) | = | f(uc) + f(u)− f(cu)− f(uc) + f(cu)− f(u) |
≤ | f(uc) + f(u)− f(cu)− f(uc) |+ | f(cu)− f(u) |
≤ 4 d+ 2 d = 6 d.

Similarly using (4.3) we have

| f(uc)− f(cu) | ≤ 6 d.

Now taking into account the last inequality and (4.2), we get

| f(uc)− f(u) | = | f(uc)− f(cu) + f(cu)− f(u) |
= | f(uc)− f(cu) |+ | f(cu)− f(u) |
≤ 6 d+ 2 d = 8 d.

The proof of the lemma is now complete. �

Now consider semidirect product H = K o S of semigroup S and a group K,
where elements of K act on S by automorphisms. Also we suppose that every
non unit element of K has order two.

Lemma 4.5. Suppose that f ∈ PK4(G) and satisfies condition (4.1) on H. Let
b, c, bc ∈ K be the elements of order two. Suppose for u ∈ S the elements ubc, uc, u
generate an abelian subsemigroup, then

f(ubcucu) = 9 f(u) ∀u ∈ S.

Proof. Using Lemma 2.3 with n = 5 and x1 = u, x2 = b, x3 = u, x4 = c, x5 = u,
we get

| f(ubucu) + 3[3f(u) + f(b) + f(c)]− 3f(u2)− f(ub)

− 2f(uc)− 2f(bu)− f(cu)− f(bc) | ≤ 6d.

Now taking into account relations |f(b)| ≤ d, |f(c)| ≤ d, and |f(bc)| ≤ d, we
obtain

| f(ubucu) + 9f(u)− 3f(u2)− f(ub)− 2f(uc)− 2f(bu)− f(cu) | ≤ 13 d

which is

| f(bcubcucu) + 9f(u)− 3f(u2)− f(ub)− 2f(uc)− 2f(bu)− f(cu) | ≤ 13 d.

Now using (4.3) and (4.2) we get

| f(ubcucu) + 9f(u)− 3f(u2)− f(u)− 2f(u)− 2f(u)− f(u) | ≤ 13 d+ 14 d = 27 d.

Using f(u2) = 4 f(u), the last inequality yields

| f(ubcucu)− 9f(u) | ≤ 27 d.
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Therefore for any n ∈ N we have

n2|f(ubcucu)− 9f(u)| = |f((ubcucu)n)− 9f(un)|
= |f((un)bc(un)cun)− 9f(un)| ≤ 27d.

Thus we have
f(ubcucu) = 9 f(u)

and the proof of the lemma is complete. �

Lemma 4.6. Let f be an element of PK2(G) satisfying condition (4.1) on H.
Let b, c, bc ∈ K be the elements of order two. Suppose for u ∈ S the elements
ubc, uc, u generate an abelian subsemigroup, then

f(ubcucu) = 3 f(u) ∀u ∈ S.

Proof. Using Lemma 2.3 with n = 5 and x1 = u, x2 = b, x3 = u, x4 = c, x5 = u,
we get

| f(ubucu) + 3[3f(u) + f(b) + f(c)]− 3f(u2)− f(ub)

− 2f(uc)− 2f(bu)− f(cu)− f(bc) | ≤ 6d.

Now taking into account relations |f(b)| ≤ d, |f(c)| ≤ d, and |f(bc)| ≤ d, we
obtain

| f(ubucu) + 9f(u)− 3f(u2)− f(ub)− 2f(uc)− 2f(bu)− f(cu) | ≤ 13 d

which is

| f(bcubcucu) + 9f(u)− 3f(u2)− f(ub)− 2f(uc)− 2f(bu)− f(cu) | ≤ 13 d.

Now using (4.3) and (4.2) we get

| f(ubcucu) + 9f(u)− 3f(u2)− f(u)− 2f(u)− 2f(u)− f(u) | ≤ 13 d+ 14 d = 27 d.

Using f(u2) = 2 f(u), the last inequality yields

| f(ubcucu)− 3f(u) | ≤ 27 d.

Therefore for any n ∈ N we have

n2|f(ubcucu)− 3f(u)| = |f((ubcucu)n)− 3f(un)|
= |f((un)bc(un)cun)− 3f(un)| ≤ 27d.

Thus we have
f(ubcucu) = 3 f(u)

and the proof of the lemma is complete. �

Let S be an arbitrary semigroup with unit and B a group. For each b ∈ B
denote by S(b) a group that is isomorphic to S under isomorphism a → a(b).
Denote by H = S(B) =

∏
b∈B S(b) the direct product of groups S(b). It is clear

that if a1(b1)a2(b2) · · · ak(bk) is an element of H, then for any b ∈ B, the mapping

b∗ : a1(b1)a2(b2) · · · ak(bk)→ a1(b1b)a2(b2b) · · · ak(bkb)

is an automorphism of D and b→ b∗ is an embedding of B into AutH. Thus, we
can form a semidirect product G = B oH. This semigroup is called the wreath
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product of the semigroup S and the group B, and will be denoted by G = S oB.
We will identify the group S with subgroup S(1) of H, where 1 ∈ B. Hence, we
can assume that S is a subgroup of H.

Let us denote, by C, the group of order four having generators b, c and defining
relations: b2 = c2 = 1, bc = cb. Consider the semigroup group S o C.

Lemma 4.7. Suppose that f ∈ PK4(S o C). If for some x, y, z ∈ S we have

|f(xyz) + f(x) + f(y) + f(z)− f(xy)− f(xz)− f(yz)| = δ > 0

then for some x1, y1, z1 ∈ H we have

|f(x1y1z1) + f(x1) + f(y1) + f(z1)− f(x1y1)− f(x1z1)− f(y1z1)| = 9δ.

Proof. Let x1 = xyz, y1 = xb1, z1 = xc1. We have x1 ∈ S(1), xb1 ∈ S(b), xc1 ∈ S(c),
therefore subsemigroup generated by x1, x

b
1, x

c
1 is an abelian semigroup. Applying

Lemma 4.5 we get

f(xyz(xyz)b(xyz)c) = f(xxbxcyybyczzbzc),

| f(xxbxcyybyczzbzc) + f(xxbxc) + f(yybyc) + f(zzbzc)

− f(xxbxcyybyc)− f(xxbxczzbzc)− f(yybyczzbzc) |
= 9|f(xyz) + f(x) + f(y) + f(z)− f(xy)− f(xz)− f(yz)| = 9δ

and the proof is now complete. �

Lemma 4.8. Suppose that f ∈ PK2(S o C). If for some x, y, z ∈ S we have

|f(xyz) + f(x) + f(y) + f(z)− f(xy)− f(xz)− f(yz)| = δ > 0

then for some x1, y1, z1 ∈ H we have

|f(x1y1z1) + f(x1) + f(y1) + f(z1)− f(x1y1)− f(x1z1)− f(y1z1)| = 3δ.

Proof. Let x1 = xyz, y1 = xb1, z1 = xc1. We have x1 ∈ S(1), xb1 ∈ S(b), xc1 ∈ S(c),
therefore subsemigroup generated by x1, x

b
1, x

c
1 is an abelian semigroup. Applying

Lemma 4.6 we get

f(xyz(xyz)b(xyz)c) = f(xxbxcyybyczzbzc),

| f(xxbxcyybyczzbzc) + f(xxbxc) + f(yybyc) + f(zzbzc)

− f(xxbxcyybyc)− f(xxbxczzbzc)− f(yybyczzbzc) |
= 3 |f(xyz) + f(x) + f(y) + f(z)− f(xy)− f(xz)− f(yz)| = 3δ

and the proof is now complete. �

Theorem 4.9. Let S be a semigroup with left (or right) law of reduction. Then
S can be embedded into a semigroup G with the left (or right respectively) law of
reduction and the equation (2.1) is stable on G. Moreover, if S is a group then
G is a group too.
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Proof. Let Ci, for i ∈ N, be a group of order 4 with two generators bi, ci and
defining relations b2i = 1, c2i = 1, bici = cibi. Consider the chain of groups defined
as follows:

S1 = S, S2 = S1 o C1, S3 = S2 o C2, . . . , Sk+1 = Sk o Ck, . . .

Define a chain of embeddings

S1 = S → S2 = S1 o C1 → S3 = S2 o C2 → · · · → Sk+1 = Sk o Ck → . . . (4.4)

by identifying Sk with Sk(1) a subgroup of Sk+1. Let G be the direct limit of the
chain (4.4). Then we have G = ∪k∈NSk and

S1 ⊂ S2 ⊂ · · · ⊂ Sk ⊂ Sk+1 ⊂ . . . . . . ⊂ G.

Let f ∈ PK4(G), and let for k ∈ N

δk = sup
{
| f(xyz) + f(x) + f(y) + f(z)− f(xy)− f(xz)− f(yz) | ; x, y, z ∈ Sk

}
.

Let us verify that δk = 0 for any k. Suppose that δ1 > 0. Then for some x1, y1, z1
in S1, we have

| f(x1y1z1) + f(x1) + f(y1) + f(z1)− f(x1y1)− f(x1z1)− f(y1z1) | = δ > 0.

By Lemma 4.7 there are x2, y2, z2 ∈ S2 such that

| f(x2y2z2) + f(x2) + f(y2) + f(z2)− f(x2y2)− f(x2z2)− f(y2z2) | = 9δ > 0.

By repeated applications of Lemma 4.7 we obtain, for any k ∈ N, there are
xk, yk, zk ∈ Sk such that

| f(xkykzk) + f(xk) + f(yk) + f(zk)− f(xkyk)− f(xkzk)− f(ykzk). | = 9k−1δ > 0

This gives a contradiction to the assumption that f ∈ PK4(G). Therefore δ1 = 0.
Similarly, using Lemma 4.8, we verify that δn = 0 for any n ∈ N. So, PK4(G) =
K4(G). Similarly we verify that PK2(G) = K2(G). Thus by Proposition 3.3 we
get PK(G) = K(G) and the equation (2.1) is stable on G. This finishes the proof
of the theorem. �
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