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VARIATIONS OF WEYL TYPE THEOREMS
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Abstract. A Banach space operator T satisfies property(Bgw), a variant
property(gw), if the complement in the approximate point spectrum σa(T )
of the semi-B-essential approximate point spectrum σSBF−

+
(T ) coincides with

set of isolated eigenvalues of T of finite multiplicity E0(T ). We also intro-
duce properties (Bb), and property (Bgb) in connection with Weyl type theo-
rems, which are analogous, respectively, to generalized Browder’s theorem and
property(gb). We obtain relation among these new properties.

1. Introduction and preliminaries

Let B(X) denote the algebra of all bounded linear operator T acting on a
Banach space X. For T ∈ B(X), let T ∗, ker(T ), R(T ), σ(T ), σp(T ) and σa(T )
denote respectively the adjoint, the null space, the range, the spectrum, the point
spectrum and the approximate point spectrum of T . Let C denote the set of
complex numbers. Let us denote by α(T ) the dimension of the kernel and by
β(T ) the codimension of the range. Recall that the operator T ∈ B(X) is said to
be upper semi-Fredholm, T ∈ SF+(X), if the range of T ∈ B(X) is closed and
α(T ) < ∞, while T ∈ B(X) is said to be lower semi-Fredholm, T ∈ SF−(X),
if β(T ) < ∞. An operator T ∈ B(X) is said to be semi-Fredholm if T ∈
SF+(X) ∪ SF−(X) and Fredholm if T ∈ SF+(X) ∩ SF−(X). If T is semi-
Fredholm then the index of T is defined by ind (T) = α(T)− β(T).

Let a := a(T ) be the ascent of an operator T ; i.e., the smallest nonnegative
integer p such that ker(T p) = ker(T p+1). If such integer does not exist we put
a(T ) =∞. Analogously, let d := d(T ) be the descent of an operator T ; i.e., the
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smallest nonnegative integer q such that R(T q) = R(T q+1), and if such integer
does not exist we put d(T ) = ∞. It is well known that if a(T ) and d(T ) are
both finite then a(T ) = d(T ) [21, Proposition 38.3]. Moreover, 0 < a(T − λI) =
d(T − λI) <∞ precisely when λ is a pole of the resolvent of T , see Heuser [21,
Proposition 50.2].
A bounded linear operator T acting on a Banach space X is Weyl if it is Fredholm
of index zero and Browder if T is Fredholm of finite ascent and descent. The Weyl
spectrum σW (T ) and Browder spectrum σB(T ) of T are defined by

σW (T ) = {λ ∈ C : T − λI is not Weyl}
σB(T ) = {λ ∈ C : T − λI is not Browder}.

Let E0(T ) = {λ ∈ isoσ(T) : 0 < α(T− λ) <∞} and let π0(T ) := σ(T ) \ σB(T )
all Riesz points of T . According to Coburn [16], Weyl’s theorem holds for T
if ∆(T ) = σ(T ) \ σW (T ) = E0(T ), and that Browder’s theorem holds for T if
∆(T ) = σ(T ) \ σW (T ) = π0(T ). Here and elsewhere in this paper, for A ⊂ C,
iso A denotes the set of all isolated points of A and acc A denotes the set of all
points of accumulation of A.

Let SF−+ (X) = {T ∈ SF+ : ind (T) ≤ 0}. The upper semi Weyl spectrum is
defined by σSF−+ (T ) = {λ ∈ C : T − λ /∈ SF−+ (X)}. According to Rakočević [23],

an operator T ∈ B(X) is said to satisfy a-Weyl’s theorem if σa(T ) \ σSF−+ (T ) =

E0
a(T ), where

E0
a(T ) = {λ ∈ isoσa(T) : 0 < α(T− λI) <∞}.

It is known [23] that an operator satisfying a-Weyl’s theorem satisfies Weyl’s the-
orem, but the converse does not hold in general.

For T ∈ B(X) and a non negative integer n define T[n] to be the restriction T
to R(T n) viewed as a map from R(T n) to R(T n)(in particular T[0] = T ). If for
some integer n the range space R(T n) is closed and T[n] is an upper ( resp., lower)
semi-Fredholm operator, then T is called upper ( resp., lower) semi-B-Fredholm
operator. In this case index of T is defined as the index of semi-B-Fredholm
operator T[n]. A semi-B-Fredholm operator is an upper or lower semi-Fredholm
operator [13]. Moreover, if T[n] is a Fredholm operator then T is called a B-
Fredholm operator [7]. An operator T is called a B-Weyl operator if it is a
B-Fredholm operator of index zero. The B-Weyl spectrum σBW (T ) is defined by
σBW (T ) = {λ ∈ C : T − λ is not B-Weyl operator } [9]. Let E(T ) be the set of
all eigenvalues of T which are isolated in σ(T ). According to [10], an operator
T ∈ B(X) is said to satisfy generalized Weyl’s theorem, if σ(T )\σBW (T ) = E(T ).
In general, generalized Weyl’s theorem implies Weyl’s theorem but the converse
is not true [14]. Following [9], we say that T satisfies generalized Browders’s the-
orem, if σ(T ) \ σBW (T ) = π(T ), where π(T ) is the set of poles of T.

Let SBF−+ (X) denote the class of all is upper B-Fredholm operators such that
ind (T) ≤ 0. The upper B-Weyl spectrum σSBF−+ (T ) of T is defined by

σSBF−+ (T ) = {λ ∈ C : T − λ /∈ SBF−+ (X)}.
Following [14], we say that generalized a-Weyl’s theorem holds for T ∈ B(X) if

∆g
a(S) = σa(T ) \ σSBF−+ (T ) = Ea(T ), where Ea(T ) = {λ ∈ isoσa(T ) : α(T − λ) >
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0} is the set of all eigenvalues of T which are isolated in σa(T ) and that T ∈ B(X)
obeys generalized a-Browder’s theorem if ∆g

a(T ) = πa(T ). It is proved in [4,
Theorem 2.2] that generalized a-Browder’s theorem is equivalent to a-Browder’s
theorem, and it is known from [14, Theorem 3.11] that an operator satisfying
generalized a-Weyl’s theorem satisfies a-Weyl’s theorem, but the converse does
not hold in general and under the assumption Ea(T ) = πa(T ) it is proved in [12,
Theorem 2.10] that generalized a-Weyl’s theorem is equivalent to a-Weyl’s theo-
rem.

Definition 1.1. ([8]) For any T ∈ B(X) we define the sequences (cn(T )) and
(c′n(T )) as follows:

(i) cn(T ) = dim (R(T n)/R(T n+1)) ;
(ii) c′n(T ) = dim (ker(T n+1)/ ker(T n)) .

Following [22], we say that T ∈ B(X) possesses property (w) if ∆a(T ) =
σa(T ) \ σSF−+ (T ) = E0(T ). The property (w) has been studied in [1, 2, 22]. In

Theorem 2.8 of [2], it is shown that property (w) implies Weyl’s theorem, but
the converse is not true in general. We say that T ∈ B(X) possesses prop-
erty (gw) if ∆g

a(T ) = σa(T ) \ σSBF−+ (T ) = E(T ). Property (gw) has been in-

troduced and studied in [5]. Property (gw) extends property (w) to the con-
text of B-Fredholm theory, and it is proved in [5] that an operator possess-
ing property (gw) possesses property (w) but the converse is not true in gen-
eral. According to [15], an operator T ∈ B(X) is said to possess property (gb)
if ∆g

a(T ) = σa(T ) \ σSBF−+ (T ) = π(T ), and is said to possess property (b) if

∆a(T ) = σa(T ) \ σSF−+ (T ) = π0(T ). It is shown in Theorem 2.3 of [15] that an

operator possessing property (gb) possesses property (b) but the converse is not
true in general. Recently in [24], property (gb) and perturbations were extensively
studied by Rashid. According to [20], an operator T ∈ B(X) is said to satisfy
property (Bw) if ∆g(T ) = σ(T ) \ σBW (T ) = E0(T ).

In this paper we define and study three new properties (Bgw), (Bb) and (Bgb)
(see Definitions 2.1 and 2.4) in connection with Weyl type theorems [14], which
play roles analogous to Browder’s theorem and generalized Browder’s theorem,
respectively. We prove in Theorem 2.3 that an operator possessing property
(Bgw) possesses property (Bw) but the converse is not true in general as shown
by Example 2.8. We show also in Theorem 2.7 that an operator possessing prop-
erty (Bgw) possesses property (gb) and in Theorem 2.5 we show that an operator
possessing property (Bgb) possesses property (b), but the converses of those the-
orems are not true in general. Conditions for the equivalence of properties (Bgw)
and (gb), and properties (Bgw) and (Bw), are given in Theorem 2.7 and Theo-
rem 2.17, respectively. We study conditions on Hilbert space operators T and S
which ensure that T ⊕ S obeys property (Bgw).

In the last part, as a conclusion, we give a diagram summarizing the different
relations between Weyl type theorems, extending a similar diagram given in [15].

2. property(Bgw) and Weyl type theorems

Now we define property (Bgw), a variant of generalized property (w), as follows.
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Definition 2.1. A bounded linear operator T ∈ B(X) is said to satisfy property
(Bgw) if

σa(T ) \ σSBF−+ (T ) = E0(T ).

Definition 2.2. [19] Let T ∈ B(X) and let s ∈ N. Then T has uniform de-
scent for n ≥ s if R(T )+ker(T n) = R(T )+ker(T s) for all n ≥ s. If in addition
R(T )+ker(T s) is closed then T said to have topological uniform descent for n ≥ s.

Recall from [9] that an operator T is Drazin invertible if it has a finite ascent and
descent. The Drazin spectrum σD(T ) = {λ ∈ C : T−λI is not Drazin invertible}.
We observe that σD(T ) = σ(T ) \ π(T ).

Theorem 2.3. If T satisfies property (Bgw), then it satisfies property (Bw).

Proof. Suppose that T satisfies property (Bgw) and λ ∈ σ(T ) \ σBW (T ). Then
T − λI is B-Weyl and so T − λI is upper semi-B-Fredholm with index zero.
Thus λ /∈ σSBF−+ (T ). Let λ /∈ σa(T ). Since T − λI is an operator of topological

uniform descent, then there exist ε > 0 such that if 0 < |λ − µ| < ε, then we
have cn(T − λI) = c0(T − µI) and c

′
n(T − λI) = c

′
0(T − µI) for large enough

n. Since T − λI is B-Weyl, cn(T − λI) = c
′
n(T − λI). We have c

′
0(T − λI) = 0

because λ /∈ σ(T ). Hence we have c0(T − λI) = c
′
0(T − λI) = 0. Consequently

λ /∈ σa(T ), which is a contradiction. Hence λ ∈ σa(T ). Since T satisfies property
(Bgw), λ ∈ E0(T ). Conversely if λ ∈ E0(T ). Then λ ∈ E0

a(T ) which implies that
λ /∈ σSBF−+ (T ). Hence T − λI is an operator of topological uniform descent, then

there exist ε > 0 such that 0 < |λ− µ| < ε implies that cn(T − λI) = cn(T − µI)
and c

′
n(T − λI) = c

′
n(T − µI) for all large enough n. Since λ ∈ isoσ(T ), if ε is

chosen small enough, then c
′
n(T − λI) = c

′
n(T − µI) = 0. So T − λI is Drazin

invertible. Therefore λ ∈ σ(T ) \ σBW (T ). �

Now we introduce property (Bb) and property (Bgb) a variant of generalized
Browder’s theorem and property (gb) respectively as follows:

Definition 2.4. A bounded linear operator T ∈ B(X) is said to satisfy

(i) property (Bb) if σ(T ) \ σBW (T ) = π0(T ).
(ii) property (Bgb) if σa(T ) \ σSBF−+ (T ) = π0(T ).

Theorem 2.5. If T satisfies property (Bgb), then T satisfies property (Bb).

Proof. We get the desired result by similar argument in Theorem 2.3. �

An operator T ∈ B(X) has the single valued extension property (SVEP) at
λ0 ∈ C, if for every open disc Dλ0 centered at λ0 the only analytic function
f : Dλ0 → X which satisfies (T −λ)f(λ)=0 for all λ ∈ Dλ0 is the function f ≡ 0.
We say that T has SVEP if it has SVEP at every λ ∈ C. For more information,
see [1]. The following proposition [24] is important for the characterization of
property (Bgw).

Proposition 2.6. Let T ∈ B(X) be have the SVEP. If T − λI has finite descent
at every λ ∈ Ea(T ), then T satisfies property (gb).

Theorem 2.7. Let T ∈ B(X). Then the following statements are equivalent:
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(i) T satisfies property (Bgw),
(ii) T satisfies property (gb) and π(T ) = E0(T ).

Proof. (i) =⇒ (ii). Suppose T satisfies property (Bgw). To prove T satisfies
property (gb), by Proposition 2.8 it is enough to show that T has SVEP. Let
λ ∈ σa(T ) \ σSBF−+ (T ). Since T satisfies property (Bgw), λ ∈ E0(T ). Hence λ ∈
isoσ(T). Thus T has SVEP at λ. Now we have to prove π(T ) = E0(T ). Let
λ ∈ E0(T ). Since T satisfies property (Bgw), λ ∈ σa(T ) \ σSBF−+ (T ). Since T

satisfies property (gb), λ ∈ π(T ). Conversely suppose λ ∈ π(T ). Since T satisfies
property (gb), λ ∈ σa(T ) \ σSBF−+ (T ). Hence λ ∈ E0(T ) because T satisfies

property (Bgw).
(ii) =⇒(i). If λ ∈ σa(T ) \ σSBF−+ (T ), then λ ∈ π(T ) by hypothesis and so

λ ∈ E0(T ). Conversely, if λ ∈ E0(T ), then, λ ∈ π(T ) by hypothesis. Since T
satisfies property (gb), λ ∈ σa(T ) \ σSBF−+ (T ). This completes the proof. �

The following example shows the converse of Theorem 2.3 is not true in general.

Example 2.8. Let R ∈ (
¯
`2(N) be the unilateral right shift and T the operator

defined on `2(N) ⊕ `2(N) by T = 0 ⊕ R. Then σ(T ) = σBW (T ) = D(0, 1) the
unit disc in C, isoσ(T ) = ∅ and σa(T ) = C(0, 1) ∪ {0}, where C(0, 1) is the unit
circle in C. This implies that σa(T ) has empty interior and T has SVEP. On the
other hand, it easily seen that σSBF−+ (T ) = C(0, 1). Therefore, T does not possess

property (Bgw), since ∆g
a(T ) = {0} and E0(T ) = ∅. On the other hand, property

(Bw) holds for T since ∆g(T ) = ∅ = E0(T ).

Theorem 2.9. Let T ∈ B(X) satisfy property (Bgw). Then generalized a-
Browder’s theorems holds for T and σa(T ) = σSBF−+ (T ) ∪ isoσa(T).

Proof. By Theorem 3.1 of [18] it is sufficient to prove that T has SVEP at every
λ ∈ σSBF−+ (T ). Let us assume that λ ∈ σSBF−+ (T ). If λ /∈ σa(T ), then T has SVEP

at λ. If λ ∈ σa(T ) then λ ∈ σa(T ) \ σSBF−+ (T ) = E0(T ) since T satisfy property

(Bgw). Thus λ ∈ isoσa(T) which implies T has SVEP at λ. To prove σa(T ) =
σSBF−+ (T ) ∪ isoσa(T). We observe that λ ∈ σa(T ) \ σSBF−+ (T ) = E0(T ). Thus

λ ∈ isoσa(T). Hence σa(T ) ⊆ σSBF−+ (T ) ∪ isoσa(T). But σSBF−+ (T ) ∪ isoσa(T) ⊆
σa(T) for every operator T . Therefore, σa(T ) = σSBF−+ (T ) ∪ isoσa(T). �

A characterization of property (Bgw) is given as follows:

Theorem 2.10. Let T ∈ B(X). Then the following assertions are equivalent:

(i) T satisfies property (Bgw),
(ii) generalized a-Browder’s theorems holds for T and πa(T ) = E0(T ).

Proof. (i)⇒(ii). Assume that T satisfies property (Bgw). By Theorem 2.9 it
sufficient to prove the equality πa(T ) = E0(T ). If λ ∈ E0(T ) then as T satisfies
property (Bgw), it implies that λ ∈ σa(T ) \ σSBF−+ (T ) = πa(T ), because general-

ized a-Browder’s theorems holds for T . If λ ∈ πa(T ) = σa(T )\σSBF−+ (T ) = E0(T ),

therefore the equality πa(T ) = E0(T ).
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(ii)⇒(i). If λ ∈ σa(T ) \ σSBF−+ (T ), then as generalized a-Browder’s theorem

holds for T , we have λ ∈ πa(T ) = E0(T ). Conversely, if λ ∈ E0(T ) then
λ ∈ πa(T ) = σa(T ) \ σSBF−+ (T ). Thus σa(T ) \ σSBF−+ (T ) = E0(T ). �

Theorem 2.11. Let T ∈ B(X). If T or T ∗ has SVEP at points in σa(T ) \
σSBF−+ (T ), Then T satisfies property (Bgw) if and only if E0(T ) = πa(T ).

Proof. We conclude from Theorem 3.1 of [18] that if T or T ∗ has SVEP at points
in σa(T ) \ σSBF−+ (T ), then T satisfies generalized a-Browder’s theorem. Hence,

πa(T ) = E0(T ) if and only if σa(T ) \ σSBF−+ (T ) = E0(T ) and so, T satisfies

property (Bgw) if and only if πa(T ) = E0(T ). �

Theorem 2.12. Let T ∈ B(X). If T satisfies property (Bgw), then T satisfies
property (w).

Proof. Suppose that T satisfies property (Bgw), then σa(T )\σSBF−+ (T ) = E0(T ).

If λ ∈ σa(T ) \ σSF−+ (T ), then λ ∈ σa(T ) \ σSBF−+ (T ) = E0(T ). Conversely, if λ ∈
E0(T ). Then λ ∈ E0(T ) = σa(T ) \ σSBF−+ (T ). Hence T − λI ∈ SBF+(X). Since

α(T −λI) <∞, then it follows from Lemma 2.2 of [5] we have T −λI ∈ SF+(X).
Thus λ ∈ σa(T ) \ σSBF−+ (T ). Finally, σa(T ) \ σSF−+ (T ) = E0(T ). �

The converse of Theorem 2.12 does not hold in general as shown by the following
example:

Example 2.13. Let T ∈ B(`2(N)) be the unilateral right shift. It is known
that σ(T ) = D, the closed unit disc in C, σa(T ) = C(0, 1), the unit circle of C
and T has empty eigenvalues set. Moreover, σSF−+ (T ) = C(0, 1) and π(T ) = ∅.
Define S on the Banach space X = `2(N) ⊕ `2(N) by S = 0 ⊕ T then S−1(0) =
`2(N) ⊕ {0}, σSF−+ (S) = σa(S) = {0} ∪ C(0, 1), σSBF−+ (S) = C(0, 1), πa(S) =

{0} and π(S) = π0(S) = E0(S) = ∅. Hence σa(T ) \ σSF−+ (T ) = E0(S) and

σa(T ) \ σSBF−+ (T ) = {0} 6= E0(S).

The following two examples show property (gw) and property (Bgw) are inde-
pendent:

Example 2.14. Let Q ∈ B(X) be any quasinilpotent operator acting on an
infinite dimensional Banach space X such that Qn(X) is non-closed for all n. Let
T = 0 ⊕ Q defined on the Banach space X ⊕ X. Since T n(X ⊕ X) = Qn(X) is
non-closed for all n, then T is not a semi-Fredholm operator, so σSBF−+ (T ) = {0}.
Since σa(T ) = {0} and E(T ) = {0}, then T does not satisfies property (gw). But
T satisfies property (Bgw), since E0(T ) = ∅.

Example 2.15. Let S : `2(N) → `2(N) be an injective quasinilpotent operator
which is not nilpotent. We define T on the Banach space X = `2(N)⊕ `2(N) by
T = I⊕S, where I is the identity operator on `2(N). Then σ(T ) = σa(T ) = {0, 1}
and E(T ) = {0}. It follows from Example 2 of [11] that σBW (T ) = {0}. This
implies that σSBF−+ (T ) = {0}. Hence σa(T ) \ σSBF−+ (T ) = {1} = E(T ) and
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T satisfies property (gw). On the other hand, since E0(T ) = ∅. Then σa(T ) \
σSBF−+ (T ) = {1} 6= E0(T ) and so, T does not satisfy property (Bgw).

In the next theorem we give a characterization of operators satisfying property
(Bgw).

Theorem 2.16. Let T ∈ B(X). Then T satisfies property (Bgw) if and only if

(i) T satisfies property (Bw);
(ii) ind (T− λI) = 0 for all λ ∈ σa(T ) \ σSBF−+ (T ).

Proof. Suppose T satisfies property (Bgw) and let λ ∈ σ(T ) \ σBW (T ). Since
σSBF−+ (T ) ⊆ σBW (T ), then λ /∈ σSBF−+ (T ). If α(T − λI) = 0, as λ /∈ σBW (T ),

then T − λI will be invertible. But this is impossible since λ ∈ σ(T ). Hence
0 < α(T − λI) and λ ∈ σa(T ). As T satisfies property (Bgw), then λ ∈ E0(T ).
This implies that σ(T ) \ σBW (T ) ⊆ E0(T ). To show the opposite inclusion, let
λ ∈ E0(T ) be arbitrary. Since T satisfies property (Bgw), then λ /∈ σSBF−+ (T )

and hence ind(T − λI) ≤ 0. On the other hand, as λ ∈ E0(T ), then λ is an
isolated in σ(T ), and hence T ∗ has SVEP at λ. By Theorem 2.11 of [3], we have
ind(T − λI) ≥ 0. Hence ind(T − λI) = 0 and λ ∈ σBW (T ). So σ(T ) \ σBW (T ) =
E0(T ) and ind(T − λI) = 0 for all λ ∈ σa(T ) \ σSBF−+ (T ).

Conversely, assume that T satisfies property (Bw) and ind(T − λI) = 0 for all
λ ∈ σa(T )\σSBF−+ (T ). If λ ∈ σa(T )\σSBF−+ (T ), then T−λI is a semi-B-Fredholm

operator such that ind(T −λI) = 0. Hence T −λI is a B-Weyl operator. Since T
satisfies property (Bw), then λ ∈ E0(T ) and hence σa(T ) \ σSBF−+ (T ) ⊆ E0(T ).

To show the opposite inclusion, let λ ∈ E0(T ), then λ /∈ σBW (T ) and hence
T − λI is a B-Weyl and since λ ∈ σ(T ), then 0 < α(T − λI) < ∞. Thus
λ ∈ σa(T ) \ σSBF−+ (T ). Consequently, T satisfies property (Bgw). �

Theorem 2.17. Let T ∈ B(X). Then T satisfies property (Bgb) if and only if

(i) T satisfies property (Bb); and
(ii) ind (T− λI) = 0 for all λ ∈ σa(T ) \ σSBF−+ (T ).

Proof. Suppose T satisfies property (Bgw), then by Theorem 2.5, T satisfies
property (Bb). If λ ∈ σa(T ) \ σSBF−+ (T ), as T satisfies property (Bgb), then

λ ∈ π0(T ). Thus λ is isolated in σ(T ). So ind (T − λI) = 0. Conversely, assume
that T satisfies property (Bb) and ind (T −λI) = 0 for all λ ∈ σa(T ) \σSBF−+ (T ).

If λ ∈ σa(T ) \ σSBF−+ (T ), then T − λI is an upper semi-B-Fredholm such that

ind (T − λI) = 0. Hence λ ∈ σ(T ) \ σBW (T ). Since T satisfies property (Bb),
we have λ ∈ π0(T ). On the other hand, if λ ∈ π0(T ), then T − λI is Browder’s
operator and so λ ∈ σa(T ) \ σSBF−+ (T ). Finally, σa(T ) \ σSBF−+ (T ) = π0(T ) and

T satisfies property (Bgb). �

Theorem 2.18. Let T ∈ B(X). If T satisfies property (Bw), then T satisfies
Weyl’s theorem.

Proof. Suppose T satisfies property (Bw), i.e., ∆g(T ) = E0(T ). Let λ ∈ ∆(T ).
Since σBW (T ) ⊆ σW (T ), then λ ∈ ∆g(T ) = E0(T ). Hence, ∆(T ) ⊆ E0(T ).
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Conversely, if λ ∈ E0(T ) = ∆g(T ), then T − λI is a B-Weyl operator. Since
α(T − λI) < ∞ we conclude that T − λI is a Weyl operator. So, λ ∈ ∆(T ).
Therefore, T satisfies Weyl’s theorem. �

The converse of the preceding theorem does not hold in general. Indeed, if we
consider the operator T defined in Example 2.15, then σBW (T ) = {0}, E0(T ) = ∅
and σW (T ) = {0, 1}. Then ∆(T ) = ∅ = E0(T ) and so T satisfies Weyl’s theorem.
However, since ∆g(T ) = {1} 6= E0(T ) then T does not satisfy property (Bw).

Theorem 2.19. Let T ∈ B(X). If T satisfies property (Bgb), then T satisfies
generalized a-Browder’s theorem.

Proof. Suppose T satisfies property (Bgb), i.e., ∆g
a(T ) = π0(T ). Let λ ∈ ∆g

a(T ).
Then as T satisfies property (Bgb) we have λ ∈ π0(T ) and so, λ ∈ πa(T ). Con-
versely, if λ ∈ πa(T ). Then we conclude from Remark 2.7 and Theorem 2.8
of [14] that λ /∈ σSBF−+ (T ) and λ is isolated in σa(T ). Hence, λ ∈ ∆g

a(T ) = π0(T ).

Therefore, T satisfies generalized a-Browder’s theorem. �

Theorem 2.20. Let T ∈ B(X). If T satisfies property (Bgb), then T satisfies
property (b).

Proof. We get the desired result by a similar argument in Theorem 2.12. �

Theorem 2.21. Let T ∈ B(X). If T satisfies property (Bgw), then T satisfies
property (Bgb).

Proof. Suppose T satisfies property (Bgw). Then we conclude from Theorem 2.12
and Theorem 2.13 of [15] that T satisfies property (w) and E0(T ) = π0(T ). As T
satisfies property (Bgw), we have ∆g

a(T ) = E0(T ). So, ∆g
a(T ) = π0(T ). That is,

T satisfies property (Bgb). �

Theorem 2.22. Let T ∈ B(X). If T satisfies property (Bw), then T satisfies
property (Bb).

Proof. Suppose T satisfies property (Bw). Then it follows from Theorem 2.18
that T satisfies Weyl’s theorem. Hence, by Theorem 3.85 of [1] it follows that T
satisfies Browder’s theorem and π0(T ) = E0(T ). As T satisfies property (Bw)
we have ∆g(T ) = E0(T ). Therefore, ∆g(T ) = π0(T ). That is, T satisfies property
(Bb). �

Definition 2.23. An operator T ∈ B(X) is said to be finitely isoloid (resp.,
finitely a-isoloid) if isoσ(T) ⊆ E0(T) (resp., isoσa(T) ⊆ E0(T)). An operator
T ∈ B(X) is said to be finitely polaroid (resp., finitely a-polaroid) if isoσ(T) ⊆
π0(T) (resp., isoσa(T) ⊆ π0(T)).

Theorem 2.24. Let T ∈ B(X) be finitely a-isoloid operator and satisfies gener-
alized a-Weyl’s theorem. Then T satisfies property (Bgw).

Proof. If T satisfies generalized a-Weyl’s theorem then σa(T )\σSBF−+ (T ) = Ea(T ).

To show that T satisfies property (Bgw), we need to prove that Ea(T ) = E0(T ).
Suppose that λ ∈ Ea(T ) then as T is finitely a-isoloid we have λ ∈ E0(T ). Since
the other inclusion is always verified. Therefore, T satisfies property (Bgw). �
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Recall that an operator T ∈ B(X) is said to be a-polaroid if Ea(T ) = π(T ).

Theorem 2.25. Let T ∈ B(X) be a-polaroid operator and satisfy property (Bgw).
Then T satisfies generalized a-Weyl’s theorem.

Proof. T is a-polaroid and satisfy property (Bgw) if and only if σa(T )\σSBF−+ (T ) =

E0(T ) ⊆ Ea(T ) = π(T ) = σa(T ) \ σSBF−+ (T ), because T satisfies property (gb)

by Theorem 2.7. �

Theorem 2.26. Let T ∈ B(X) be a finitely a-polaroid operator. If T or T ∗ has
SVEP, then T satisfies property (Bgw).

Proof. If T or T ∗ has SVEP, then T satisfies generalized a-Browder’s theorem.
Suppose that λ ∈ E0(T ). It implies that λ ∈ isoσ(T) ⊆ π0(T) ⊆ πa(T), as T is
finitely polaroid. Therefore, E0(T ) ⊆ π0(T ). For the reverse inclusion, suppose
λ ∈ πa(T ), then λ ∈ isoσa(T) ⊆ π0(T) ⊆ E0(T). Hence πa(T ) ⊆ E0(T ). Using
Theorem 2.11, we have that T satisfies property (Bgw). �

3. Property (Bgw) for Direct Sum

Let H and K be infinite-dimensional Hilbert spaces. In this section we show
that if T and S are two operators on H and K respectively and at least one
of them satisfies property (Bgw) then their direct sum T ⊕ S obeys property
(Bgw). We also explore various conditions on T and S to ensure that T ⊕ S
satisfies property (Bgw).

Theorem 3.1. Suppose that property (Bgw) holds for T ∈ B(H) and S ∈ B(K).
If T and S are isoloid and σSBF−+ (T ⊕S) = σSBF−+ (T )∪ σSBF−+ (S), then property

(Bgw) holds for T ⊕ S.

Proof. We know that σa(T ⊕ S) = σa(T ) ∪ σa(S) for any pairs of operators. If T
and S are isoloid, then

E0(T ⊕ S) =
[
E0(T ) ∩ ρa(S)

]
∪
[
ρa(T ) ∩ E0(S)

]
∪
[
E0(T ) ∩ E0(S)

]
,

where ρa(.) = C \ σa(.).
If property (Bgw) holds for T and S, then

[σa(T ) ∪ σa(S)] \
[
σSBF−+ (T ) ∪ σSBF−+ (S)

]
=
[
E0(T ) ∩ ρa(S)

]
∪
[
ρa(T ) ∩ E0(S)

]
∪
[
E0(T ) ∩ E0(S)

]
.

Thus, E0(T ⊕ S) = [σa(T ) ∪ σa(S)] \
[
σSBF−+ (T ) ∪ σSBF−+ (S)

]
.

if σSBF−+ (T ⊕ S) = σSBF−+ (T ) ∪ σSBF−+ (S), then

E0(T ⊕ S) = σa(T ⊕ S) \ σSBF−+ (T ⊕ S).

Hence property (Bgw) holds for T ⊕ S. �

Theorem 3.2. Suppose that T ∈ B(H) such that isoσa(T) = ∅ and S ∈ B(K)
satisfies property (Bgw). If σSBF−+ (T ⊕ S) = σa(T ) ∪ σSBF−+ (S), then property

(Bgw) holds for T ⊕ S.
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Proof. We know that σa(T ⊕S) = σa(T )∪σa(S) for any pairs of operators. Then

σa(T ⊕ S) \ σSBF−+ (T ⊕ S) = [σa(T ) ∪ σa(S)] \
[
σa(T ) ∪ σSBF−+ (S)

]
= σa(S) \

[
σa(T ) ∪ σSBF−+ (S)

]
=
[
σa(S) \ σSBF−+ (S)

]
\ σa(T )

= E0(S) ∩ ρa(T )

If isoσa(T) = ∅ it implies that σa(T ) = accσa(T), where accσa(T) = σa(T) \
isoσa(T) is the set of all accumulation points of σa(T ). Thus we have

isoσa(T⊕ S) = [iso σa(T) ∪ isoσa(S)] \ [(isoσa(T) ∩ accσa(S)) ∪ (accσa(T) ∩ isoσa(S))]

= [isoσa(T) \ accσa(S)] ∪ [isoσa(S) \ accσa(T)]

= isoσa(S) \ σa(T)

= isoσa(S) ∩ ρa(T).

We know that σp(T ⊕ S) = σp(T ) ∪ σp(S) and α(T ⊕ S) = α(T ) + α(S) for any
pairs of operators T and S, so that

σPF (T ⊕ S) = {λ ∈ σPF (T ) ∪ σPF (S) : α(T − λI) + α(S − λI) <∞}.
Therefore,

E0(T ⊕ S) = isoσa(T⊕ S) ∩ σPF(T⊕ S)

= isoσa(S) ∩ ρa(T) ∩ σPF(S)

= E0(S) ∩ ρ(T ).

Thus σa(T ⊕ S) \ σSBF−+ (T ⊕ S) = E0(T ⊕ S). Hence T ⊕ S satisfies property

(Bgw). �

Corollary 3.3. Suppose that T ∈ B(H) is such that isoσa(T) = ∅ and S ∈ B(K)
satisfies property (Bgw) with isoσa(S)∩σp(S) = ∅, and ∆g

a(T⊕S) = ∅, then T⊕S
satisfies property (Bgw).

Proof. Since S satisfies property (Bgw), therefore given condition isoσa(S) ∩
σp(S) = ∅ implies that σa(S) = σSBF−+ (S). Now ∆g

a(T ⊕ S) = ∅ gives that

σSBF−+ (T ⊕ S) = σa(T ⊕ S) = σa(T ) ∪ σSBF−+ (S). Thus from Theorem 3.2, we

have that T ⊕ S satisfies property (Bgw). �

Corollary 3.4. Suppose that T ∈ B(H) is such that isoσa(T) ∪∆g
a(T) = ∅ and

S ∈ B(K) satisfies property (Bgw). If σSBF−+ (T ⊕ S) = σSBF−+ (T ) ∪ σSBF−+ (S),

then T ⊕ S satisfies property (Bgw).

Theorem 3.5. Let T ∈ B(H) be an isoloid operator that satisfies property (Bgw).
If S ∈ B(K) is a normal operator satisfies property (Bgw). Then property (Bgw)
holds for T ⊕ S.

Proof. If S is normal, then both S and S∗ have SVEP, and ind (S − λI) = 0 for
every λ such that S − λI is a B-Fredholm. Observe that λ /∈ σSBF−+ (T ⊕ S) if
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and only if S − λI ∈ SBF+(K) and T − λI ∈ SBF+(H) and ind (T − λI) +
ind (S − λI) = ind (T − λI) ≤ 0. if and only if λ /∈ ∆g

a(T ) ∩ ∆g
a(S). Hence

σSBF−+ (T ⊕ S) = σSBF−+ (T ) ∪ σSBF−+ (S). It is well known that the isolated points

of the approximate point spectrum of a normal operator are simple poles of the
resolvent of the operator implies that S is isoloid. So the result follows now from
Theorem 3.1. �

4. Conclusion

In this last part, we give a summary of the known Weyl type theorems as in [14],
including the properties introduced in [5, 15, 22], and in this paper. We use the ab-
breviations gaW, aW, gW,W, (gw), (w), (Bw) and (Bgw) to signify that an opera-
tor T ∈ B(X) obeys generalized a-Weyl’s theorem, a-Weyl’s theorem, generalized
Weyl’s theorem, Weyl’s theorem, property (gw), property (w), property (Bw) and
property (Bgw). Similarly, the abbreviations gaB, aB, gB,B, (gb), (b), (Bb) and
(Bgb) have analogous meaning with respect to Browder’s theorem or the new
properties introduced in this paper.
The following table summarizes the meaning of various theorems and properties.

gaW σa(T ) \ σSBF−+ (T ) = Ea(T ) gaB σa(T ) \ σSBF−+ (T ) = πa(T )

gW σ(T ) \ σBW (T ) = E(T ) gB σ(T ) \ σBW (T ) = π(T )
aW σa(T ) \ σSF−+ (T ) = E0

a(T ) aB σa(T ) \ σSF−+ (T ) = π0
a(T )

W σ(T ) \ σW (T ) = E0(T ) B σ(T ) \ σW (T ) = π0(T )
(gw) σa(T ) \ σSBF−+ (T ) = E(T ) (gb) σa(T ) \ σSBF−+ (T ) = π(T )

(w) σa(T ) \ σSF−+ (T ) = E0(T ) (b) σa(T ) \ σSF−+ (T ) = π0(T )

(Bw) σ(T ) \ σBW (T ) = E0(T ) (Bb) σ(T ) \ σBW (T ) = π0(T )
(Bgw) σa(T ) \ σSBF−+ (T ) = E0(T ) (Bgb) σa(T ) \ σSBF−+ (T ) = π0(T )

In the following diagram, which extends the similar diagram presented in [15],
arrows signify implications between various Weyl type theorems, Browder type
theorems, property (gw), property (gb), property (Bw), property (Bgw), prop-
erty (Bb) and property (Bgb). The numbers near the arrows are references to the
results in the present paper (numbers without brackets) or to the bibliography
therein (the numbers in square brackets).

gb
[15]

//
OO

[15]

gB oo
[4]

//
OO

[14]

B oo
[17]

aB
[17]

// B oo
[6]

W

gw
[5]
//

[5]

��

gW oo
[14]

gaW
[14]
// gaB oo

2.10
Bgw

2.7
��

2.21 // Bgb

2.19
��

w
[15]

// W
��
[14]

oo
[23]

aW
��
[14]

[14]
// aB
��
[4]

OO

oo
[15]

gb
[15]
// gaB
OO

[4]

��
Bgw

2.3
//

2.12

OO

Bw

2.18

OO

2.22
// Bb oo

2.17
Bgb

2.20
// b
��
[15]

[15]
// aB
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