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Abstract. Ekeland’s variational principle and the existence of critical points
of dynamical systems, also known as multiobjective optimization, have been
proved in the setting of locally complete spaces. In this article we prove that
these two properties can be deduced one from the other under certain convexity
conditions.

1. Introduction and preliminaries

One of the most important tools to solve problems in optimization, optimal
control, game theory, nonlinear equations, dynamical systems, etc., is the Eke-
land’s variational principle [5] . Since the discovery of such a principle there have
also appeared many extensions or equivalent formulations of the principle [2], or
[10]. In [2] C.Bosch , A. Garćıa, C.L.Garćıa, established the variational principle
in the setting of locally complete spaces.

In 1983 G.Isaac [8] obtained a general existence result considering a set as a
critical point for a dynamical system and using the completeness of the space.
By adapting some ideas of the cited paper, C. Bosch , A. Garćıa in [3] extended
that multiobjective optimization result to locally convex spaces by assuming that
some related sets are locally complete .
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In the setting of locally complete spaces we prove that Ekeland’s variational
principle and multiobjective optimization can be derived from each other, making
them, in this sense equivalent.

Throughout this paper (E, τ) will denote a locally convex space with topol-
ogy τ , generated by a family of seminorms {ρα : α ∈ Λ} with Λ a set of
indices. A disk B in E is a closed, bounded and absolutely convex set. We de-
note by (EB, ρB) the linear span of B endowed with the topology defined by the
Minkowski functional associated with B. When B is bounded, ρB is a norm, and
the norm topology is finer than the topology inherited from E. If (EB, ρB) is a
Banach space we say that B is a Banach disk. E is a locally complete locally
convex space (briefly locally complete space) if each closed, bounded disk is a
Banach disk. There are many examples of locally complete spaces, in fact every
sequentially complete space is locally complete. On the other side one can also
find examples of locally complete spaces that are not sequentially complete. A
sequence (xn) in E is said to be locally convergent or Mackey convergent to an
element x of E, if there exists a disc B in E such that the sequence converges
to x in EB with respect to ρB. A sequence is called locally Cauchy or Mackey
Cauchy if it is a ρB−Cauchy sequence in EB for a certain disk in E. Let C be a
non void subset of E. A point x is a local limit point of C if there is a sequence
in C that is locally convergent to x. A set C is locally closed if every local limit
point of C belongs to C. A subset A of a space E is said to be locally complete if
every locally Cauchy sequence in A converges locally to a point of A. It is clear
that every locally complete subset of a space is locally closed.
In [9] [2-14 p.20] locally complete spaces are also given the name c∞- or con-
venient spaces. It should be noted that the structure of c∞- (locally complete)
spaces have become important in recent years due to the use of such spaces in
nonlinear distribution theory. More detail about applications of these spaces can
be found in [9] and the references therein. In [6] one can also see how theorems
on existence and uniqueness for integro-differential equations are now extended
to locally complete spaces.

The class Φ of perturbations we will use, is defined as the family of functions
ϕ : [0,∞) → [0,∞) which are subadditive, strictly increasing, continuous and
such that ϕ(0) = 0, and limx→∞ ϕ(x) =∞. Clearly the inverse of ϕ exists and
is superadditive, strictly increasing and continuous, ϕ−1(0) = 0. Here ϕ is said
to be subadditive if ϕ(s + t) ≤ ϕ(s) + ϕ(t), for every s, t ∈ [0,∞), and ϕ−1 is
said to be superadditive if ϕ−1(s + t) ≥ ϕ−1(s) + ϕ−1(t), for every s, t ∈ [0,∞).
Functions like ϕ(t) = t, ϕ(t) = n

√
t, ϕ(t) = ln(1 + t), are examples of elements in

Φ.
A closed, pointed convex cone in a locally convex space is a nonempty subset

K ⊂ E such that:
(1) K is a closed subset,
(2) K +K ⊆ K
(3) λK ⊆ K , for all λ ∈ R
(4) K ∩ (−K) = {0}
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If a closed, pointed convex cone K ⊂ E is given we can define an ordering in
E by x � y if and only if y − x ∈ K.

If A ⊂ E, is a nonempty subset we say that a ∈ A is an efficient (maximal)
point of A, with respect to K, if A∩ (a+K) = {a}. We denote by E(A;K) the
set of efficient points of A with respect to K.

We say that Γ : A→ 2A is a dynamical system if for every x ∈ A, and Γ(x) is
a nonempty subset of A and x∗ ∈ A is a critical point for Γ if Γ(x∗) = {x∗}. We
can see easily that ΓA(x) = A ∩ (x+K) for every x ∈ A is a dynamical system.
The reader can verify that an element x∗ ∈ A is an efficient point of A, if and
only if x∗is a critical point of ΓA.

A function Ψ : A → R ∪ {+∞} is proper if it is not identically +∞. A
proper function Ψ : A → R ∪ {+∞} is (locally) lower semicontinuous if {x ∈ A
: Ψ(x) ≤ r} is (locally) closed in E for every r in R or equivalently for each
x′ ∈ A and every sequence (xn) in A , (locally) convergent to x′ we have that
Ψ(x′) ≤ lim inf Ψ(xn).

2. Main results

In this section we present an equivalence between Ekeland’s variational prin-
ciple for locally complete spaces [2] and critical points of dynamical systems or
multiobjective optimization [3]. To do that we need a technical condition on cer-
tain sets. First we will state two theorems, the third one will give the conditions
under which they are equivalent.

Theorem 2.1. Let (E, τ) be a locally complete space and f : E → R ∪ {∞} be
a proper, lower semicontinuous and bounded below function. Let ϕ be in Φ and
x0 be a point in Dom(f), that is f(x0) < ∞. Then for any Banach disk B in E
such that x0 ∈ EB there exists x∗ ∈ EB such that :

(a) f(x∗) + ϕ(ρB(x∗ − x0)) ≤ f(x0) and
(b) f(x∗) < ϕ(ρB(x∗ − x))+f(x) for all x ∈ EB\ {x∗}

S. Al Homidan, Q.H. Ansari and J.C. Yao established in [7] [corollary 3.1] a
similar result to the previous theorem but as they pointed out in their remark
3.3 the results are not comparable, they are of different kind.

Theorem 2.2. Let (E,τ) be a locally convex space and ϕ be in Φ . Let A be a
nonempty locally complete subset of E. Let Γ : A → 2A be a dynamical system.
Suppose that there exists Ψ : A → R locally lower semicontinuous and bounded
below. If there exists {cα ∈ R+: α ∈ Λ} such that:
(a) D = ∩α{x ∈ E : cαρα(x) ≤ 1} is a non zero Banach disc.
(b) For every x ∈ A and for every u ∈ Γ(x) we have ϕ(cαρα(x− u)) ≤ Ψ(x)−

Ψ(u) for every α ∈ Λ.
Then Γ has a critical point x∗ ∈ A.

Theorem 2.3. Theorem 2.1 and 2.2 are equivalent if A is absolutely convex.

Proof. First let us assume that Theorem 2.1 holds and that the hypothesis of
Theorem 2.2 are satisfied with A being absolutely convex. Let EA =

⋃
r>0 rA .

Now we have two possibilities D ∩ EA
τ 6= {0} or D ∩ EA = {0}.
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Case 1 : C = D ∩ EA
τ 6= {0}.

By the definition C, is τ -closed, bounded since D is bounded, balanced and
convex since it is the intersection of two balanced and convex sets D and EA .
Now since C 6= {0} there exists yo 6= 0 such that yo ∈ D ∩ EA , then there
is an ro such that yo ∈ D ∩ roA. If ro ≤ 1 then yo ∈ D ∩ A and we denote
xo = yo ∈ D ∩ A ⊂ C. If 1 < ro we will take xo = 1

ro
yo ∈ D ∩ A ⊂ C.

Since D is closed and C ⊂ D we have that EC ⊂ ED and ρD(x) ≤ ρC(x) for
every x ∈ EC .

Claim 1: If (ED, ρD) is complete then (EC , ρC) is also complete.
Let {xn} ⊂ EC be ρC-Cauchy, then it is also ρD-Cauchy and since we are

assuming that (ED, ρD) is complete, there exists x ∈ ED such that xn→x with
respect to ρD. We have that {xn} ⊂ EC is ρC-Cauchy so for ε > 0 there exists
N ∈ N such that if n,m ≥ N then xn−xm ∈ εC.We use that the topology induced
by ρD in ED is stronger than the topology induced in ED by the topology τ and
the fact that C ⊂ ED is τ -closed to conclude that C

ρD
= C. Then ρC(xn−x) < ε

for every n ≥ N , that is, xn→x ∈ (EC , ρC), which proves the claim.
Claim 2: ρD(x) = ρC(x)for every x ∈ EC ∩ EA.
Take x such that ρD(x) < t then x ∈ tD ∩EA = t(D ∩EA) = tC so ρC(x) < t

which means that ρC(x) ≤ ρD(x) . Now using the fact that ρD(x) ≤ ρC(x) for
every x ∈ EC , we have the equality of the seminorms ρD(x) = ρC(x).

Now apply Theorem 2.1 to the complete space (EC , ρC), with B = C, xo ∈
D ∩ A ⊂ C and the function g : EC → R ∪ {∞} defined by

g(x) =

{
Ψ(x), x ∈ A
∞, x ∈ EC \A.

g is a lower semicontinuous and bounded below function, since Ψ is locally lower
semicontinuous in A and then locally lower semicontinuous (EC , ρC) , furthermore
Ψ is bounded below in A. Then there exists zo ∈ EC such that

(a) g(zo) + ρC(xo − zo) ≤ g(xo) = Ψ(xo) <∞ and
(b) g(zo) < g(x) + ρC(x− zo) for all x ∈ EC , x 6= zo.
Using (a) we have g(zo) <∞ which says that zo ∈ A.
Claim 3 : Γ(zo)

⋂
EC = {zo}.

Take x ∈ Γ(zo)
⋂
EC and suppose that x 6= z0 then Ψ(x) + ϕ(ρD(x − zo)) ≤

Ψ(zo) < ∞ using the function g we have g(x) + ϕ(ρC(x − zo)) ≤ g(zo) since for
x ∈ Γ(zo) ⊂ g(x) = Ψ(x) and for x − zo ∈ ECρD(x − zo) = ρC(x − zo). Finally
since B = C using item (b) from Theorem 2.1 we get g(z0) < ϕ( ρB(z0−x))+g(x)
which gives a contradiction and then x = z0.

Claim 4: Γ(zo) ⊂ EC .
Take x ∈ Γ(zo) ⊂ A then x − zo ∈ ED and x ∈ zo + ED ⊂ EC + ED = ED ,

so there exists r ≥ 1 such that x ∈ rDwhich means that 1
r
x ∈ D ∩A ⊂ EC , and

then x ∈ rEC = EC .
To finish the proof note that claim 3 and claim 4 give that Γ(zo) = {zo} so in

the case that C = D ∩ EA
τ 6= {0} , Theorem 2.2 holds by taking x∗ = zo.

Case 2: D ∩ EA = {0}.
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Again, A is balanced and convex. Take xo ∈ A and let C = {x ∈ A | ρα(x) ≤
ρα(xo) ∀α ∈ Λ} , C is bounded, balanced, convex and τ -closed , furthermore
xo ∈ C ⊂ A .

Claim 5: (EC , ρC) is complete.
Take {xn} ⊂ EC such that {xn} is ρC-Cauchy then it is ρC-bounded so there

exists r > 0 such that {xn} ⊂ rC ⊂ rA then {1
r
xn} ⊂ A is locally Cauchy

(ρC-Cauchy) and then there exists y ∈ A∩EC such that {1
r
xn} →y with respect

to ρC so we have {xn} → x = ry, with respect to ρC .
Now apply Theorem 2.1 to the complete space (EC , ρC),with B = C, xo ∈

B and the function g : EC → R ∪ {∞} defined by

g(x) =

{
Ψ(x), x ∈ A
∞, x ∈ EC \A

g is a lower semicontinuous and bounded below function, since Ψ has the
necessary properties. Then there exists zo ∈ EC such that
(a) g(zo) + ρC(xo − zo) ≤ g(xo) = Ψ(x0) <∞
(b) g(zo) < g(x) + ρC(x− zo) for every x ∈ EC\{zo}.
The property (a) says that zo ∈ A.
Claim 6: Γ(zo) ∩ EC = {zo}.
Take x ∈ Γ(zo) ∩EC then x− zo ∈ ED ∩EC and x− zo ∈ r1D ∩ r2C , choose

r = max(r1, r2) so we have , x− zo ∈ rD ∩ rC ⊂ rD ∩ rA = r(D ∩A). This can
be rewritten as 1

r
(x − zo) ∈ D ∩ A ⊂ D ∩ EA = {0} and we can conclude that

x = zo.
Claim 7: Γ(zo) ⊂ EC
Take x ∈ Γ(zo) ⊂ A then x− zo ∈ ED so x ∈ zo + ED ⊂ EC + ED = ED,now

take r ≥ 1 such that x ∈ rD and we have 1
r
x ∈ D ∩ A ⊂ EC , and conclude that

x ∈ rEC = EC .
To finish the proof note that claim 6 and claim 7 give that Γ(zo) = {zo} so

in the case that D ∩ EA = {0}, Theorem 2.2 hold by taking x∗ = zo.
Now we prove that Theorem 2.2 implies Theorem 2.1.
Since Theorem 2.2 holds, suppose (E, τ) is a locally convex space, {ρλ : λ ∈ Λ}

the family of semi-norms that define the topology τ and ϕ is in Φ. Let f : E →
R ∪ {∞} be a proper, lower semicontinuous and bounded below function, such
that f(x0) < ∞ for some x0 ∈ EB . Take B a disc in E , since (E, τ) is a
locally complete then EB is complete, B is a Banach disc, it is bounded and
then for each λ ∈ Λ there exists rλ ∈ R+ such that ρλ(x) ≤ rλ for every x ∈ B
or cλρλ(x) ≤ 1 where cλ = 1/ rλ . Let D = {x ∈ E : ρλ(x) ≤ rλ for every
λ ∈ Λ} = ∩λ{x ∈ E : cλρλ(x) ≤ 1}, so by part (a) of theorem 2.2, D is a disc
and ED is complete. Furthermore B ⊂ D, then EB ⊂ ED and ρD(x) ≤ ρB(x)
for x ∈ EB .Define Γ : SB(x0) → 2SB(x0) by Γ(x) = SB(x) ⊂ SB(x0) = A where
SB(x) = {y ∈ EB : f(y) + ϕ( ρB(y − x)) ≤ f(x)}. If SB(x0) = {x0} then take
x∗ = x0 and Theorem 2.1 holds. If not take x ∈ EB and u ∈ Γ(x) , then
cλρλ(x) ≤ sup{cλρλ(x) : λ ∈ Λ} = ρD(x) ≤ ρB(x) we then have ϕ(cλρλ(x−u)) ≤
ϕ(ρD(x−u)) ≤ ϕρB(x−u) ≤ f(x)− f(u). By defining f |A= Ψ we have that Ψ is
locally lower semicontinuous since f is lower semicontinuous in A then it is locally
lower semicontinuous in A, now ϕ(cλρλ(x − u)) ≤ Ψ(x) − Ψ(u) so by Theorem
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2.2 we can conclude that Γ has a critical point x∗ ∈ A then Γ(x∗) = {x∗} , and
Theorem 2.1 holds by using x∗.

Note that Theorem 2.2 implies Theorem 2.1 whether A is absolutely convex or
not. �

3. Final comments

Over more than three decades a good deal of effort has been made to look
for equivalent formulations or generalizations of Ekeland’s Variational Principle
(EVP). In [10] and the references therein one can see the flavor of these general-
izations. The main result in the seminal article of Ekeland [5] says, roughly, that
for a lower semicontinuous bounded below function f on a complete metric space
X, a slight perturbation of the function has a strict minimum. In the category
of normed spaces, the perturbation is taken as a multiple of the norm. EVP
was proved to hold for spaces that are not necessary complete metric spaces but
that enjoy completeness and generalize distances or weaker form of completeness
in locally convex spaces, these two situations as pointed out before can not be
compared. The EVP is proved with the weaker completeness, locally complete
spaces in [2]. Furthermore in [4] it is shown that in locally complete spaces EVP
is equivalent to Caristi–Kirk type fixed point theorem, Takahashi type minimiza-
tion theorem and an equilibrium version of EVP. Multiobjective optimization
theorem deals with the existence of efficient points. Theorem 2.2 asserts, in a
quite general setting, the existence of efficient points. In locally complete spaces
we have proved that multiobjective optimization and EVP can be deduced from
each other and from the equilibrium version of EVP. In the proof of Theorem
2.3 one can see the relation between the efficient points and the point where the
perturbed function attains its minimun. Relations between EVP and the multi-
objective optimization have been studied in different contexts, a good reference
is [1].
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