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ABSTRACT. In this paper, the authors establish some real-variable character-
izations of Herz-type Hardy spaces with variable exponent.

1. INTRODUCTION AND PRELIMINARIES

Given an open set  C R™, and a measurable function p(-) : Q — [1,00),
LP0)(Q) denotes the set of measurable functions f on € such that for some A > 0,

[ (MY, oo

This set becomes a Banach function space when equipped with the Luxemburg—

Nakano norm
p(z)
11| oo :inf{)\>0:/ (@) dr < 1}.
Q

These spaces are referred to as variable Lebesgue spaces or, more simply, as
variable LP spaces, since they generalized the standard L spaces: if p(z) = p is
constant, then LP()(€) is isometrically isomorphic to LP(€2). The LP spaces with
variable exponent are a special case of Musielak—Orlicz spaces.

For all compact subsets E C €, the space L)(Q) is defined by L)(Q) :=

loc

{f:feLPY(E)}. Define P() to be the set of p(-) : 2 — [1,00) such that
p~ =essinf{p(z) 12 € Q} > 1, p" =esssup{p(z):z € Q} < c0.
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Denote p'(z) = p(z)/(p(z) —1). Let B(Q2) be the set of p(-) € P(Q2) such that the
Hardy- Littlewood maximal operator M is bounded on LP)(€2).
In variable LP spaces there are some important lemmas as follows.

Lemma 1.1. ([4]) Let p(-) € P(Q). If f € LPO(Q) and g € LP'O(Q), then fg is

integrable on Q) and

[ r@atelde < ryl Lo ol
where
rp,=14+1/p” —1/p".

This inequality is named the generalized Holder inequality with respect to the
variable L spaces.

Lemma 1.2. ([1]) Given a set  with finite measure, and exponent functions

p(+), q(-) :  — [1,00) such that p(x) < q(x),
[ £l ror @y < CL+ [QDI ] o @)-

Lemma 1.3. ([3]) Let p(-) € B(R"™). Then there exists a positive constant C
such that for all balls B in R™ and all measurable subsets S C B,
X8l oo (gny |B|

S 0_7
||XS||LP(‘>(]R") S|

5 . 5
X5l oo @my <C (ﬁ) ’ X5l Lo ey <C (ﬁ) ’

HXBHLP(')(R”) | B HXBHLP’M(Rn) |B|
where 0 < 01,09 < 1 are constants.

Throughout this paper §; and J, are the same as in Lemma 1.3.
Lemma 1.4. ([3]) Suppose p(-) € B(R™). Then there exists a constant C' > 0
such that for all balls B in R",

1
E||XB||LP(‘>(R")||XB||LP’<')(]R”) <C.

Firstly we give the definition of the Herz spaces with variable exponent. Let
By ={x € R": |z| < 2F} and Ay = By, \ By_; for k € Z. Denote Z, and N as
the sets of all positive and non-negative integers, x, = x4, for k € Z, xp = xx if
k € Z, and xo = XxB,, Where x4, is the characteristic function of Ay.

Definition 1.5. ([3]) Let @ € R,0 < p < oo and ¢(-) € P(R™). The homogeneous
Herz space K oy (R™) is defined by

RnR") = {f € LR\ {0)): [l e < 003,
where

1/p
171 zor ey = {Z 257 Fxellh o) Rn)} .

kEZ
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The non-homogeneous Herz space K(’;‘(’?; (R™) is defined by

Kb (RY) = {f € L) R") : | fll ey < 00},

q( loc

where

s 1/p
”fHKf(’.‘;(R”) - {ZQkap||f>~Ck||§q(~)(Rn)} :
k=0

In [6], we establish the following boundedness theorem on the Herz spaces with
variable exponent for a class of sublinear operators.

Lemma 1.6. ([6]) Let 0 < o < nd2,0 < p < o0 and q(-) € B(R™). If a sublinear
operator T’ satisfies

ITf(x)] < C|fll1/]z|", if dist(z, suppf) > |z|/2, (1.1)

for any integrable function f with a compact support and T is bounded on L) (R™),

then T is bounded on K;’g(R”) and K N (R"), respectively.

In [7], we gave the definition of Herz-type Hardy space with variable exponent
H K(?‘(’g(R"). S(R™) denotes the space of Schwartz functions, and S’(R") denotes
the dual space of S(R"). Let Gy f(x) be the grand maximal function of f(z)

defined by
Gy f(x) = sup |og(f)(@)],

PEAN
where Ay = {¢ € S(R”) : sup|,| g<n [2* D ¢(z)| < 1} and N > n+ 1, ¢% is the
nontangential maximal operator defined by

¢v(f)(x) = sup [¢p* f(y)]

ly—z|<t
with ¢y(x) =t "¢ (z/t).
Definition 1.7. ([7]) Let a € R,0 < p < 00,¢(-) € P(R") and N > n + 1.
(i)The homogeneous Herz-type Hardy space HK *(R") is defined by

HEH(R") = {f € S'(R") : Gnf(z) € Kyj(R")}

and we define ||f||HK§<,;;(Rn) = ||GNf||f<§<vf>’(Rn).

«,

(ii) The non-homogeneous Herz-type Hardy space H Kq(.)(R") is defined by
HE NR") ={f € S'(R") : Gy fx) € KH(R")}

and we define HfHHKf;("’)’(R") = ||GNf||K;<’?;(R")'

Let us explain the outline of this paper. In Section 2 we will prove some
properties for K N(R") and K[ /(R"). We will give our main result in Section
3, that is some real-variable characterizations of the Herz-type Hardy space with

variable exponent.
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2. SOME PROPERTIES FOR HERZ SPACES WITH VARIABLE EXPONENT

We first give the following properties for K;‘(’)’(R") and K (R").

Theorem 2.1. Let o« € R, 0 < p < 00 and q(-) € P(R™). Then we have
(1) if p1 < pa, then K;(’.];l (R™) C K;“(’?;Q (R™) and K 5" (R") C K 5% (R™).
(2) if 0 <z < o, then KS"(R™) C K 7(R™).
(3) if QCR", |Qf < oo and qi(-), ¢2(-) € P(Q) such that ¢o(-) < .(-), then

Ka0(@) € Kot (@), Koty (Q) € Kt ().

Proof. We first consider (1). It suffices to prove the property for the homogeneous
case. The non-homogeneous case can be proved in the same way. Note that
p1 < p2 and

(Z |aky> <Yl 0<r<1. (2.1)
k=1 k=1

So we have

1 .P1

o - 2]{04)1-2*2 p1~% o
Il =9 D2 2 Xkl oy
1

k=—o00

p1
. { SS 2ol }

k=—o00

= 1l o

That is Ko7' (R") C Ko5*(R™).

Now we see (2). Note that 0 < ay < oy, so by the Holder inequality we have

1/p
o _;'_ala_o‘Q
||fHKa2” R") { 2k 2p||ka||Lg() (R™) 1 )}

&1 &2

T &\ o
<{c ( (2’f el ) )

o @ o @ ey 1/p
1-a2 (o1 ag )/
X(ZHkaHLq()Rng )>(a2) }
k=
k % N
Z 2N e oy | | 2 M o
k=0

C“f”K‘” P(Rn)-

aj—ag y 1/p

a1

: aLP (N az,p(mn
That is K (5"(R") C K 5 (R").
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Next we estimate (3). It suffices to prove the property for the homogeneous
case. By Lemma 1.2 we have

00 1/p
||fHK;‘2€)(Q) = { Z 2kaprXk||Lq2()(Q }

k=—00

1/p
< C(1+19]) { Z QkaprXkHLﬂ()(Q }

k=—o00

< C||f||f<ap ()"

That is K{;’f’.)(Q) c K% (Q).

q2(")
Thus we complete the proof of Theorem 2.1. O

Theorem 2.2. Let 0 < o < 00, 0 < p < o0 and q(-) € P(R™). Then

KB (R™) O Koh(R") N LIY(R™)

and for f € K;“(I;’(R”) N L1O(R™),
1Al gz @ny < W Fllion my + 1l oo) -

Proof. If f € Ky (R") N L1)(R™), then

ko
||f||K:;(‘;(R") ||f||Lq() (|z|<1) + 22 p||ka||Lq()(Rn
< Moy + 1 T e

This finishes the proof of Theorem 2.2. 0

3. SOME REAL-VARIABLE CHARACTERIZATIONS FOR HERZ-TYPE HARDY
SPACES WITH VARIABLE EXPONENT

By Theorem 2.2 and the L0)(R")-boundedness (¢(-) € B(R"™)) of the grand
maximal operator G, it is easy to deduce the following conclusion.

Theorem 3.1. Let 0 < a < 00, 0 < p < 0o and q(-) € B(R™). Then

HE;H(R") D HE 5 (R™) N LYO(R™)

To give some real-variable characterizations for H qu‘(’?; (R") and HEK (R"),

we first introduce some maximal operator.
Let ¢ € S(R™) with integral 1. For ¢ > 0, set ¢y(x) = t "¢p(x/t). For f €
S'(R™), define the maximal operator ¢* by

o5 (f)(x) = sup |(f * ) ()]

Also, we define the maximal operator ¢g y (with N > 1) and ¢}; (with M € Z)
by
¢y n(f)(x) =sup sup |(f * &) (y)]

t>0 |z—y|<Nt
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and

SH@= s |(Fxa)w) (;y

(y)eR™H v —y| +t
About the relation of these operators, we first have

Lemma 3.2. ([2]) If N > M +n+ 1, then there exists a constant C' such that
Gn(f)(z) < O3 (f)(2).

Next we give the following characterization theorem.

Theorem 3.3. Let 0 < a < 00,0 < p < o0 and q(-) € B(R"). For f € S'(R"),
the following statements are equivalent:

(i) f e HKO"p(R”) (or HK(I(’?)’(R")).

(ii) For some N > 1, ¢35 n(f) € Ka’p(R") (or K;’?;(R”)).

(iii) & (f )EK“‘D(R”) (or K S (R™)).

(iv) ¢%.(f) € Ky (R") (or Kgf(R™)).
Proof. We only prove the homogeneous case. The non-homogeneous case is sim-
ilar. Note that

¢y v (@) 2 o5 (f)(x) = ¢ () ()
and that for any N > n + 1,
95 (f)(x) < CGN(f)(2).

It is obvious that (ii)=-(iii)=-(iv) and (i)=-(iii). Thus, it suffices to prove that
(iv)=(ii) and (iv)=-(i).
We first prove (iv)=-(ii). For I, N € Z, define

Nt
Nt +¢

dan@) = s (7o) (o) (1N

le—y|<Nt<l/e

By the Fatou lemma of series and integration, we need only to show that for any
€ (0,1),
||u:,l,N||K;‘(’?)’(R”) < CNn/T||¢+( )”K‘” (R™)
Let

Nt
Nt +¢

tal@) = sup trvyu*@)(y)\( )<1+6N|yr>-l

|lz—y|<Nt<l/e

As in [5], if [ is large enough, then for any p; € (0,1) we have

(@) < O (M(uky )" (@) P

where M is the Hardy—Littlewood maximal operator, and C is independent of
g, N and f. Set E. = {r : U, y(v) < Coul, y(7)} and EZ = R"\E,, where
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Cy is a positive constant which will be chosen later. Take p; € (0, 1) such that
0 < pra < ndo, then by Lemma 1.6 we have

1
keren < Co 1. 1N||K“;Rn)

< CC 1 HM glN p1 ||1/£(1!17)1/p/131(Rn)
a(-)/p

||U€ l NXEC

< CC ! H elN lel/fllH p/m(Rn)
=CCy

E,l,NH 0D ny °
LEICY)

Therefore,

HualNHK‘”’ ®y = Hu:,l,NXEs Kb (R™) + Hu:,l,NXESHK""?)’(R")

q(-)
< e Diggen + CCs 2o | gagan
o

< 2||uslNXEsHK°‘p(R”)

if we choose Cj large enough. Thus, the proof that (iv)=-(ii) can be reduced to
prove that

||U:,1,NXEE||K3(*?)’(R71) < CNR/T“¢+( )HK"“P(Rn) (3.1)

for any r € (0,1).
To prove (3.1) we first show that if = € E., then

gy (x) < CN™" (ML) ()" (3.2)

Note that for each fixed x € E., there exists (y,t) € R such that |z — y| <
Nt < 1/e and

Nt
Nt +¢

Kf*@ﬂ@|2Kf*@Mwl( ) (Lt eNl) ™ > ufy ()2

On the other hand, we know by the definition of E. that if x € E. and |x—z| < Nt,
then

Nt
Nt +¢

ﬂwuwmws%( )_@wmm@mm

Therefore, if © € E., |vt —y| < Nt and |z — z| < Nt, then t|V.(f % ¢¢)(2)| <
Cy|(f*¢¢)(y)|. Applying the mean value theorem, we have that for w € B(z, Nt)N

B(y,t/(2Ch)),
|(f @) (w) = (f % o) (W) S V(S x de)(2)[w =yl < [(f * ¢0)(y)]/2,

where z = 6w + (1 — 0)y and 0 € (0,1). This shows that if + € E. and w €
B(z,Nt) N B(y,t/(2Cy)), then

|(f b)) (w)| = [(f * @) (W)|/2 = uly n(2) /4.
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Thus, for any r € (0,1) and = € E., we have
* r 1 * T
M) ) ) > LEsT) [ @)
P

|f* de(w)|"dw
|B(I Nt |/ B(z,Nt)NB(y,t/(2C1)) t

> CN™"(u slN(m» )

and so (3.2) is true. Now choosing r sufficiently small so that 0 < ra: < nds, then
by (3.2) and Lemma 1.6 we have

kepen < CNYN ML) ke @y
= ON"T ML) e

Kol @)

< CN""16% (Dl con -

HUZ,Z,NXEE

This completes the proof of (iv)=-(ii). Moreover,
H¢%,N(f)”l{?(?§(ﬂ§") < CN™"(|g (f )HK‘””(]R”) (3:3)

Now we consider (iv)=-(i). By a simple computation, we know that

3(@) < % () (@) + Y27 GG e (f) ()

k=0
This via Lemma 3.2 and (3.3) gives that if N is large enough, then

IGN (llgesmny < ClO (D en@n +C Y2765 yeon (Flliespeny
k=0

< O3 2 I g () g
k=0
< Cllo% ()l ken ey
where M > n/r. Thus (iv)=-(i) holds and the proof of Theorem 3.3 is completed.
0J

Remark 3.4. From the proof of Theorem 3.3 we can see that for any Ny, Ny >
n + 1, the set

{f € SR") : G, (f) € Ky (R™)}
coincide with the set
{f € S(R") : G, (f) € Ko (R™)}.
Moreover
G (N kerny = 1Gwa ()| ieon ey -
The same conclusions are also true for non-homogeneous space.

a,p

Now we will give another characterization of spaces HK o (R™) and H K S(R™).

Given s € (0,1)UZ,, define 7, to be the space of C* functions on R" with sup-
port contained in B(0, 1) such that |p(z) — ¢(y)| < |z —y|*%, for all z,y € R™,
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when s € (0,1) andZHV%DHoo <1, when s € Z,. Let fI = sup sup |p; * f(x)],

=1 t>0 o€y

for s € (0,1) UZ,, and set 7; =7 and f;(z) = f*(x).

Theorem 3.5. Let ndy < o < 00,0 < p < oo and q(-) € B(R"). Suppose
s €(0,1)UZy and s > a/dy —n. Then f € HK N(R") (or HK N (R")) if and
only if fr € KQP(R") (or KQP(R”))

The proof of Theorem 3.5 is based on Theorem 3.3 and the following two
lemmas.

Lemma 3.6. Letndy < a < 00, 0 < p < oo and q(-) € BR"™). Ifo,s € (0,1)UZ,
and af/ds —n < o < s, then there are constants Cy, C3 > 0 such that

—1 x| . || . || .
Co sl gan@ny < ISl kon@ny < Coll 51l &n ny
and
T lesncany < £ ey < Coll £l e
for all distributions f on R™.

Proof. We only prove the homogeneous case. Note that o > a/d, — n. We can
choose ¢; to satlsfy - <q < ”52 Since ndy < a < 00, we have ndy /o < 1. So

0 < ¢ < 1. Setting go e T, from [5] we know f* < CM((fr)%)Ya. Therefore,
by Lemma 1.6 we have

1/p
1771 or ey :{ > 2k Xkl ) (g }

k=—00
s 1/p
ko 1 p/a1

S O {kz 2 p”M(( )q )Xk||Lq(<)/q1(Rn)}

= CIM(F) ™)Xk oo o gy < CUFS con (3.4)
q()/rn (R™)

On the other hand, it follows from the definition of fF that fX(z) < fi(x).
From this, we deduce the conclusion of Lemma 3.6. O

Remark 3.7. Let p, q(-) be as in Lemma 3.6. If &« = ndy, 0 € (0,1) and s € Z .,
then there are constants Cy, Cs > 0 such that

-1 * *1| . *|| . ®|| .
Cr fsllgar@ey < 1 fillken @ < Call Fllker@ey < Call foll ke g
and
Cf?leJHK?(ﬁ(R") S Hf:”K?("’)’(R”) < C5Hf*HKgg)’(Rn) < C5Hf;HK;‘("’)’(R")
for all distributions f on R™.

Let 0(z ) be a bump function which satisfies § € C5°(R™), suppf C B(0,1),
and [, 0(z)dzr = 1.
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Lemma 3.8. Let ndy < a < 00,0 < p < oo and q(-) € B(R"™). Suppose
feS'(R"), 0 is above and 0% (f) is as in Theorem 3.3. If s € Zy, 0 € (0,1)UZ,
and a/dy — n < o, then there are constants Cg,C7 > 0 such that

Co 5 ey < NP ey < Coll £ e

and
07_1”f:”K;1({‘;(R") < Hei(f)HKj(’?;(Rn) < C?Hf:”Kg(’?;(Rn)-

Proof. The method of proof is similar to [5, Lemma 2.2]. Here we omit it. 0J

Remark 3.9. Let p, q(-), 0 and 6%.(f) be as in Lemma 3.3. If & = nd,, o € (0,1)
and s € Z,, then there are constants Cg, Cy > 0 such that

Os_lﬂf;Hkg(g(Rn) SN ker @y < Csll £l ke ey

and
09_1||f:||K§(’?;(R") < ng-(f)”K;’(’?;(R") < C9||fs*||K;“(’?;(R")-
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