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HIGHER RANK NUMERICAL RANGES
OF RECTANGULAR MATRICES

MOHSEN ZAHRAEI1 AND GHOLAMREZA AGHAMOLLAEI2∗

Communicated by T. Yamazaki

Abstract. In this paper, the notions of rank−k numerical range and
k−spectrum of rectangular complex matrices are introduced. Some algebraic
and geometrical properties are investigated. Moreover, for ε > 0, the notion
of Birkhoff-James approximate orthogonality sets for ε-higher rank numerical
ranges of rectangular matrices is also introduced and studied. The proposed
definitions yield a natural generalization of standard higher rank numerical
ranges.

1. Introduction and preliminaries

Let Mn×m be the vector space of all n×m complex matrices. For the case n =
m, Mn×n is denoted by Mn; namely, the algebra of all n× n complex matrices.
Also, Un denotes the group of n×n unitary matrices. A quantum channel is a trace
preserving completely positive map such as L : Mn −→ Mn. By the structure of
completely positive linear maps, e.g., see [4], there are matrices E1, . . . , Er ∈Mn

with
∑r

j=1EjE
∗
j = In such that L(A) =

∑r
j=1E

∗
jAEj. The matrices E1, . . . , Er

are interpreted as the error operators of the quantum channel L.
Let V be a k−dimensional subspace of Cn and P be the orthogonal projection
of Cn onto V. Then the k−dimensional subspace V is a quantum error correction
code for the channel L if and only if there are scalars γij ∈ C with i, j ∈ {1, . . . , r}
such that PE∗

iEjP = γijP ; for more information, see [8] and its references, and
also see [11]. In this connection, for a positive integer 1 ≤ k ≤ n, the rank−k
numerical range of A ∈Mn is defined and denoted by

Λk(A) = {λ ∈ C : PAP = λP, for some rank − k orthogonal projection P on Cn}.
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By [5, Proposition 1.1], we have

Λk(A) = {λ ∈ C : X∗AX = λIk, for some X ∈ Xn,k},
where Xn,k = {X ∈Mn×k : X∗X = Ik}, i.e., the set of all n×k isometry matrices.
The sets Λk(A), where k ∈ {1, . . . , n}, are generally called higher rank numerical
ranges of A. Apparently, for k=1, Λk(A) reduces to the classical numerical range
of A, namely,

Λ1(A) = W (A) := {x∗Ax : x ∈ Cn, x∗x = 1},
which has been studied extensively for many decades, and several interesting re-
sults about some generalizations of this notion to matrix polynomials, which play
an important role in the study of overdamped vibration systems with a finite
number of degrees of freedom, and they are also related to the stability theory,
have been obtained, e.g., see [1] and [13], and references cited there. Also, the
concept of numerical range is useful in studying and understanding of matri-
ces and operators, and has many applications in numerical analysis, differential
equations, systems theory, etc; e.g., see [9, 10] and their references. It is readily
verified that

W (A) = Λ1(A) ⊇ Λ2(A) ⊇ · · · ⊇ Λn(A).

The numerical range W (A) = Λ1(A) is a nonempty, compact and convex subset
of C, and it contains the spectrum of A. The higher rank numerical ranges can
be empty, and also there are conditions for which Λk(A) is non-empty; e.g., see
[12]. But the compactness and convexity still hold in general by the following,
see [2], fact:

Λk(A) =
⋂

X∈Xn,n−k+1

W (X∗AX). (1.1)

Stampfli and Williams in [14, Theorem 4], and later Bonsall and Duncan in [3,
Lemma 6.22.1], observed that the numerical range of A ∈ Mn can be rewritten
as:

W (A) = {µ ∈ C : ‖A− λIn‖2 ≥ |µ− λ|, ∀λ ∈ C},
where ‖.‖2 denotes the spectral matrix norm (i.e., the matrix norm subordinate
to the Euclidean vector norm), and In is the n× n identity matrix. By this idea,
Chorianopoulos, Karanasios and Psarrakos [6] recently introduced a definition of
the numerical range for rectangular complex matrices. For any A,B ∈ Mn×m

with B 6= 0, and any vector norm ‖.‖ on Mn×m, they defined the numerical range
of A with respect to B as the compact and convex set:

W‖.‖(A;B) = {µ ∈ C : ‖A− λB‖ ≥ |µ− λ|, ∀λ ∈ C}. (1.2)

It is clear that W‖.‖2(A; In) = W (A) = Λ1(A), where A ∈ Mn. Hence, W‖.‖(. ; .)
is a direct generalization of the classical numerical range. It is known that
W‖.‖(A;B) 6= ∅ if and only if ‖B‖ ≥ 1. So, to avoid trivial consideration, we
assume that ‖B‖ ≥ 1. Next, we list some properties of W‖.‖(. ; .), which will be
useful in our discussion. One may see [6] and [7] for more details. Recall that, in a
complex normed space (X, ‖·‖), for any ε ∈ [0, 1), two vectors φ and ψ are said to
be Birkhoff-James ε-orthogonal, denoted by ϕ ⊥ε

BJ ψ, if ‖ϕ+ λψ‖ ≥
√

1− ε2‖ϕ‖
for all λ ∈ C. For the case ε = 0, we write ϕ ⊥BJ ψ instead of ϕ ⊥0

BJ ψ.
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Proposition 1.1. Let A,B ∈Mn×m, and ‖.‖ be a vector norm on Mn×m. Then
the following assertions are true:
(i) If ‖B‖ > 1, then {µ ∈ C : B ⊥BJ (A − µB)} ⊆ W‖.‖(A;B). The equality
holds if ‖B‖ = 1;
(ii) If the norm ‖.‖ is unitarily invariant, then W‖.‖(UAV ;UBV ) = W‖.‖(A;B),
where U ∈ Un and V ∈ Um;
(iii) W‖.‖(aA+ bB;B) = aW‖.‖(A;B) + b, where a, b ∈ C;
(iv) {µ−1 ∈ C : µ ∈ W‖.‖(A;B), |µ| ≥ 1} ⊆ W‖.‖(B;A);
(v) Int(W‖·‖(A;B)) ⊆ {µ ∈ C : ‖A − λB‖ > |µ − λ|, ∀λ ∈ C}, where Int(.)
denotes the interior points;
(vi) For any nonzero b ∈ C, if |b| = 1, then W‖·‖(A; bB) = b−1W‖·‖(A;B);

if |b| < 1, then W‖·‖(A; bB) ⊆ b−1W‖·‖(A;B);
if |b| > 1, then W‖·‖(A; bB) ⊇ b−1W‖·‖(A;B);

(vii) If A = bB for some b ∈ C, then W‖·‖(A;B) = {b}.
In section 2 of this paper, we introduce the notion of rank−k numerical range

of rectangular complex matrices as a generalization of W‖.‖(. ; .). We investigate
some general properties of the notion, and we also introduce and study the notion
of ε-higher rank numerical ranges of rectangular matrices. In section 3, we intro-
duce and study the notion of k−spectrum of rectangular matrices. In particular,
we state the relationship between this notion and rank−k numerical range.

2. rank−k numerical range of rectangular matrices

It is natural to use a formula analogous to (1.2) to propose a definition of the
higher rank numerical range of rectangular matrices. For this mind, for positive
integers m,n and 1 ≤ k ≤ min{n,m}, we introduce the following set:

X = {(X, Y :=

[
X 0

0 U

]
) : X ∈ Xn,n−k+1, U ∈ Um−n} if m ≥ n,

X = {(X :=

[
Y 0

0 U

]
, Y ) : Y ∈ Xm,m−k+1, U ∈ Un−m} if n ≥ m.

(2.1)

Definition 2.1. Let A,B ∈Mn×m, 1 ≤ k ≤ min{n,m} be a positive integer, and
X be the set as in (2.1). Moreover, let ‖·‖ be a vector norm on M(n−k+1)×(m−k+1).
The rank−k numerical range of A with respect to B is defined and denoted by

Λk,‖·‖(A;B) = {µ ∈ C : ‖X∗(A− λB)Y ‖ ≥ |µ− λ|, ∀ λ ∈ C, ∀ (X, Y ) ∈ X}.
In the following theorem, we give a formula, analogous to (1.1), for Λk,‖·‖(., .).

Theorem 2.2. Let A, B ∈Mn×m and 1 ≤ k ≤ min{n,m} be a positive integer.
Moreover, let ‖ · ‖ be a vector norm on M(n−k+1)×(m−k+1). Then

Λk,‖·‖(A;B) =
⋂

(X,Y )∈X

W‖·‖(X
∗AY ;X∗BY ),
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where X is the set as in (2.1). Consequently, Λk,‖·‖(A;B) is a compact and convex
set in C. For the case k = 1, if the vector norm ‖ · ‖ is unitarily invariant, then

Λ1(A;B) = W‖·‖(A;B).

Proof. Using Definition 2.1 and relation (1.2), the first equality is easy to verify.
Since, for any (X,Y ) ∈ X , W‖·‖(X

∗AY ;X∗BY ) is a compact and convex set in
C, Λk,‖·‖(A;B) is a compact and convex set. If k = 1 and the vector norm ‖ · ‖
is unitarily invariant on Mn×m, then by Proposition 1.1(ii), the second equality
can be easily verify by the first result. �

Corollary 2.3. Let A, B ∈ Mn and 1 ≤ k ≤ n be a positive integer. Moreover,
let ‖ · ‖ be a vector norm on Mn−k+1. Then

Λk,‖·‖(A;B) =
⋂

X∈Xn,n−k+1

W‖·‖(X
∗AX;X∗BX).

Consequently, for the case ‖ · ‖ = ‖ · ‖2 and B = In,

Λk,‖·‖(A; In) = Λk(A).

Remark 2.4. By [6, Corollary 4], for every A,B ∈Mn×m, we have W‖·‖(A;B) 6=
∅ if and only if ‖B‖ ≥ 1. So, in view of Theorem 2.2, to avoid of trivial cases, in
this paper, we assume that ‖X∗BY ‖ ≥ 1 for all (X, Y ) ∈ X . By [12, Theorem 3],
if k ≥ n

3
+ 1, then there exists A ∈Mn such that Λk(A) = ∅. Hence, by Corollary

2.3, Λk,‖·‖2(A; In) = Λk(A) = ∅. Also, by Proposition 1.1(vii) and Theorem 2.2,
Λk,‖·‖(A;A) = {1} for any A ∈ Mn×m, and hence, Λk,‖·‖(.; .) can be empty or a
non-empty set.

Remark 2.5. By Corollary 2.3, the notion of rank−k numerical range of rect-
angular matrices can be considered as a generalization of the rank−k numerical
range of square matrices.

In the following theorem, we show that the rank−k numerical range of rectan-
gular matrices is invariant under some unitary matrices.

Theorem 2.6. Let A, B ∈ Mn×m and 1 ≤ k ≤ min{n,m} be a positive integer.
Moreover, let ‖ · ‖ be a vector norm on M(n−k+1)×(m−k+1). Then

Λk,‖·‖(UAV ;UBV ) = Λk,‖·‖(A;B),

where for the case m ≥ n, U ∈ Un and V =

(
U∗ 0
0 ∗

)
∈ Um, and for the other

case, i.e., n ≥ m, V ∈ Um and U =

(
V ∗ 0
0 ∗

)
∈ Un.

Proof. Without loss of generality, we assume that m ≥ n. To prove ⊆, let X
be the set as in (2.1), and let (X, Y ) ∈ X be given. So, X ∈ Xn,n−k+1 and

Y =

(
X 0
0 W

)
for some W ∈ Um−n. By setting X ′ := UX and Y ′ := V ∗Y, we

have X ′ ∈ Xn,n−k+1 and Y ′ =

(
UX 0
0 ∗ ∈ Um−n

)
=

(
X ′ 0
0 ∗ ∈ Um−n

)
. So,
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(X ′, Y ′) ∈ X , and hence, by Theorem 2.2, we have

Λk,‖·‖(UAV ;UBV ) ⊆ W‖·‖((X
′)∗(UAV )Y ′; (X ′)∗(UBV )Y ′)

= W‖·‖(X
∗AY ;X∗BY ).

Since (X, Y ) ∈ X is arbitrary, by Theorem 2.2, Λk,‖·‖(UAV ;UBV ) ⊆ Λk,‖·‖(A;B).
By a similar way, ⊇ can be easily verified. So, the proof is complete. �

Let n,m ∈ N and 1 ≤ k2 ≤ k1 ≤ min{n,m} be two positive integers. Moreover,
let ‖·‖ be a vector norm onM(n−k2+1)×(m−k2+1). Define |||·||| onM(n−k1+1)×(m−k1+1)

by

|||Z||| = ‖
(
Z 0
0 0k1−k2

)
‖, (2.2)

where Z ∈ M(n−k1+1)×(m−k1+1), and 0k1−k2 ∈ Mk1−k2 is the zero matrix. Now,
in the following theorem, we want to study the relationship between higher rank
numerical ranges.

Theorem 2.7. Let A,B ∈ Mn×m and 1 ≤ k2 ≤ k1 ≤ min{n,m} be two positive
integers. Moreover, let ‖ · ‖ be a unitarily invariant norm on M(n−k2+1)×(m−k2+1)

and ||| · ||| be the vector norm on M(n−k1+1)×(m−k1+1) as in (2.2). Then

Λk1,|||·|||(A;B) ⊆ Λk2,‖·‖(A;B).

Proof. Let µ ∈ Λk1,|||·|||(A;B) be given. Without loss of generality, we assume
that n ≥ m, and

A =

(
A1

A2

)
, B =

(
B1

B2

)
∈Mn×m,

where A1, B1 ∈ Mm and A2, B2 ∈ M(n−m)×m. In view of Definition 2.1, it is
enough to show that for every Y ∈ Xm,m−k2+1, U ∈ Un−m and λ ∈ C,

‖X∗(A− λB)Y ‖ ≥ |µ− λ|,

where X =

(
Y 0
0 U

)
.

For this mind, let Y ∈ Xm,m−k2+1, U ∈ Un−m and λ ∈ C be given. By set-
ting Y =

(
Y1 Y2

)
, where Y1 ∈ Mm×(m−k1+1) and Y2 ∈ Mm×(k1−k2), we have

Y1 ∈ Xm,m−k1+1. Moreover,

‖X∗(A− λB)Y ‖ = ‖

 Y ∗
1 (A1 − λB1)Y1

Y ∗
2 (A1 − λB1)Y1

Y ∗
1 (A1 − λB1)Y2

Y ∗
2 (A1 − λB1)Y2

U∗(A2 − λB2)Y1 U∗(A2 − λB2)Y2

 ‖

= ‖

 Y ∗
1 (A1 − λB1)Y1

U∗(A2 − λB2)Y1

Y ∗
1 (A1 − λB1)Y2

U∗(A2 − λB2)Y2

Y ∗
2 (A1 − λB1)Y1 Y ∗

2 (A1 − λB1)Y2

 ‖,
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in which, the second equality follows from this fact that ‖·‖ is unitarily invariant.
Hence, by [15, Corollary 3.8], we have

‖X∗(A− λB)Y ‖ ≥ ‖

 Y ∗
1 (A1 − λB1)Y1

U∗(A2 − λB2)Y1
0

0 0

 ‖

= ‖
(

X∗
1 (A− λB)Y1 0

0 0

)
‖

= |||X∗
1 (A− λB)Y1|||,

where X1 =

(
Y1 0
0 U

)
∈ Xn,n−k1+1. Since µ ∈ Λk1,|||·|||(A;B), |||X∗

1 (A −

λB)Y1||| ≥ |µ− λ|, and hence the above inequality shows that

‖X∗(A− λB)Y ‖ ≥ |µ− λ|.

So, the proof is complete. �

Proposition 2.8. Let A, B ∈ Mn×m and 1 ≤ k ≤ min{n,m} be a positive
integer. Moreover, let ‖ · ‖ be a vector norm on M(n−k+1)×(m−k+1) and X be the
set as in (2.1). Then the following assertions are true:
(i) If ‖X∗BY ‖ = 1 for all (X, Y ) ∈ X , then

Λk,‖·‖(A;B) =
⋂

(X,Y )∈X

{µ ∈ C : X∗BY⊥BJX
∗(A− µB)Y };

(ii) If ‖X∗BY ‖ > 1 for all (X, Y ) ∈ X , then

Λk,‖·‖(A;B) ⊇
⋂

(X,Y )∈X

{µ ∈ C : X∗BY⊥BJX
∗(A− µB)Y }.

Proof. Let (X, Y ) ∈ X be arbitrary. By Proposition 1.1(i), if ‖X∗BY ‖ = 1, then
{µ ∈ C : X∗BY⊥BJX

∗(A−µB)Y } = W‖·‖(X
∗AY ;X∗BY )); and if ‖X∗BY ‖ > 1,

then {µ ∈ C : X∗BY⊥BJX
∗(A − µB)Y } ⊆ W‖·‖(X

∗AY ;X∗BY )). Now, the
results follow from Theorem 2.2. �

The following proposition follows from Proposition 1.1(vi) and Theorem 2.2.

Proposition 2.9. Let A, B ∈ Mn×m, 0 6= b ∈ C, and 1 ≤ k ≤ min{n,m} be a
positive integer. Moreover, let ‖ · ‖ be a vector norm on M(n−k+1)×(m−k+1). Then
the following assertions are true:
(i) If |b| = 1, then Λk,‖·‖(A; bB) = b−1Λk,‖·‖(A;B);
(ii) If |b| < 1, then Λk,‖·‖(A; bB) ⊆ b−1Λk,‖·‖(A;B);
(iii) If |b| > 1, then Λk,‖·‖(A; bB) ⊇ b−1Λk,‖·‖(A;B).

The following proposition follows from Proposition 1.1(iii) and Theorem 2.2.

Proposition 2.10. Let A, B ∈ Mn×m and 1 ≤ k ≤ min{n,m} be a positive
integer. Moreover, let ‖ · ‖ be a vector norm on M(n−k+1)×(m−k+1), and a, b ∈ C.
Then Λk,‖·‖(aA+ bB;B) = aΛk,‖·‖(A;B) + b.
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Proposition 2.11. Let A, B ∈ Mn×m and 1 ≤ k ≤ min{n,m} be a positive
integer. Moreover, let ‖ · ‖ be a vector norm on M(n−k+1)×(m−k+1). Then

Int(Λk,‖·‖(A;B)) ⊆
⋂

(X,Y )∈X

{µ ∈ C : ‖X∗(A− λB)Y ‖ > |µ− λ|, ∀λ ∈ C},

where Int(S) denotes the set of all interior points of S ⊆ C.
Proof. Since

Int(
⋂

(X,Y )∈X

W‖·‖(X
∗AY ;X∗BY )) ⊆

⋂
(X,Y )∈X

Int(W‖·‖(X
∗AY ;X∗BY )),

using Theorem 2.2 and Proposition 1.1(v), the result holds. �

In the following proposition, we state the relationship between the Λk,‖·‖(A;B)
and Λk,‖·‖(B;A).

Proposition 2.12. Let A, B ∈ Mn×m and 1 ≤ k ≤ min{n,m} be a positive
integer. Moreover, let ‖ · ‖ be a vector norm on M(n−k+1)×(m−k+1). Then

{µ−1 : µ ∈ Λk,‖·‖(A;B), |µ| ≥ 1} ⊆ Λk,‖·‖(B;A).

Proof. By Proposition 1.1(iv) and Theorem 2.2, we have⋂
(X,Y )∈X

{µ−1 : µ ∈ W‖·‖(X
∗AY ;X∗BY ), |µ| ≥ 1} ⊆

⋂
(X,Y )∈X

W‖·‖(X
∗BY ;X∗AY )

= Λk,‖·‖(B;A).

Since

{µ−1 : µ ∈ Λk,‖·‖(A;B), |µ| ≥ 1} ⊆
⋂

(X,Y )∈X

{µ−1 ∈ C : µ ∈ W‖·‖(X
∗AY ;X∗BY )

, |µ| ≥ 1},
by the above inclusion, the result holds. �

Let A, B ∈ Mn×m and 0 ≤ ε < 1. Moreover, let ‖ · ‖ be a vector norm on
Mn×m. The Birkhoff-James ε-orthogonality set of A with respect to B is defined
and denoted, [7, Definition 1], by

W ε
‖·‖(A;B) = {µ ∈ C : ‖A− λB‖ ≥

√
1− ε2‖B‖|µ− λ|, ∀λ ∈ C}. (2.3)

It is clear that:

W ε
‖·‖(A;B) = {µ ∈ C : B ⊥ε

BJ (A− µB)}. (2.4)

By this idea, at the end of this section, we introduce and study the notion of
rank−k, ε numerical range of rectangular matrices.

Definition 2.13. Let A,B ∈ Mn×m, 1 ≤ k ≤ min{n,m} be a positive inte-
ger, and X be the set as in (2.1). Moreover, let ‖ · ‖ be a vector norm on
M(n−k+1)×(m−k+1) and 0 ≤ ε < 1. The rank−k, ε numerical range of A with
respect to B is defined and denoted by

Λε
k,‖·‖(A;B) = {µ ∈ C : ‖ X∗(A− λB)Y ‖ ≥

√
1− ε2‖X∗BY ‖|µ− λ|, ∀λ ∈ C,

∀ (X, Y ) ∈ X}.
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Theorem 2.14. Let A,B ∈Mn×m, 1 ≤ k ≤ min{n,m} be a positive integer, and
X be the set as in (2.1). Moreover, let ‖ ·‖ be a vector norm on M(n−k+1)×(m−k+1)

and 0 ≤ ε < 1. Then

Λε
k,‖·‖(A;B) =

⋂
(X,Y )∈X

W ε
‖·‖(X

∗AY ;X∗BY ).

Consequently, Λε
k,‖·‖(A;B) is a compact and convex set in C.

Proof. Using Definition 2.13 and Relation (2.3), the equality is easy to verify.
Since W ε

‖·‖(X
∗AY ;X∗BY ) is a compact and convex set in C for all (X,Y ) ∈ X ,

the convexity and compactness of Λε
k,‖·‖(A;B) follows. �

Using Theorem 2.14 and relation (2.4), we have the following proposition.

Proposition 2.15. Let A, B ∈ Mn×m and 1 ≤ k ≤ min{n,m} be a positive
integer. Moreover, let ‖ · ‖ be a vector norm on M(n−k+1)×(m−k+1) and 0 ≤ ε < 1.
Then

Λε
k,‖·‖(A;B) =

⋂
(X,Y )∈X

{µ ∈ C : X∗BY ⊥ε
BJ X

∗(A− µB)Y }.

3. k−Spectrum of rectangular matrices

Let A,B ∈ Mn×m, where n ≥ m. A scalar µ0 ∈ C is said to be an eigenvalue
of A with respect to B if the linear system (A − µ0B)x = 0 has a nonzero
solution x0 ∈ Cm. The vector x0 is called an eigenvector of A with respect to
B corresponding to µ0, and the set of all eigenvalues of A with respect to B is
denoted by σ(A;B). One may see [6] for more details. It is clear that

σ(A;B) = {µ ∈ C : dim ker(A− µB) ≥ 1}. (3.1)

By this idea, we state the following definition. We use the notation [x] for the
greatest integer less than or equal to x ∈ R.

Definition 3.1. Let A, B ∈Mn×m, where n ≥ m, and let 1 ≤ k ≤ [
m+ 1

2
] be a

positive integer, and X be the set as in (2.1). The k− spectrum of A with respect
to B is defined and denoted by

σk(A;B) = {µ ∈ C : dim ker(X∗(A− µB)Y ) ≥ k, ∀(X, Y ) ∈ X}. (3.2)

Remark 3.2. In Definition 3.1, if A, B ∈ Mn and 1 ≤ k ≤ [
n+ 1

2
] is a positive

integer, then

σk(A;B) = {µ ∈ C : dim ker(X∗(A− µB)X) ≥ k, ∀X ∈ Xn,n−k+1}. (3.3)

So, if B = In, then σ1(A; In) = σ(A), and hence, the notion of k−spectrum can
be considered as a generalization of the spectrum.

Theorem 3.3. Let A, B ∈ Mn×m, where n ≥ m, and let 1 ≤ k ≤ [
m+ 1

2
] be a

positive integer. Then the following assertions are true:
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(i) σ(A;B) = σ1(A;B) ⊇ σ2(A;B) ⊇ · · · ⊇ σ
[
m+ 1

2
]

(A;B);

(ii) {µ−1 ∈ C : µ ∈ σk(A;B) and µ 6= 0} = σk(B;A) \ {0};
(iii) σk(A

∗;B∗) = σk(A;B) := {µ ∈ C : µ ∈ σk(A;B)}, where n = m.

Proof. (i); The equality σ1(A;B) = σ(A;B) follows from this fact that for any
unitary matrices X ∈ Mn and Y ∈ Mm, dim ker(A − µB) = dim ker(X∗(A −
µB)Y ).

Now, let 1 ≤ k1 ≤ k2 ≤ [
m+ 1

2
] be two positive integers. We will show that

σk2(A;B) ⊆ σk1(A;B). For this mind, let µ ∈ σk2(A;B), Y ∈ Xm,m−k1+1 and U ∈

Un−m be given. By setting Y =
(
Y1 Y2

)
, A =

(
A1

A2

)
, B =

(
B1

B2

)
∈Mn×m,

where Y1 ∈ Mm×(m−k2+1), Y2 ∈ Mm×(k2−k1), and A1, B1 ∈ Mm and A2, B2 ∈
M(n−m)×m, we have Y1 ∈ Xm,m−k2+1, and

rank(X∗(A− µB)Y ) = rank

 Y ∗
1 (A1 − µB1)Y1

U∗(A2 − µB2)Y1

Y ∗
1 (A1 − µB1)Y2

U∗(A2 − µB2)Y2

Y ∗
2 (A1 − µB1)Y1 Y ∗

2 (A1 − µB1)Y2

 ,

where X =

(
Y 0
0 U

)
∈ Xn,n−k1+1. So,

rank(X∗(A− µB)Y ) = rank

 X∗
1 (A− µB)Y1

Y ∗
1 (A1 − µB1)Y2

U∗(A2 − µB2)Y2

Y ∗
2 (A1 − µB1)Y1 Y ∗

2 (A1 − µB1)Y2

 ,

where X1 =

(
Y1 0
0 U

)
∈ Xn,n−k2+1. Since µ ∈ σk2(A;B), dim ker(X∗

1 (A −

µB)Y1) ≥ k2, and hence, rank(X∗
1 (A− µB)Y1) ≤ m− 2k2 + 1. So, the inequality

k2 ≥ k1 implies that

rank(X∗(A− µB)Y ) ≤ rank(X∗
1 (A− µB)Y1) + (k2 − k1)

≤ m− k1 − k2 + 1

≤ m− 2k1 + 1.

Therefore, dim ker(X∗(A− µB)Y ) ≥ k1, and hence, µ ∈ σk1(A;B).
Using Definition 3.1, the results in (ii) and (iii) can be easily verified. �

In the final theorem, we state the relationship between σk(A;B) and Λk,‖·‖(A;B).

Theorem 3.4. Let A, B ∈ Mn×m, where n ≥ m, and let 1 ≤ k ≤ [
m+ 1

2
] be a

positive integer. Moreover, let ‖·‖ be an induced vector norm on M(n−k+1)×(m−k+1)

such that ‖X∗BY z‖ ≥ 1 for all (X, Y ) ∈ X and z ∈ Cm−k+1 \ {0}, where X is
the set as in (2.1). Then

σk(A;B) ⊆ Λk,‖·‖(A;B).
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Proof. Let µ ∈ σk(A;B), (X, Y ) ∈ X and λ ∈ C be given. By Definition 3.1,
there exists a unit vector z ∈ Cm−k+1 \ {0} such that X∗(A − µB)Y z = 0. So
X∗(A− λB)Y z = (µ− λ)X∗BY z, and hence,

‖X∗(A− λB)Y ‖ ≥ ‖X∗(A− λB)Y z‖ = |µ− λ|‖X∗BY z‖ ≥ |µ− λ|.
So, µ ∈ Λk,‖·‖(A;B) and hence, the proof is complete. �
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