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Abstract

In this note, a characterization for boundary representations of a C∗-algebra for an opera-
tor system in terms of quasi hyperrigidity and separating property of the operator system is
established.
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1 Introduction

In approximation theory, positive approximation processes play an important role. In 1953, P.P
Korovkin discovered a simple but powerful method to determine whether a given sequence of positive
linear operators on C[0, 1] is an approximation process or not. In fact Korovkin proved that it is
enough to check the convergence of the sequence on a subset (which later came to be known as
Korovkin set) for the purpose. Subsequently, Korovkin’s theorem was extended to other function
spaces and to abstract spaces such as Banach spaces. As a result a new theory emerged as the
Korovkin type approximation theory. In this context Saskin [8] obtained a remarkable result: If
X is a compact Hausdorff space and if M is a linear subspace of C(X) containing identity and
separating points of X, then M is a Korovkin set if and only if the Choquet boundary for M is the
whole of X.

It was William Arveson [3] who initiated the Korovkin type theory in the non-commutative
setting. Analogue of Saskin’s theorem in the non-commutative setting is proved only for particular
cases([3],[6]) where the notion of hyperrigidity captures the essence of Korovkin sets in the context
of non commutative C∗-algebras and operator systems. The recent important work of Mathew
Kennedy and K R Davidson ([5]) where they essentially show that every operator system and every
unital operator algebra has sufficiently many boundary representations to completely norm it is rel-
evant here. Our result, with a weaker notion of hyperrigidity is in similar line of investigation. The
notion of separating subalgebra of a C∗-algebra is known. Closely related to this in the context of
algebra-subalgebra pair of C∗-algebras are the concepts of subrepresentations, finite representations
and semi-invariant subspaces. Arveson gave a characterization of boundary representations for a
subalgebra of a C∗-algebra in terms of finiteness of subrepresentations and separating property of
the subalgebra [1]. Semi-invariant subspaces and pure completely positive maps are also relevant
for our purpose. With a view of extending these results to operator system and the generated
C∗-algebra pair, we adapt these notions to this context.
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2 Preliminaries

In this section we recall certain notions and results due to Arveson in non commutative approxima-
tion theory relevant to our discussion. We are particularly interested in Arveson’s characterization
of boundary representations for subalgebras of C∗-algebras in terms of finiteness of representations
and separating property of subalgebras.

A closed subspace M of a Hilbert space H is said to be semi-invariant under a subalgebra
A of B(H)-the space of all bounded linear maps on the Hilbert space H, if the map ϕ(T ) =
PMT |M is multiplicative on A. This definition is due to Sarason [7], who also proved the following
characterization of semi-invariant subspaces. If M is a semi-invariant subspace for an algebra
A, then M0 = [AM ] 	M is A-invariant, so that M = [AM ] 	M0 is a nested difference of A-
invariant subspaces where [AM ] is the norm closure of {aξ; a ∈ A and ξ ∈ H} in H. Conversely if
N = M1 	M0 where M0 ⊆M1 are A-invariant, then N is semi-invariant for A. Note that when A
is self-adjoint, semi-invariant subspaces are reducing. But in general semi-invariant subspaces need
not be even invariant.

If A is a subalgebra of a C∗-algebra B containing the identity of B, then a representation of A on
a Hilbert space H is a homomorphism ϕ from A into the algebra of operators B(H) satisfying the
conditions: (i) ϕ(e) = I and (ii) ‖ϕ(a)‖ ≤ ‖a‖ for all a ∈ A. Note that when A = B, ϕ will become
the usual representation of the C∗-algebra. If M is a semi-invariant subspace for ϕ(A), then the new
representation ϕ0 of A on M defined by ϕ0(a) = PMϕ(a)|M , a ∈ A is called a subrepresentation
of ϕ. Here again, when A is self-adjoint, ϕ0 will become the usual subrepresentation.

Let A be a subalgebra of a C∗-algebra and let ϕ be a representation of A on some Hilbert space
H. Two representations ϕ1 and ϕ2 of A on a Hilbert space H are said to be (unitarily) equivalent
if there exists a unitary U ∈ B(H) such that ϕ1(a) = U∗ϕ2(a)U for all a ∈ A. The representation
ϕ is called infinite if it is equivalent to a proper subrepresentation ϕ0 6= ϕ; ϕ is called finite if it
is not infinite. Arveson proved the following characterization of finite representations: ϕ is finite if
and only if for every isometry V ∈ B(H), the condition V ∗ϕ(a)V = ϕ(a) for all a ∈ A implies V is
unitary. We will use this as the definition of finite representation of a subalgebra.

Definition 2.1. An operator system S in a C∗-algebra A is a self-adjoint linear subspace of A
containing the identity of A such that A = C∗(S), the C∗-algebra generated by S.

The set of all equivalence classes of irreducible representations of a C∗algebra A is called the
spectrum of A and is denoted by Â. Consider an operator system S and a Hilbert space H.
Let CP (S,B(H)) denote the set of all completely positive (CP) maps from S to B(H) and let
UCP (S,B(H)) be the set of all CP maps that are unital. A map ϕ ∈ UCP (S,B(H)) is called pure
if whenever ϕ− ξ is CP for some ξ ∈ CP (S,B(H)) then there exists 0 ≤ t ≤ 1 such that ξ = tϕ.

Definition 2.2. Let S be an operator system in a C∗-algebra A. A boundary representation of
A for S is an irreducible representation π of A on a Hilbert space such that π|S has a unique
completely positive extension, namely π itself to A.

Definition 2.3. A set G (finite or countably infinite) of generators of an abstract C∗-algebra A
is said to be hyperrigid if for every faithful representation A ⊆ B(H) of A on a Hilbert space and
every sequence of unital completely positive maps {ϕn} from B(H) to itself,

lim
n→∞

‖ϕn(g)− g‖ = 0, ∀ g ∈ G⇒ lim
n→∞

‖ϕn(a)− a‖ = 0, ∀ a ∈ A.
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3 Quasi hyperrigidity and separating operator systems

The notion of hyperrigidity for operator system introduced by Arveson is closely related to the
theory of extreme points and Choquet boundary of operator systems. Arveson proved that when
the operator system is hyperrigid, Choquet boundary of the operator system is equal to the spec-
trum of the generated C∗-algebra. Weaker analogues of the notion of hyperrigidity also proved to
be worth studying in exploring the related concepts. In this context, the notion of quasi hyper-
rigidity for operator system was first introduced in [9]. We give below the definition of a quasi
hyperrigid operator system and give an example to show that the notion is weaker than the notion
of hyperrigidity.

Definition 3.1. An operator system S is said to be quasi hyperrigid if for every irreducible repre-
sentation π of C∗(S) and for every isometry V : Hπ → Hπ such that V ∗π(s)V = π(s) for all s in
S, then V ∗π(a)V = π(a) for all a in C∗(S).

Example 3.2. This example is taken from a previous paper [9] co-authored by the authors. Let
Mn(C) denote the set of all n×n matrices over C, where n ≥ 3. Define a unital completely positive
map Φ on Mn(C) as given below. Let

M =


a11 a12 a13 ...... a1n
a21 a22 a23 ...... a2n
a31 a32 a33 ...... a3n
. . . ...... .
. . . ...... .
an1 an2 an3 ...... ann


be arbitrary. Now define Φ on Mn(C) as Φ(M) = N , where

N =


a11 a12 0 ...... 0
a21 a22 0 ...... 0
0 0 a22 ...... 0
0 0 0 a22 0
. . . ...... .
0 0 0 ...... a22

 .

Now let M = T , where a21 = 1 and all other entries equal to 0. If S = span{I, T, T ∗} and
A = C∗(S), then Φ(s) = s for all s in S, but Φ(TT ∗) 6= TT ∗. i.e, S is not a hyperrigid set.
However, if V is any isometry such that V ∗V = I, then V V ∗ = I, since A is finite dimensional.
Thus S is quasi hyperrigid, but fails to be a hyperrigid set.

More examples of quasi hyperrigid systems are given in [9].
The following proposition is on a relation between finite representation of an algebra and quasi

hyperrigidity of the associated operator system in the generated C∗-algebra.

Proposition 3.3. Let A be a unital operator algebra in B(H). Consider the operator system S =
A+A∗and let B = C∗(S) be the C∗-algebra generated by S. Then every irreducible representation

π ∈ B̂ is a finite representation of A if and only if S is a quasi hyperrigid system.
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Proof. Assume that every irreducible representation π ∈ B̂ is a finite representation of A. Let
π : B −→ B(Hπ) be an irreducible representation and let V : Hπ −→ Hπ be an isometry satisfying

V ∗π(s)V = π(s) for all s ∈ S.

.
In particular, V ∗π(a)V = π(a) for all a ∈ A.
But by our assumption π is a finite representation of A and therefore V is unitary. Hence we

have
V ∗π(s)V = π(s) for all s ∈ B.

This will imply that S quasi hyperrigid.
Conversely, assume that S is a quasi hyperrigid system. Let π : B −→ B(Hπ) be an irreducible

representation and let V : Hπ −→ Hπ be an isometry satisfying

V ∗π(a)V = π(a) for all a ∈ A.

V ∗π(s)V = π(s) for all s ∈ S = A+A∗.

Since S is quasi hyperrigid, we have

V ∗π(s)V = π(s) for all s ∈ B.

V is an isometry and from the above equation it is clear that the range of V reduces the
irreducible C∗-algebra π(B). Therefore V is unitary and hence π is a finite representation of
A. q.e.d.

Now we define a separating operator system in line with the definition of a separating subalgebra
defined by Arveson (Def. 2.4.4., [1]). The necessary and sufficient condition due to Arveson for a
subalgebra to separate an irreducible representation is as follows. A subalgebra A of a C∗-algebra
B separates an irreducible representation ω of B on a Hilbert space H if and only if the following
condition is satisfied: for every irreducible representation π of B on a Hilbert space K and every
isometry V ∈ L(H,K), V ∗π(a)V = ω(a) for all a ∈ A implies that π and ω are unitarily equivalent
representations of B. Replacing subalgebra with a linear subspace we give the definition of a
separating operator system as follows.

Definition 3.4. Let S be an operator system and A = C∗(S). Let π : A −→ B(H) be an
irreducible representation. We say that S separates π if for every irreducible representation ρ :
A −→ B(K) and every isometry V : H −→ K, V ∗ρ(s)V = π(s), for all s ∈ S implies that π and
ρ are unitarily equivalent representations of A. S is called a separating operator system of A if it
separates every irreducible representation of A.

In the classical case, a set S in C(X) (where X is compact Hausdorff) is said to separate points
of X if for each pair of points x1, x2 ∈ X where x1 6= x2, there exists g ∈ S such that g(x1) 6= g(x2).
As irreducible representations of C(X) correspond to points of X, our notion of separating operator
system will coincide with the subspace which separates points in the classical sense. Further, when
S is a Korovkin set in C(X), it separates points of X([4], page 163). In the same way, in non



Separating and quasi hyperrigid operator systems in C∗-algebras 59

commutative setting, if S is a separable operator system and A = C∗(S), then by ([3], Theorem
2.1) it follows that every separable hyperrigid operator system is separating.

Now we will establish our main result.

Theorem 3.5. Let S be an operator system and A = C∗(S). Then every irreducible representation
of A is a boundary representation of A for S if and only if the following conditions are satisfied:

(i) S is quasi hyperrigid;

(ii) every irreducible representation of A restricted to S is pure;

(iii) S is a separating operator system.

Proof. Assume that every irreducible representation for S is a boundary representation. Consider
an irreducible representation π : A −→ B(Hπ). Let V : Hπ −→ Hπ be an isometry such that
V ∗π(s)V = π(s) for every s ∈ S. Then V ∗π(.)V is a completely positive map on A which agrees
with π on S. But π is a boundary representation of A for S. This implies that V ∗π(a)V = π(a)
for all a ∈ A. Therefore S is quasi hyperrigid.

Let π|S = ϕ1 + ϕ2 for some ϕi ∈ CP (S,B(Hπ)), i = 1, 2. Then by ([1],Theorem 1.2.3), there
exists ξi ∈ CP (A, B(Hπ)) such that ξi|S = ϕi, i = 1, 2. Then ξ1 + ξ2 is a completely positive
extension of π|S . But π is a boundary representation. Then π = ξ1 + ξ2. Since π is an irreducible
representation, π is pure([1],Theorem 1.4.3). Therefore there exists ti ≥ 0, i = 1, 2 such that
ξi = tiπ, i = 1, 2. This implies that ϕi = tiπ|S , i = 1, 2 and therefore π|S is pure.

Now we will prove that S is a separating operator system by showing that S separates π.
Let ρ : A −→ B(Hρ) be any other irreducible representation and let V : Hπ −→ Hρ be an
isometry satisfying the condition V ∗ρ(s)V = π(s), for all s ∈ S. We know that V ∗ρ(.)V is a
completely positive extension of π|S and since π is a boundary representation of A for S, we have
V ∗ρ(a)V = π(a), for all a ∈ A. But then V Hπ is a reducing subspace for ρ(A). Since ρ(A) is
irreducible, we must have V Hπ = Hρ and this gives that V is unitary. Therefore π and ρ are
unitarily equivalent. Since π is arbitrary, we get that S is a separating operator system.

Conversely, assume that conditions (i), (ii) and (iii) are satisfied. Let π be an irreducible
representation of A on a Hilbert space Hπ. In order to prove that π is a boundary representation
of A for S. Consider

K = {ξ ∈ CP (A, B(Hπ)) : ξ|S = π|S}.

We will show that K = {π}. The space CP (A, B(Hπ)) has a natural topology called BW-topology
defined by Arveson ([1], page 146) where a net of maps in it converges to a limit if the image
net of operators in B(H) converges to the corresponding limit with respect to the weak operator
topology for every element of A. With respect to BW-topology, K is a compact convex subset of
CP (A, B(Hπ))([1], page 146). Obviously K is non-empty. By Krein-Milman theorem, K is the
closed convex hull of its extreme points. Let ϕ ∈ K is an extreme point. We will show that ϕ = π.

We first claim that ϕ is a pure element of CP (A, B(Hπ)). Choose non-zero elements ϕ1 and
ϕ2 of CP (A, B(Hπ)) such that ϕ(a) = ϕ1(a) + ϕ2(a), a ∈ A. Then π and ϕ are bounded linear
maps of A agreeing on S. But by condition (2) of the theorem there exist scalars ti ≥ 0, i = 1, 2
such that ϕi(s) = tiπ(s), for every s ∈ S. If we take ti = 0, and since e ∈ S, we get ϕi(e) = 0.
Hence ϕi = 0, i = 1, 2 which is not possible because of our selection of ϕi. This gives that
ti > 0, i = 1, 2. Since e ∈ S, π(e) = 1 = t1π(e) + t2π(e) we get t1 + t2 = 1. Now put ψi = t−1i ϕi.
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Then ψi ∈ K, i = 1, 2. Therefore we get ϕ = t1ψ1 + t2ψ2. But by our assumption, ϕ is an extreme
point of K, ϕ = ψ1 = ψ2. Then ϕi = tiϕ, i = 1, 2. This proves that ϕ is pure.

By ([1], Theorem 1.4.3), there exists an irreducible representation
ρ : A −→ B(Hρ) and a bounded operator V : Hπ −→ Hρ such that ϕ(a) = V ∗ρ(a)V for all
a ∈ A. Then π(s) = V ∗ρ(s)V for all s ∈ S. Putting s = e we get V ∗V = I and hence V is
an isometry. Because of our assumption that S is a separating operator system, we get that π
is unitarily equivalen to ρ. Therefore, there exists a unitary operator U : Hρ −→ Hπ such that
ρ = U−1πU . Hence we can write π(s) = (UV )∗π(s)(UV ) for all s ∈ S. But UV is an isometry. By
our assumption (i) S is quasi hyperrigid and this implies that UV is unitary which in turn gives
V = U−1UV is unitary. Therefore, we can write π(s) = V −1ρ(s)V, s ∈ S. Then V −1ρ(.)V is a
representation of A which agrees with π on S. This gives that π(a) = V −1ρ(a)V, a ∈ A. Therefore
we have π = ϕ and the proof is complete. q.e.d.

In the classical case the above theorem can be viewed as a restatement of the known fact that
Korovkin sets are separating.

The following example illustrates the above theorem.

Example 3.6. Let G = span (I, S, S∗, SS∗), where S is the unilateral right shift in B(H) and I
the identity operator. Let A = C∗(G) be the C∗-algebra generated by G. We have, K(H) ⊆ A.
A/K(H) ∼= C(T) is commutative, where T denotes the unit circle in C and the spectrum Â of A can
be identified with {Id}∪T. Since S is an isometry, G is hyperrigid ([3], Theorem 3.3) and this will
imply that all the irreducible representations of A are boundary representations for S. Clearly G
is quasi hyperrigid. Also S is separating operator system. Further, Id|G is pure and the irreducible
representations corresponding to T are one dimensional and their restrictions to S are also pure.
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