Some classes of Lorentzian α-Sasakian manifolds with respect to quarter-symmetric metric connection

Santu Dey ${ }^{1}$, Buddhadev Pal ${ }^{2}$ and Arindam Bhattacharyya ${ }^{3}$
1,3 Department of Mathematics, Jadavpur University, Kolkata-700032, India
${ }^{2}$ Department of Mathematics, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005
E-mail: santu.mathju@gmail.com ${ }^{1}$, pal.buddha@gmail.com ${ }^{2}$, bhattachar1968@yahoo.co.in ${ }^{3}$

Abstract

The object of the present paper is to study a quarter-symmetric metric connection in a Lorentzian α-Sasakian manifold. We study some curvature properties of Lorentzian α-Sasakian manifold with respect to quarter-symmetric metric connection. We investigate quasi-projectively flat, φ-symmetric, φ-projectively flat Lorentzian α-Sasakian manifolds with respect to quartersymmetric metric connection. We also discuss Lorentzian α-Sasakian manifold admitting quarter-symmetric metric connection satisfying $\tilde{P} \cdot \tilde{S}=0$, where \tilde{P} denote the projective curvature tensor with respect to quarter-symmetric metric connection.

2010 Mathematics Subject Classification. 53C25. 53C15
Keywords. Quarter-symmetric metric connection, Lorentzian α-Sasakian manifold, quasi-projectively flat Lorentzian α Sasakian manifold, φ-symmetric manifold, φ-projectively flat Lorentzian α-Sasakian manifold.

1 Introduction

The idea of a semi-symmetric linear connection on a differentiable manifold was introduced by Friedmann and Schouten ([4]). Further, Hayden ([6]), introduced the idea of metric connection with torsion on a Riemannian manifold. In ([13]), Yano studied some curvature conditions for semi-symmetric connections in Riemannian manifolds. In 1975, Golab ([5]) defined and studied quarter-symmetric connection in a differentiable manifold.

A linear connection $\tilde{\nabla}$ on an n-dimensional Riemannian manifold $\left(M^{n}, g\right)$ is said to be a quartersymmetric connection ([5]) if its torsion tensor \tilde{T} defined by

$$
\begin{equation*}
\tilde{T}(X, Y)=\tilde{\nabla}_{X} Y-\tilde{\nabla}_{Y} X-[X, Y] \tag{1.1}
\end{equation*}
$$

is of the form

$$
\begin{equation*}
\tilde{T}(X, Y)=\eta(Y) \varphi X-\eta(X) \varphi Y \tag{1.2}
\end{equation*}
$$

where η is 1 -form and φ is a tensor field of type (1,1). In addition, if a quarter-symmetric linear connection $\tilde{\nabla}$ satisfies the condition

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} g\right)(Y, Z)=0 \tag{1.3}
\end{equation*}
$$

for all $X, Y, Z \in \chi(M)$, where $\chi(M)$ is the set of all differentiable vector fields on M^{n}, then $\tilde{\nabla}$ is said to be quarter-symmetric metric connection. In particular, if $\varphi X=X$ and $\varphi Y=Y \forall X, Y \in \chi(M)$,

[^0]then the quarter-symmetric connection reduces to a semi-symmetric connection ([4]).
In 1980, R. S. Mishra and S. N. Pandey ([7]) studied quarter-symmetric metric connection and in particular, Ricci quarter-symmetric symmetric metric connection on Riemannian, Sasakian and Kaehlerian manifolds. Note that a quarter-symmetric metric connection is a Hayden connection with the torsion tensor of the form $(1,2)$. Studies of various types of quarter-symmetric metric connection and their properties by various authors in (([10], [11]), ([1])) and ([14]) among others.

The notion of locally symmetry of Riemannian manifolds have been weakened by many authors in several ways to a different extent. As a weaker version of local symmetry, T. Takahashi ([12]) introduced the notion of locally φ-symmetry on Sasakian manifolds. In the context of contact geometry the notion of φ-symmetry is introduced and studied by E. Boeckx, P. Buecken and L. Vanhecke ([2]) with several examples.

In 2005, Yildiz and Murathan ([15]) studied Lorentzian α-Sasakian manifolds and proved that conformally flat and quasi conformally flat Lorentzian α-Sasakian manifolds are locally isometric with a sphere. In 2012, Yadav and Suthar ([16]) studied Lorentzian α-Sasakian manifolds. In 2015, Dey and Bhattacharyya [3] studied Lorentzian α-Sasakian manifolds with respect to quartersymmetric metric connection.

Definition 1.1. A Lorentzian α-Sasakian manifold M^{n} is said to be quasi-projectively flat if

$$
\begin{equation*}
g(P(\varphi X, Y) Z, \varphi W)=0 \tag{1.4}
\end{equation*}
$$

for all vector fields X, Y, Z, W orthogonal to ξ.

Definition 1.2. A Lorentzian α-Sasakian manifold M^{n} is said to be φ-symmetric if

$$
\begin{equation*}
\varphi^{2}\left(\left(\nabla_{W} R\right)(X, Y) Z\right)=0 \tag{1.5}
\end{equation*}
$$

for arbitrary vector fields X, Y, Z, W.
The Projective curvature tensor is an important tensor from the differential geometric point of view. Let M be a n-dimensional Riemannian manifold. If there exists a one-to-one correspondence between each co-ordinate neighbourhood of M and a domain in Euclidian space such that any geodesic of the Riemannian manifold corresponds to a straight line in the Euclidean space, then M is said to be locally projectively flat. For $n \geq 3, M$ is locally projectively flat if and only if the projective curvature tensor vanishes. Here the projective curvature tensor P is defined by

$$
\begin{equation*}
P(X, Y) Z=R(X, Y) Z-\frac{1}{n-1}[S(Y, Z) X-S(X, Z) Y] \tag{1.6}
\end{equation*}
$$

for $X, Y, Z \in \chi(M)$, where S is the Ricci tensor of the manifold. In fact M is projectively flat if and only if it is of constant curvature. Thus the projective curvature tensor is the measure of the failure of a Riemannian manifold to be of constant curvature.

Definition 1.3. A Lorentzian α-Sasakian manifold M^{n} is said to φ-projectively flat if

$$
\begin{equation*}
\varphi^{2}(P(\varphi X, \varphi Y) \varphi Z, \varphi W)=0 \tag{1.7}
\end{equation*}
$$

for all vector fields X, Y, Z, W orthogonal to ξ, where P is the projective curvature tensor defined in (1.6).

In the present paper, we study Lorentzian α-Sasakian manifold with respect to quarter-symmetric metric connection. Motivated by the above studies in this paper we give the relation between the Levi-Civita connection and the quarter-symmetric metric connection on a Lorentzian α-Sasakian manifold. We characterize quasi-projectively flat Lorentzian α-Sasakian manifold with respect to the quarter-symmetric metric connection. Then we study φ-symmetric Lorentzian α-Sasakian manifolds with respect to quarter-symmetric metric connection. We also study φ-projectively flat Lorentzian α-Sasakian manifold with respect to the quarter-symmetric metric connection. Next we cultivate Lorentzian α-Sasakian manifold with respect to the quarter-symmetric metric connection satisfying $\tilde{P} . \tilde{S}=0$. Finally we give an example of 3-dimensional Lorentzian α-Sasakian manifolds with respect to quarter-symmetric metric connection.

2 Preliminaries

A $n(=2 m+1)$-dimensional differentiable manifold M is said to be a Lorentzian α-Sasakian manifold if it admits a $(1,1)$ tensor field φ, a contravariant vector field ξ, a covariant vector field η and Lorentzian metric g which satisfy the following conditions

$$
\begin{gather*}
\varphi^{2} X=X+\eta(X) \xi \tag{2.1}\\
\eta(\xi)=-1, \varphi \xi=0, \eta(\varphi X)=0 \tag{2.2}\\
g(\varphi X, \varphi Y)=g(X, Y)+\eta(X) \eta(Y) \tag{2.3}\\
g(X, \xi)=\eta(X) \tag{2.4}\\
\left(\nabla_{X} \varphi\right)(Y)=\alpha\{g(X, Y) \xi+\eta(Y) X\} \tag{2.5}
\end{gather*}
$$

$\forall X, Y \in \chi(M)$ and for smooth functions α on M, ∇ denotes the covariant differentiation with respect to Lorentzian metric g ([9], [17]).

For a Lorentzian α-Sasakian manifold, it can be shown that ([9], [17]):

$$
\begin{gather*}
\nabla_{X} \xi=-\alpha \varphi X, \tag{2.6}\\
\left(\nabla_{X} \eta\right)(Y)=-\alpha g(\varphi X, Y) \tag{2.7}
\end{gather*}
$$

for all $X, Y \in \chi(M)$. Further on a Lorentzian α-Sasakian manifold, the following relations hold ([9])

$$
\begin{equation*}
g(R(X, Y) Z, \xi)=\eta(R(X, Y) Z)=\alpha^{2}[g(Y, Z) \eta(X)-g(X, Z) \eta(Y)] \tag{2.8}
\end{equation*}
$$

$$
\begin{gather*}
R(\xi, X) Y=\alpha^{2}[g(X, Y) \xi-\eta(Y) X], \tag{2.9}\\
R(X, Y) \xi=\alpha^{2}[\eta(Y) X-\eta(X) Y] \tag{2.10}\\
R(\xi, X) \xi=\alpha^{2}[X+\eta(X) \xi] \tag{2.11}\\
S(X, \xi)=S(\xi, X)=(n-1) \alpha^{2} \eta(X), \tag{2.12}\\
S(\xi, \xi)=-(n-1) \alpha^{2}, \tag{2.13}\\
Q \xi=(n-1) \alpha^{2} \xi \tag{2.14}
\end{gather*}
$$

where Q is the Ricci operator, i.e.

$$
\begin{gather*}
g(Q X, Y)=S(X, Y), \tag{2.15}\\
S(\varphi X, \varphi Y)=S(X, Y)+(n-1) \alpha^{2} g(Y, Z) \tag{2.16}
\end{gather*}
$$

If ∇ is the Levi-Civita connection manifold M, then quarter-symmetric metric connection $\tilde{\nabla}$ in M is denoted by

$$
\begin{equation*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y+\eta(Y) \varphi(X) \tag{2.17}
\end{equation*}
$$

Now we will give the existence of the quarter-symmetric metric connection $\tilde{\nabla}$ on a Lorentzian α -Sasakian manifold M.

Let X, Y, Z be any vectors fields on a Lorentzian α-Sasakian manifold M and let a connection $\tilde{\nabla}$ is given by

$$
\begin{align*}
2 g\left(\tilde{\nabla}_{X} Y, Z\right) & =X g(Y, Z)+Y g(Z, X)-Z g(X, Y)+g([X, Y], Z) \\
& -g([Y, Z], X)+g([Z, X], Y)+g(\eta(Y) \varphi X \\
& -\eta(X) \varphi Y, Z)+g(\eta(X) \varphi Z-\eta(Z) \varphi X, Y) \\
& +g(\eta(Y) \varphi Z-\eta(Z) \varphi Y, X) \tag{2.18}
\end{align*}
$$

Then $\tilde{\nabla}$ is a quarter-symmetric metric connection on M. The proof of this has been discussed on [8].

3 Curvature tensor and Ricci tensor of Lorentzian α-Sasakian manifold with respect to quarter-symmetric metric connection

Let $\tilde{R}(X, Y) Z$ and $R(X, Y) Z$ be the curvature tensors with respect to the quarter-symmetric metric connection $\tilde{\nabla}$ and with respect to the Riemannian connection ∇ respectively on a Lorentzian α Sasakian manifold M. A relation between the curvature tensors $\tilde{R}(X, Y) Z$ and $R(X, Y) Z$ on M is given by

$$
\begin{align*}
\tilde{R}(X, Y) Z & =R(X, Y) Z+\alpha[g(\varphi X, Z) \varphi Y-g(\varphi Y, Z) \varphi X] \\
& +\alpha \eta(Z)[\eta(Y) X-\eta(X) Y] \tag{3.1}
\end{align*}
$$

Also from (3.1), we obtain

$$
\begin{equation*}
\tilde{S}(X, Y)=S(X, Y)+\alpha[g(X, Y)+n \eta(X) \eta(Y)] \tag{3.2}
\end{equation*}
$$

where \tilde{S} and S are the Ricci tensor with respect to $\tilde{\nabla}$ and ∇ respectively. Contracting (3.2), we obtain,

$$
\begin{equation*}
\tilde{r}=r \tag{3.3}
\end{equation*}
$$

where \tilde{r} and r are the scalar curvature tensor with respect to $\tilde{\nabla}$ and ∇ respectively. Also we have

$$
\begin{gather*}
\left.\tilde{R}(\xi, X) Y=-\tilde{R}(X, \xi) Y=\alpha^{2}[g(X, Y)) \xi-\eta(Y) X\right]+\alpha \eta(Y)[X+\eta(X) \xi], \tag{3.4}\\
\eta(\tilde{R}(X, Y) Z)=\alpha^{2}[g(Y, Z) \eta(X)-g(X, Z) \eta(Y)], \tag{3.5}\\
\tilde{R}(X, Y) \xi=\left(\alpha^{2}-\alpha\right)[\eta(Y) X-\eta(X) Y], \tag{3.6}\\
\tilde{S}(X, \xi)=\tilde{S}(\xi, X)=(n-1)\left(\alpha^{2}-\alpha\right) \eta(X), \tag{3.7}\\
\tilde{S}(\xi, \xi)=-(n-1)\left(\alpha^{2}-\alpha\right), \tag{3.8}\\
\tilde{Q} X=Q X-\alpha(n-1) X, \tag{3.9}\\
\tilde{Q} \xi=(n-1)\left(\alpha^{2}-\alpha\right) \xi \tag{3.10}\\
\tilde{R}(\xi, X) \xi=\left(\alpha^{2}-\alpha\right)[X+\eta(X) \xi] \tag{3.11}
\end{gather*}
$$

4 Quasi-projectively flat Lorentzian α-Sasakian manifold with respect to quarter-symmetric metric connection

The projective curvature tensor \tilde{P} with respect to quarter-symmetric metric connection is defined by

$$
\begin{equation*}
\tilde{P}(X, Y) Z=\tilde{R}(X, Y) Z-\frac{1}{n-1}[\tilde{S}(Y, Z) X-\tilde{S}(X, Z) Y] \tag{4.1}
\end{equation*}
$$

for $X, Y, Z \in \chi(M)$, where \tilde{S} is the Ricci tensor of the manifold with respect to quarter-symmetric metric connection.

A Lorentzian α-Sasakian manifold M^{n} is said to be quasi-projectively flat with respect to the quarter-symmetric metric connection if

$$
\begin{equation*}
g(\tilde{P}(\varphi X, Y) Z, \varphi W)=0 \tag{4.2}
\end{equation*}
$$

for all vector fields X, Y, Z, W orthogonal to ξ.
In view of the equation (4.1), we have

$$
\begin{align*}
g(\tilde{P}(X, Y) Z, W) & =g(\tilde{R}(X, Y) Z, W)-\frac{1}{n-1}[\tilde{S}(Y, Z) g(X, W) \\
& -\tilde{S}(X, Z) g(Y, W)] \tag{4.3}
\end{align*}
$$

Putting $X=\varphi X$ and $W=\varphi W$ in the above equation, we get

$$
\begin{align*}
g(\tilde{P}(\varphi X, Y) Z, \varphi W) & =g(\tilde{R}(\varphi X, Y) Z, \varphi W)-\frac{1}{n-1}[\tilde{S}(Y, Z) g(\varphi X, \varphi W) \\
& -\tilde{S}(\varphi X, Z) g(Y, \varphi W)] \tag{4.4}
\end{align*}
$$

Now assume that M^{n} is quasi-projectively flat with respect to quarter-symmetric metric connection. Then by virtue of equations (4.2) and (4.4), we have

$$
\begin{equation*}
g(\tilde{R}(\varphi X, Y) Z, \varphi W)=\frac{1}{n-1}[\tilde{S}(Y, Z) g(\varphi X, \varphi W)-\tilde{S}(\varphi X, Z) g(Y, \varphi W)] \tag{4.5}
\end{equation*}
$$

Using equations (3.1) and (3.2) in above equation, we get

$$
\begin{align*}
g(R(\varphi X, Y) Z, \varphi W) & =-\alpha[g(X, Z) g(Y, W)+g(X, Z) \eta(Y) \eta(W) \\
& +g(Y, W) \eta(X) \eta(Z)+\eta(X) \eta(Y) \eta(Z) \eta(W) \\
& -g(\varphi Y, Z) g(\varphi W, X)]-\alpha g(X, W) \eta(Y) \eta(Z) \\
& -\alpha \eta(X) \eta(Y) \eta(Z) \eta(W)+\frac{1}{n-1}[S(Y, Z) g(\varphi X, \varphi W) \\
& +\alpha\{g(Y, Z)+n \eta(Y) \eta(Z)\} g(\varphi X, \varphi W) \\
& -S(\varphi X, Z) g(\varphi W, Y)-\alpha g(\varphi X, Z) g(\varphi W, Y)] . \tag{4.6}
\end{align*}
$$

Let $\left\{e_{1}, e_{2}, \ldots, e_{n-1}, \xi\right\}$ be a local orthonormal basis of vector fields in M^{n}. Then $\left\{\varphi e_{1}, \varphi e_{2}, \ldots, \varphi e_{n-1}, \xi\right\}$ is also a local orthonormal basis of M^{n}. Putting $X=W=e_{i}$ in (4.6) and taking summation over
i, $1 \leq i \leq n-1$, we get

$$
\begin{align*}
\sum_{i=1}^{n-1} g\left(R\left(\varphi e_{i}, Y\right) Z, \varphi e_{i}\right)= & -\alpha \sum_{i=1}^{n-1}\left[g\left(e_{i}, Z\right) g\left(Y, e_{i}\right)+g\left(e_{i}, Z\right) \eta(Y) \eta\left(e_{i}\right)\right. \\
& +g\left(Y, e_{i}\right) \eta\left(e_{i}\right) \eta(Z)+\eta\left(e_{i}\right) \eta(Y) \eta(Z) \eta\left(e_{i}\right) \\
& \left.-g(\varphi Y, Z) g\left(\varphi e_{i}, e_{i}\right)\right]-\sum_{i=1}^{n-1}\left[\alpha g\left(e_{i}, e_{i}\right) \eta(Y) \eta(Z)\right. \\
& \left.-\alpha \eta\left(e_{i}\right) \eta(Y) \eta(Z) \eta\left(e_{i}\right)\right]+\frac{1}{n-1} \sum_{i=1}^{n-1}[S(Y, Z) \\
& g\left(\varphi e_{i}, \varphi e_{i}\right)+\alpha\{g(Y, Z)+n \eta(Y) \eta(Z)\} g\left(\varphi e_{i}, \varphi e_{i}\right) \\
& \left.-S\left(\varphi e_{i}, Z\right) g\left(\varphi e_{i}, Y\right)-\alpha g\left(\varphi e_{i}, Z\right) g\left(\varphi e_{i}, Y\right)\right] . \tag{4.7}
\end{align*}
$$

Also,

$$
\begin{gather*}
\sum_{i=1}^{n-1} g\left(R\left(\varphi e_{i}, Y\right) Z, \varphi e_{i}\right)=S(Y, Z)+g(Y, Z) \tag{4.8}\\
\sum_{i=1}^{n-1} S\left(\varphi e_{i}, Z\right) g\left(\varphi e_{i}, Y\right)=S(Y, Z) \tag{4.9}\\
\sum_{i=1}^{n-1} g\left(\varphi e_{i}, \varphi e_{i}\right)=n-1 \tag{4.10}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{n-1} g\left(\varphi e_{i}, Y\right) g\left(\varphi e_{i}, Z\right)=g(Y, Z) \tag{4.11}
\end{equation*}
$$

Hence, by virtue of equations (4.8), (4.9), (4.10) and (4.11), the equation (4.7) takes the form

$$
\begin{equation*}
S(Y, Z)=a g(Y, Z)+b \eta(Y) \eta(Z)+c \Phi(Y, Z) \tag{4.12}
\end{equation*}
$$

where $a=(1-n)\left(\alpha^{2}+1\right), b=(n-1) \alpha, c=\alpha(n-1) \beta$ and

$$
\beta=\operatorname{trace} \Phi, \Phi(Y, Z)=g(\varphi Y, Z)
$$

Hence we can state the following
Theorem 4.1. A quasi-projectively flat Lorentzian α-Sasakian manifold with respect to a quartersymmetric metric connection is an generalized η-Einstein manifold.

5φ-symmetric Lorentzian α-Sasakian manifold with respect to quarter-symmetric metric connection

A Lorentzian α-Sasakian manifold M^{n} is said to be φ-symmetric with respect to the quartersymmetric metric connection if

$$
\begin{equation*}
\varphi^{2}\left(\left(\tilde{\nabla}_{W} \tilde{R}\right)(X, Y) Z\right)=0 \tag{5.1}
\end{equation*}
$$

for arbitrary vector fields X, Y, Z, W.
From the equation (2.17) and (3.1), we have

$$
\begin{equation*}
\left(\tilde{\nabla}_{W} \tilde{R}\right)(X, Y) Z=\left(\nabla_{W} \tilde{R}\right)(X, Y) Z+\eta(\tilde{R}(X, Y) Z) \varphi W \tag{5.2}
\end{equation*}
$$

Let us consider a φ-symmetric Lorentzian α-Sasakian manifolds with respect to quarter-symmetric metric connection. Then by virtue of (2.1) and (5.1) we have

$$
\begin{equation*}
\left(\left(\tilde{\nabla}_{W} \tilde{R}\right)(X, Y) Z\right)+\eta\left(\left(\tilde{\nabla}_{W} \tilde{R}\right)(X, Y) Z\right) \xi=0 \tag{5.3}
\end{equation*}
$$

From which it follows that

$$
\begin{equation*}
g\left(\left(\tilde{\nabla}_{W} \tilde{R}\right)(X, Y) Z, U\right)+\eta\left(\left(\tilde{\nabla}_{W} \tilde{R}\right)(X, Y) Z\right) g(\xi, U)=0 \tag{5.4}
\end{equation*}
$$

Let $\left\{e_{i}\right\}, i=1,2 \ldots, n$ be an orthonormal basis of the tangent space at any point of the manifold. Then putting $X=U=e_{i}$ in (5.4) and taking summation over $i, 1 \leq i \leq n$, we have

$$
\begin{equation*}
\left(\tilde{\nabla}_{W} \tilde{S}\right)(Y, Z)+\Sigma_{i=1}^{n} \eta\left(\left(\tilde{\nabla}_{W} \tilde{R}\right)\left(e_{i}, Y\right) Z\right) \eta\left(e_{i}\right)=0 \tag{5.5}
\end{equation*}
$$

The second term of (5.5) by putting $Z=\xi$ takes the form

$$
\begin{equation*}
\eta\left(\left(\tilde{\nabla}_{W} \tilde{R}\right)\left(e_{i}, Y\right) \xi\right) \eta\left(e_{i}\right)=g\left(\left(\tilde{\nabla}_{W} \tilde{R}\right)\left(e_{i}, Y\right) \xi, \xi\right) g\left(e_{i}, \xi\right) . \tag{5.6}
\end{equation*}
$$

By using (2.16) and (5.2), we can write

$$
\begin{equation*}
g\left(\left(\tilde{\nabla}_{W} \tilde{R}\right)\left(e_{i}, Y\right) \xi, \xi\right)=g\left(\left(\nabla_{W} \tilde{R}\right)\left(e_{i}, Y\right) \xi, \xi\right)+\eta\left(\tilde{R}\left(e_{i}, Y\right) \xi\right) \varphi W \tag{5.7}
\end{equation*}
$$

After some calculations, from (5.7) we have

$$
\begin{equation*}
g\left(\left(\tilde{\nabla}_{W} \tilde{R}\right)\left(e_{i}, Y\right) \xi, \xi\right)=g\left(\left(\nabla_{W} \tilde{R}\right)\left(e_{i}, Y\right) \xi, \xi\right) \tag{5.8}
\end{equation*}
$$

In Lorentzian α-Sasakian manifold, we have

$$
g\left(\left(\nabla_{W} \tilde{R}\right)\left(e_{i}, Y\right) \xi, \xi\right)=0
$$

So from (5.8) we get

$$
\begin{equation*}
g\left(\left(\tilde{\nabla}_{W} \tilde{R}\right)\left(e_{i}, Y\right) \xi, \xi\right)=0 \tag{5.9}
\end{equation*}
$$

By replacing $Z=\xi$ in (5.5) and using (5.9), we get

$$
\begin{equation*}
\left(\tilde{\nabla}_{W} \tilde{S}\right)(Y, \xi)=0 \tag{5.10}
\end{equation*}
$$

We know that

$$
\begin{equation*}
\left(\tilde{\nabla}_{W} \tilde{S}\right)(Y, \xi)=\tilde{\nabla}_{W} \tilde{S}(Y, \xi)-\tilde{S}\left(\tilde{\nabla}_{W} Y, \xi\right)-\tilde{S}\left(Y, \tilde{\nabla}_{W} \xi\right) \tag{5.11}
\end{equation*}
$$

Now using (2.6), (2.12), (2.17) and (3.7), we obtain

$$
\begin{align*}
\left(\tilde{\nabla}_{W} \tilde{S}\right)(Y, \xi) & =-(n-1)\left(\alpha^{2}-\alpha\right) \alpha g(Y, \varphi W)+(\alpha+1)[S(Y, \varphi W) \\
& +\alpha g(Y, \varphi W)] \tag{5.12}
\end{align*}
$$

Applying (5.11) in (5.10), we obtain

$$
\begin{equation*}
S(Y, \varphi W)=g(Y, \varphi W)\left[(n-1) \alpha^{2} \frac{\alpha-1}{\alpha+1}-\alpha\right] . \tag{5.13}
\end{equation*}
$$

Replacing W by φW we get

$$
\begin{align*}
S(Y, W) & =g(Y, W)\left[(n-1) \alpha^{2} \frac{\alpha-1}{\alpha+1}-\alpha\right] \\
& -\frac{\alpha^{3}(n+1)+3 n \alpha^{2}+\alpha}{\alpha+1} \eta(Y) \eta(W) \tag{5.14}
\end{align*}
$$

Contracting (5.14), we get

$$
\begin{equation*}
r=n\left[(n-1) \alpha^{2} \frac{\alpha-1}{\alpha+1}-\alpha\right]+\frac{\alpha^{3}(n+1)+3 n \alpha^{2}+\alpha}{\alpha+1} \tag{5.15}
\end{equation*}
$$

This leads to the following theorem:
Theorem 5.1. Let M be a φ-symmetric Lorentzian α-Sasakian manifold with respect to quartersymmetric metric connection $\tilde{\nabla}$. Then the manifold has a scalar curvature $r=n\left[(n-1) \alpha^{2} \frac{\alpha-1}{\alpha+1}-\right.$ $\alpha]+\frac{\alpha^{3}(n+1)+3 n \alpha^{2}+\alpha}{\alpha+1}$ with respect to Levi-Civita connection ∇ of M provided $\alpha \neq-1$.

6φ-projectively flat Lorentzian α-Sasakian manifold with respect to quarter-symmetric metric connection

A Lorentzian α-Sasakian manifold M^{n} is said to φ-projectively flat with respect to the quartersymmetric metric connection if

$$
\begin{equation*}
\varphi^{2}(\tilde{P}(\varphi X, \varphi Y) \varphi Z, \varphi W)=0 \tag{6.1}
\end{equation*}
$$

for all vector fields X, Y, Z, W orthogonal to ξ, where \tilde{P} is the projective curvature tensor defined in (4.1).

Let M^{n} be a φ-projectively flat Lorentzian α-Sasakian manifold with respect to the quartersymmetric metric connection. It is easy to see that $\varphi^{2}(\tilde{P}(\varphi X, \varphi Y) \varphi Z$, $\varphi W)=0$ holds if and only if

$$
\begin{equation*}
g(\tilde{P}(\varphi X, \varphi Y) \varphi Z, \varphi W)=0 \tag{6.2}
\end{equation*}
$$

for any $X, Y, Z, W \in \chi(M)$.
Putting $Y=\varphi Y$ and $Z=\varphi Z$ in (4.4), we get

$$
\begin{align*}
g(\tilde{P}(\varphi X, \varphi Y) \varphi Z, \varphi W) & =g(\tilde{R}(\varphi X, \varphi Y) \varphi Z, \varphi W)-\frac{1}{n-1}[\tilde{S}(\varphi Y, \varphi Z) g(\varphi X, \varphi W) \\
& -\tilde{S}(\varphi X, \varphi Z) g(\varphi Y, \varphi W)] \tag{6.3}
\end{align*}
$$

Using the equation (6.3) in the equation (6.2), we obtain

$$
\begin{align*}
g(\tilde{R}(\varphi X, \varphi Y) \varphi Z, \varphi W) & =\frac{1}{n-1}[\tilde{S}(\varphi Y, \varphi Z) g(\varphi X, \varphi W) \\
& -\tilde{S}(\varphi X, \varphi Z) g(\varphi Y, \varphi W)] \tag{6.4}
\end{align*}
$$

Now using the equation (3.1) and (3.2), we obtain

$$
\begin{align*}
g(R(\varphi X, \varphi Y) \varphi Z, \varphi W) & =-\alpha[g(X, \varphi Z) g(Y, \varphi W)-g(Y, \varphi Z) g(X, \varphi W)] \\
& +\frac{1}{n-1}[S(\varphi Y, \varphi Z) g(\varphi X, \varphi W)+\alpha g(\varphi Y, \varphi Z) g(\varphi X, \varphi W) \\
& -S(\varphi X, \varphi Z) g(\varphi Y, \varphi W)-\alpha g(\varphi X, \varphi Z) g(\varphi Y, \varphi W)] \tag{6.5}
\end{align*}
$$

Let $\left\{e_{1}, e_{2}, \ldots, e_{n-1}, \xi\right\}$ be a local orthonormal basis of vector fields in M^{n}. Then $\left\{\varphi e_{1}, \varphi e_{2}, \ldots, \varphi e_{n-1}, \xi\right\}$ is also a local orthonormal basis of M_{n}. Putting $X=W=e_{i}$ in (6.5) and taking summation over i, $1 \leq i \leq n-1$, we get

$$
\begin{align*}
\sum_{i=1}^{n-1} g(R(\varphi X, \varphi Y) \varphi Z, \varphi W) & =-\alpha \sum_{i=1}^{n-1}[g(X, \varphi Z) g(Y, \varphi W)-g(Y, \varphi Z) g(X, \varphi W)] \\
& +\frac{1}{n-1} \sum_{i=1}^{n-1}[S(\varphi Y, \varphi Z) g(\varphi X, \varphi W) \\
& +\alpha g(\varphi Y, \varphi Z) g(\varphi X, \varphi W)-S(\varphi X, \varphi Z) g(\varphi Y, \varphi W) \\
& -\alpha g(\varphi X, \varphi Z) g(\varphi Y, \varphi W)] \tag{6.6}
\end{align*}
$$

Hence, by virtue of equations (4.8), (4.9), (4.10) and (4.11), the equation (6.6) takes the form

$$
\begin{equation*}
S(\varphi Y, \varphi Z)=g(\varphi Y, \varphi Z)\left[\alpha-1-\frac{\alpha}{n-1}\right]+\alpha(\beta-1) \Phi(Y, Z) \tag{6.7}
\end{equation*}
$$

where $\beta=\operatorname{trace} \Phi, \Phi(Y, Z)=g(\varphi Y, Z)$. Using the equation (2.3) and (2.16), we obtain

$$
\begin{equation*}
S(Y, Z)=a g(Y, Z)+b \eta(Y) \eta(Z)+c \Phi(Y, Z) \tag{6.8}
\end{equation*}
$$

where $a=\left[\alpha-1-\frac{\alpha}{n-1}-(n-1) \alpha^{2}\right], b=\left[\alpha-1-\frac{\alpha}{n-1}\right]$ and $c=\alpha(\beta-1)$. Hence we can state the following

Theorem 6.1. A φ-projectively flat Lorentzian α-Sasakian manifold with respect to a quartersymmetric metric connection is an generalized η-Einstein manifold.

7 Lorentzian α-Sasakian manifold with respect to quarter-symmetric metric connection satisfying $\tilde{P} \cdot \tilde{S}=0$

A Lorentzian α-Sasakian manifold with respect to the quarter-symmetric metric connection satisfying

$$
\begin{equation*}
(\tilde{P}(X, Y) \cdot \tilde{S})(Z, U)=0 \tag{7.1}
\end{equation*}
$$

where \tilde{S} is the Ricci tensor with respect to a quarter-symmetric metric connection. Then, we have

$$
\begin{equation*}
\tilde{S}(\tilde{P}(X, Y) Z, U)+\tilde{S}(Z, \tilde{P}(X, Y) U)=0 \tag{7.2}
\end{equation*}
$$

Putting $X=\xi$ in the equation (7.2), we have

$$
\begin{equation*}
\tilde{S}(\tilde{P}(\xi, Y) Z, U)+\tilde{S}(Z, \tilde{P}(\xi, Y) U)=0 \tag{7.3}
\end{equation*}
$$

In view of the equation (4.1), we have

$$
\begin{equation*}
\tilde{P}(\xi, Y) Z=\tilde{R}(\xi, Y) Z-\frac{1}{n-1}[\tilde{S}(Y, Z) \xi-\tilde{S}(\xi, Z) Y] \tag{7.4}
\end{equation*}
$$

for $X, Y, Z \in \chi(M)$.
Using equations (3.4) and (3.7) in the equation (7.4), we get

$$
\begin{align*}
\tilde{P}(\xi, Y) Z & =\alpha^{2}[g(Y, Z) \xi-\eta(Z) Y]+\alpha \eta(Z)[Y+\eta(Y) \xi] \\
& -\frac{1}{n-1}[S(Y, Z) \xi+\alpha\{g(Y, Z)+n \eta(Y) \eta(Z)\} \xi \\
& \left.-\left(\alpha^{2}-\alpha\right)(n-1) \eta(Z) Y\right] \tag{7.5}
\end{align*}
$$

Now using the equation (7.5) and putting $U=\xi$ in the equation (7.3) and using the equations (2.2), (2.12), we get

$$
\begin{align*}
S(Y, Z)\left[\alpha^{2}\right. & \left.+\frac{\alpha}{n-1}-\frac{\alpha n}{n-1}\right]+g(Y, Z)\left[-\alpha^{4}(n-1)+\frac{\alpha^{2}}{n-1}+n \alpha^{3}-\frac{\alpha^{2} n}{n-1}\right] \\
& +\eta(Y) \eta(Z)\left[\left(\alpha^{2}-\alpha\right)(n-1) \alpha^{2}+\alpha\left(\alpha^{2}-\alpha^{2}\right)\right. \\
& \left.+2 \alpha^{3} n-n \alpha^{4}\right]=0 . \tag{7.6}
\end{align*}
$$

This gives

$$
\begin{equation*}
S(Y, Z)=a g(Y, Z)+b \eta(Y) \eta(Z) \tag{7.7}
\end{equation*}
$$

where $a=\alpha[n \alpha-(\alpha+1)]$ and $b=2 \alpha^{2}+\frac{n \alpha^{2}}{n-1}$. In view of above discussions we can state the following theorem:

Theorem 7.1. A n-dimensional Lorentzian α-Sasakian manifold with a quarter-symmetric metric connection satisfying $\tilde{P} . \tilde{S}=0$. is an η-Einstein manifold.

8 Example of 3-dimensional Lorentzian α-Sasakian manifold with respect to quarter-symmetric metric connection

We consider a 3 -dimensional manifold $M=\left\{(x, y, u) \in R^{3}\right\}$, where (x, y, u) are the standard coordinates of R^{3}. Let e_{1}, e_{2}, e_{3} be the vector fields on M^{3} given by

$$
e_{1}=e^{u} \frac{\partial}{\partial x}, e_{2}=e^{u} \frac{\partial}{\partial y}, e_{3}=e^{u} \frac{\partial}{\partial u} .
$$

Clearly, $\left\{e_{1}, e_{2}, e_{3}\right\}$ is a set of linearly independent vectors for each point of M and hence a basis of $\chi(M)$. The Lorentzian metric g is defined by

$$
\begin{gathered}
g\left(e_{1}, e_{2}\right)=g\left(e_{2}, e_{3}\right)=g\left(e_{1}, e_{3}\right)=0 \\
g\left(e_{1}, e_{1}\right)=1, g\left(e_{2}, e_{2}\right)=1, g\left(e_{3}, e_{3}\right)=-1 .
\end{gathered}
$$

Let η be the 1-form defined by $\eta(Z)=g\left(Z, e_{3}\right)$ for any $Z \in \chi(M)$ and the $(1,1)$ tensor field φ is defined by

$$
\varphi e_{1}=-e_{1}, \varphi e_{2}=-e_{2}, \varphi e_{3}=0
$$

From the linearity of φ and g, we have

$$
\begin{gathered}
\eta\left(e_{3}\right)=-1, \\
\varphi^{2} X=X+\eta(X) e_{3}
\end{gathered}
$$

and

$$
g(\varphi X, \varphi Y)=g(X, Y)+\eta(X) \eta(Y)
$$

for any $X \in \chi(M)$. Then for $e_{3}=\xi$, the structure (φ, ξ, η, g) defines a Lorentzian paracontact structure on M.

Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric g. Then we have

$$
\left[e_{1}, e_{2}\right]=0,\left[e_{1}, e_{3}\right]=e_{1} e^{-u},\left[e_{2}, e_{3}\right]=e_{2} e^{-u}
$$

Koszul's formula is defined by

$$
2 g\left(\nabla_{X} Y, Z\right)=X g(Y, Z)+Y g(Z, X)-Z g(X, Y)
$$

$$
-g(X,[Y, Z])-g(Y,[X, Z])+g(Z,[X, Y])
$$

Then from above formula we can calculate the followings:

$$
\begin{gathered}
\nabla_{e_{1}} e_{1}=-e_{3} e^{u}, \nabla_{e_{1}} e_{2}=, \nabla_{e_{1}} e_{3}=-e_{1} e^{u}, \\
\nabla_{e_{2}} e_{1}=0, \nabla_{e_{2}} e_{2}=-e_{3} e^{u}, \nabla_{e_{2}} e_{3}=-e_{2} e^{u}, \\
\nabla_{e_{3}} e_{1}=0, \nabla_{e_{3}} e_{2}=0, \nabla_{e_{3}} e_{3}=0 .
\end{gathered}
$$

From the above calculations, we see that the manifold under consideration satisfies $\eta(\xi)=-1$ and $\nabla_{X} \xi=-\alpha \varphi X$ for $\alpha=-e^{u}$.

Hence the structure (φ, ξ, η, g) is a Lorentzian α-Sasakian structure.
Using (2.17), we find $\tilde{\nabla}$, the quarter-symmetric metric connection on M following:

$$
\begin{gathered}
\tilde{\nabla}_{e_{1}} e_{1}=-e_{3} e^{u}, \tilde{\nabla}_{e_{1}} e_{2}=0, \tilde{\nabla}_{e_{1}} e_{3}=e_{1}\left(1-e^{u}\right), \\
\tilde{\nabla}_{e_{2}} e_{1}=0, \tilde{\nabla}_{e_{2}} e_{2}=-e_{3} e^{u}, \tilde{\nabla}_{e_{2}} e_{3}=e_{2}\left(1-e^{u}\right), \\
\tilde{\nabla}_{e_{3}} e_{1}=0, \tilde{\nabla}_{e_{3}} e_{2}=0, \tilde{\nabla}_{e_{3} e_{3}}=0 .
\end{gathered}
$$

Using (1.2), the torson tensor T, with respect to quarter-symmetric metric connection $\tilde{\nabla}$ as follows:

$$
\begin{gathered}
\tilde{T}\left(e_{i}, e_{i}\right)=0, \forall i=1,2,3 \\
\tilde{T}\left(e_{1}, e_{2}\right)=0, \tilde{T}\left(e_{1}, e_{3}\right)=e_{1}, \tilde{T}\left(e_{2}, e_{3}\right)=e_{2}
\end{gathered}
$$

Also,

$$
\left(\tilde{\nabla}_{e_{1}} g\right)\left(e_{2}, e_{3}\right)=0,\left(\tilde{\nabla}_{e_{2}} g\right)\left(e_{3}, e_{1}\right)=0,\left(\tilde{\nabla}_{e_{3}} g\right)\left(e_{1}, e_{2}\right)=0
$$

Thus M is Lorentzian α-Sasakian manifold with quarter-symmetric metric connection $\tilde{\nabla}$.
By using the above results, we can easily obtain the components of the curvature tensor as follows:

$$
\begin{gathered}
R\left(e_{1}, e_{3}\right) e_{3}=-e_{1} \alpha^{2}, R\left(e_{2}, e_{1}\right) e_{1}=e_{2} \alpha^{2}, R\left(e_{2}, e_{3}\right) e_{3}=-e_{2} \alpha^{2} \\
R\left(e_{3}, e_{1}\right) e_{1}=e_{3} \alpha^{2}, R\left(e_{3}, e_{2}\right) e_{2}=e_{3} \alpha^{2}, R\left(e_{1}, e_{2}\right) e_{3}=0 \\
R\left(e_{2}, e_{3}\right) e_{2}=-e_{3} \alpha^{2}, R\left(e_{1}, e_{2}\right) e_{2}=e_{1} \alpha^{2}
\end{gathered}
$$

and

$$
\begin{gathered}
\tilde{R}\left(e_{1}, e_{3}\right) e_{3}=e_{1}\left(\alpha-\alpha^{2}\right), \tilde{R}\left(e_{2}, e_{1}\right) e_{1}=e_{2}\left(\alpha^{2}-\alpha\right), \\
\tilde{R}\left(e_{2}, e_{3}\right) e_{3}=e_{2}\left(\alpha-\alpha^{2}\right), \tilde{R}\left(e_{3}, e_{1}\right) e_{1}=e_{3} \alpha^{2}, \\
\tilde{R}\left(e_{3}, e_{2}\right) e_{2}=e_{3} \alpha^{2}, \tilde{R}\left(e_{1}, e_{2}\right) e_{3}=0, \tilde{R}\left(e_{2}, e_{3}\right) e_{2}=-e_{3} \alpha^{2},
\end{gathered}
$$

$$
\tilde{R}\left(e_{1}, e_{2}\right) e_{2}=e_{1}\left(\alpha^{2}-\alpha\right)
$$

Using the expressions of the curvature tensors, we find the values of the Ricci tensors as follows:

$$
\begin{gathered}
S\left(e_{1}, e_{1}\right)=0, S\left(e_{2}, e_{2}\right)=0, S\left(e_{3}, e_{3}\right)=-2 \alpha^{2} \\
S\left(e_{1}, e_{2}\right)=0, S\left(e_{2}, e_{3}\right)=0, S\left(e_{1}, e_{3}\right)=0
\end{gathered}
$$

and

$$
\begin{gathered}
\tilde{S}\left(e_{1}, e_{1}\right)=\alpha, \tilde{S}\left(e_{2}, e_{2}\right)=\alpha, \tilde{S}\left(e_{3}, e_{3}\right)=2\left(\alpha-\alpha^{2}\right) \\
\tilde{S}\left(e_{1}, e_{2}\right)=0, \tilde{S}\left(e_{2}, e_{3}\right)=0, \tilde{S}\left(e_{1}, e_{3}\right)=0
\end{gathered}
$$

Let $\Phi(X, Y)$ be a $(0,2)$ tensor. Then we have,

$$
\Phi(X, Y)=g(X, \varphi Y)
$$

Then

$$
\begin{aligned}
& \Phi\left(e_{1}, e_{1}\right)=g\left(e_{1}, \varphi e_{1}\right)=g\left(e_{1},-e_{1}\right)=-1, \\
& \Phi\left(e_{2}, e_{2}\right)=g\left(e_{2}, \varphi e_{2}\right)=g\left(e_{2},-e_{2}\right)=-1,
\end{aligned}
$$

and

$$
\Phi\left(e_{3}, e_{3}\right)=g\left(e_{3}, \varphi e_{3}\right)=g\left(e_{1}, 0\right)=0 .
$$

If we take the scalars a_{1}, b_{1} as follows:

$$
a_{1}=\alpha \text { and } b_{1}=3 \alpha-2 \alpha^{2},
$$

then we have

$$
\begin{aligned}
& \tilde{S}\left(e_{1}, e_{1}\right)=a_{1} g\left(e_{1}, e_{1}\right)+b_{1} \eta\left(e_{1}\right) \eta\left(e_{1}\right), \\
& \tilde{S}\left(e_{2}, e_{2}\right)=a_{1} g\left(e_{2}, e_{2}\right)+b_{1} \eta\left(e_{2}\right) \eta\left(e_{2}\right), \\
& \tilde{S}\left(e_{3}, e_{3}\right)=a_{1} g\left(e_{3}, e_{3}\right)+b_{1} \eta\left(e_{3}\right) \eta\left(e_{3}\right) .
\end{aligned}
$$

Thus the manifold under consideration is a η-Einstein Lorentzian α-Sasakian manifold with respect to quarter-symmetric metric connection. Again, if we take another scalars

$$
a_{2}=\alpha+1, b_{2}=3 \alpha-2 \alpha^{2}+1, f=1,
$$

then we have

$$
\tilde{S}\left(e_{1}, e_{1}\right)=a_{2} g\left(e_{1}, e_{1}\right)+b_{2} \eta\left(e_{1}\right) \eta\left(e_{1}\right)+f \Phi\left(e_{1}, e_{1}\right)
$$

$$
\begin{aligned}
& \tilde{S}\left(e_{2}, e_{2}\right)=a_{2} g\left(e_{2}, e_{2}\right)+b_{2} \eta\left(e_{2}\right) \eta\left(e_{2}\right)+f \Phi\left(e_{2}, e_{2}\right), \\
& \tilde{S}\left(e_{3}, e_{3}\right)=a_{2} g\left(e_{3}, e_{3}\right)+b_{2} \eta\left(e_{3}\right) \eta\left(e_{3}\right)+f \Phi\left(e_{3}, e_{3}\right) .
\end{aligned}
$$

So, the manifold becomes generalized η-Einstein Lorentzian α-Sasakian manifold with respect to quarter-symmetric metric connection.

References

[1] C. S. Bagewadi, D. G. Prakasha and Venkatesha., A Study of Ricci quarter-symmetric metric connection on a Riemannian manifold, Indian J. Math., 50 (2008), no. 3, 607-615.
[2] E. Boeckx, P. Buecken, and L. Vanhecke, φ-symmetric contact metric spaces, Glasgow Math.J., 41 (1999), 409-416.
[3] S. Dey and A. Bhattacharyya, Some Properties of Lorentzian a-Sasakian Manifolds with Respect to Quarter-symmetric Metric Connection, Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Vol. 54 (2015), No. 2, 21-40.
[4] A. Friedmann and J. A. Schouten. Uber die Geometrie der halbsymmetrischen Uber-tragung. Math. Zeitschr, 21:211-223, 1924.
[5] S. Golab. On semi-symmetric and quarter-symmetric linear connections, Tensor, N.S. 29 (1975) 249-254.
[6] H. A. Hayden. Subspaces of a space with torsion. Proc. London Math. Soc., 34:27-50, 1932.
[7] R. S. Mishra and S. N. Pandey, On quarter-symmetric metric F-connection, Tensor, N.S. 34 (1980) 1-7.
[8] C. Patra and A. Bhattacharyya, Quarter-symmetric metric connection on pseudosymmetric Lorentzian α-Sasakian manifolds. International J. Math. Combin. Vol. 1 (2013), 46-59.
[9] D. G. Prakasha, C. S. Bagewadi and N. S. Basavarajappa, On pseudosymmetric Lorentzian α-Sasakian manifolds, IJPAM, Vol. 48, No.1, 2008, 57-65.
[10] S. C. Rastogi, On quarter-symmetric connection, C.R. Acad. Sci. Bulgar 31 (1978) 811-814.
[11] S. C. Rastogi, On quarter-symmetric metric connection, Tensor 44 (1987) 133-141.
[12] T. Takahashi, Sasakian φ-symmetric spaces, Tohoku Math. J. 29 (1977), 91-113.
[13] K. Yano. On semi-symmetric metric connections. Rev. Roumaine Math. Pures Appl., 15:15791586, 1970.
[14] K. Yano and T. Imai, Quarter-symmetric metric connections and their curvature tensors, Tensor, N.S. 38 (1982) 13-18.
[15] A. Yildiz and C. Murathan, On Lorentzian α-Sasakian manifolds. Kyungpook Math. J. 45 (2005), 95-103.
[16] S. Yadav and D. L. Suthar, Certain derivation on Lorentzian α-Sasakian manifolds. Mathematics and Decision Science 12 (2012).
[17] A. Yildiz, M. Turan and B. F. Acet, On three dimensional Lorentzian α-Sasakian manifolds, Bulletin of Mathematical Analysis and Applications, Vol. 1, Issue 3(2009), pp. 90-98.

[^0]: ${ }^{1}$ The first author is supported by DST/INSPIRE Fellowship/2013/1041, Govt. of India.

