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Abstract

In this paper, fuzzy fractional diffusion equations (FFDEs) and fuzzy fractional wave equations
(FFWEs), subjected to initial and boundary conditions are considered. As these equations have
significant applications in physics and engineering, a methodical spectral-tau scheme is utilized
to obtain efficient solutions of FFDE and FFWE. For this purpose, shifted Chebyshev polyno-
mials (SCPs) together with its operational matrix of integration in Riemann-Liouville sense and
operation matrix of derivative in Caputo sense are employed to approximate the fuzzy-valued
functions, their integral and differential terms, respectively. The proposed method is applied
to some illustrative examples considered under generalized Hukuhara partial differentiability
(gHP -differentiability). Graphical results are included with error bar plots of each example
that show the efficiency and convergence of the method towards the exact solution.
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1 Introduction

Fuzzy ordinary differential equations of integer and fractional order have achieved immense pros-
perity and popularity in different fields of science and engineering, for the reason of having the
property of considering all the uncertain parameters which are usually kept constant in simple dif-
ferential models. Its enormous applications have rapidly increased the practice of innovating new
numerical and analytical methods among researchers so that the solutions of the problems can be
obtained more accurately with less computation and within minimum time [1, 2, 3, 4]. On con-
trary, fuzzy partial differential equations (FPDE) have got less attention than the fuzzy ordinary
differential equations in this regard. In literature, very few papers exist on fuzzy diffusion and wave
like equations of integer as well as fractional order. For instance, Buckley et al. [5] introduced the
elementary of fuzzy partial differential equations, Behzadi [6] considered Cauchy reaction diffusion
equation with fuzzy initial conditions and used Picard method to discuss the existence and unique-
ness of the solution, fuzzy fractional heat equation is found in paper of Ghazanfari et al. [7] where
differential transformation method is applied to attain the solution. Allahviranloo et al. described
fuzzy heat and wave equations using difference methods [8], introduced generalized Hukuhara par-
tial derivative for fuzzy heat equation and obtained the solutions [9] and also determined different
solutions of fuzzy wave-like equations using variational iteration method [10].

Spectral methods are widely used tools that are measured to be very efficient for investigating
solutions of ordinary and partial differential equations, function approximation and variational
problems in science and engineering. Tau method can be considered as one of the common and
frequently used spectral scheme utilized for numerical simulation of partial and ordinary differential
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equations of integer and fractional order. This method employs orthogonal polynomials as the
basis functions to approximate the global functions smoothly. In recent years due to its high
accurate approximations, it has gained considerable significance for solving differential equations
in bounded as well as unbounded domains. Mostly, for bounded domain differential equations the
orthogonal polynomials Legendre and Chebyshev are used for the approximations, for this instance
see [11, 12, 13, 14, 15, 16], whereas Hermite and Laguerre are appropriately chosen to approximate
solutions on the infinite and semi infinite domains, respectively, for instance see [17, 18, 19, 20] and
many others. In spectral tau method the problem is completely discretized with the help of the
operational matrix of integration and derivative of the respective orthogonal polynomials. In this
connection, many authors [21, 22, 23, 24], have derived the operational matrix of derivative and
integration of different orthogonal polynomials and have applied it on different problems.

The ongoing applications of spectral tau method inspired to utilize it on scrutinizing solutions
of FPDEs more accurately. Hence this paper assesses solutions of fuzzy fractional diffusion equation
(FFDE) and fuzzy fractional wave equation (FFWE), which have not been considered in literature
hitherto. Since the problems under consideration are in finite domain, therefore shifted Chebyshev
polynomials (SCPs) (see e.g. [23] and the references therein) are employed as basic orthogonal
functions together with its operational matrix of fractional integration and Caputo derivative. The
ability of this method, in converting the differential equation into a completely fuzzy algebraic
system of equations [?, 25], greatly simplifies the problem and makes it easy to analyze the so-
lutions more rapidly. Here after converting the differential equation to fully integrated problem,
the fuzzy-valued function and its integrals are approximated using truncated series of SCPs and
its operational matrices. Moreover, the rest of the manuscript is arranged as follows: next section
contains some preliminary definitions and notations of fuzzy set theory and fuzzy fractional calculus
that are assumed to be essential for the remaining paper. Section 3 encompasses the explanation of
SCPs, shifted Chebyshev operational matrix (SCOM) of Caputo fractional derivative and SCOM
of Riemann-Liouville fractional integration. In Section 4, approximations of univariate and bivari-
ate fuzzy-valued functions using truncated series of SCPs are described. The methodology of the
proposed scheme is elucidated systematically in Section 5. Section 6 comprises some illustrative
examples of FFDE and FFWE. Additionally, discussion on obtained results in Section 6 and an
effective conclusion is drawn in Section 7.

2 Preliminaries

This section consists of brief descriptions of all prerequisites of this paper. We define some definitions
and notions of fuzzy set theory [26] followed by the fuzzy Riemann-Liouville fractional integral
(FRLFI) and fuzzy Caputo gH-fractional derivative (FCgHFD) (see e.g. [27, 28] and the references
therein).

2.1 Fuzzy Set Theory

Let ΛF be the set of subsets of the real line defined as

ΛF = {κ|κ : < → [0, 1]}

Then ΛF is said to be set of fuzzy numbers κ, where κ is normal, fuzzy convex, upper semi continuous
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and compactly supported on <. Each κ can be represented in ℘-level by nonempty compact intervals
as [κ]

℘
= [κ (℘) , κ (℘)] for ℘ ∈ [0, 1], where [κ]

℘
is said to be ℘-level set of κ with κ (℘) and κ (℘),

its nondecreasing lower function and nonincreasing upper function, respectively, and are bounded
left continuous on (0, 1] and right continuous at ℘ = 0. The length of the level set [κ]

℘
is defined

as ` ([κ]
℘

) = κ (℘)− κ (℘). Addition and multiplication of any arbitrary κ, $ ∈ ΛF is identified as,
for ℘ ∈ [0, 1] and c ∈ <

(a) [κ⊕$]
℘

= [κ (℘) +$ (℘) , κ (℘) +$ (℘)]

(b) [c� κ]
℘

= c [κ]
℘

=

 [cκ (℘) , cκ (℘)] if c > 0
{0} if c = 0

[cκ (℘) , cκ (℘)] if c < 0

(c) [κ�$]
℘

=

[
min{κ (℘)$ (℘) , κ (℘)$ (℘) , κ (℘)$ (℘) , κ (℘)$ (℘)},
max{κ (℘)$ (℘) , κ (℘)$ (℘) , κ (℘)$ (℘) , κ (℘)$ (℘)}

]
where � defines fuzzy multiplication.

The distance between fuzzy numbers κ and $ is given by the Hausdorff metric D as

DF (κ,$) = sup︸︷︷︸
℘∈[0,1]

DF ([κ]
℘
, [$]

℘
) = sup︸︷︷︸

℘∈[0,1]

max{|κ (℘)−$ (℘) |, |κ (℘)−$ (℘) |}

Thus (ΛF,DF) defines a complete metric space with the properties of Hausdorff metric for fuzzy
numbers as elaborated in [27].
The difference between any arbitrary fuzzy numbers is determined by the generalized Hukuhara
difference or gH-difference for short as follows

2.2 Generalized Hukuhara Difference

Let κ,$ ∈ ΛF then gH-difference between κ and $is defined as

κ	gH $ = σ ⇔
{

(a)κ = $ + σ, or
(b)$ = κ+ (−1)σ

or in terms of ℘-level, for ℘ ∈ [0, 1]

κ	gH $ =

[
min{κ (℘)−$ (℘) , κ (℘)−$ (℘)},
max{κ (℘)−$ (℘) , κ (℘)−$ (℘)}

]
Furthermore, let ` ([κ]

℘
) and ` ([$]

℘
) be length of κ and $ respectively, then
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(a)κ	gH $ =

[
κ (℘)−$ (℘) ,
κ (℘)−$ (℘)

]
if ` ([κ]

℘
) ≥ ` ([$]

℘
) (1)

(b)κ	gH $ =

[
κ (℘)−$ (℘) ,
κ (℘)−$ (℘)

]
if ` ([κ]

℘
) < ` ([$]

℘
) (2)

2.3 Univariate and Bivariate Fuzzy-valued Function

A fuzzy-valued function ϕ is a rule that assigns to each x ∈ < a unique fuzzy number ϕ (x) ∈ ΛF.
Its ℘-level representation is given by ϕ (x;℘) =

[
ϕ (x;℘) , ϕ (x;℘)

]
, ∀x ∈ < and ℘ ∈ [0, 1].

Fuzzy-valued function ϕ of two variables x, t ∈ < is defined as ϕ : (x, t) → ΛF, with its ℘-level
representation ϕ (x, t;℘) =

[
ϕ (x, t;℘) , ϕ (x, t;℘)

]
, ∀x ∈ < for all ordered pair (x, t) of a set OP and

for ℘ ∈ [0, 1].

2.4 Generalized Hukuhara Differentiability

The gH-differentiability of fuzzy-valued functions was introduced by Bede et al. [28]. It is thor-
oughly defined for fuzzy-valued functions of two variables in Allahviranloo et al. [9]. Following the
gH-difference, the gH-differentiability of univariate and bivariate fuzzy-valued function is defined
as below.

A fuzzy-valued function ϕ : (a, b)→ ΛF is said to be gH-differentiable at x0 ∈ (a, b) if ϕ′gH (x0) ∈ ΛF

exists such that

ϕ′gH (x0) = lim
h→0

ϕ (x0 + h)	gH ϕ (x0)

h
(3)

For ϕ (x;℘) =
[
ϕ (x;℘) , ϕ (x;℘)

]
, ϕ is said to be gH-differentiable at x if ϕ (x;℘) and ϕ (x;℘) are

differentiable i.e.

ϕ′gH (x) =

[
min{ d

dx
ϕ (x;℘) ,

d

dx
ϕ (x;℘)},max{ d

dx
ϕ (x;℘) ,

d

dx
ϕ (x;℘)}

]
(4)

ϕ is said to be gH(i)-differentiable at x i.e. ϕ′gH (x;℘) =
[

d
dxϕ (x;℘) , d

dxϕ (x;℘)
]

if ` (ϕ (x;℘)) is in-

creasing in (a, b) for ℘ ∈ [0, 1] and gH(ii)-differentiable at x i.e. ϕ′gH (x;℘) =
[

d
dxϕ (x;℘) , d

dxϕ (x;℘)
]

if ` (ϕ (x;℘)) is decreasing in (a, b) for ℘ ∈ [0, 1].

A fuzzy-valued function ϕ (x, t) is said to be gH-partially-differentiable (gHp-differentiable) at
(x0, t0) ∈ OP with respect to the variables x and t, if gH∂xϕ (x0, t0) ∈ ΛF and gH∂tϕ (x0, t0) ∈ ΛF

exists, accordingly, i.e.

gH∂xϕ (x0, t0) = lim
h→0

ϕ (x0 + h, t0)	gH ϕ (x0, t0)

h
(5)

gH∂tϕ (x0, t0) = lim
k→0

ϕ (x0, t0 + k)	gH ϕ (x0, t0)

k
(6)
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Eqs. (5) and (6) can easily be computed similar to Eq. (3) by keeping t fix for the fuzzy partial
derivative with respect to x and vice versa.

Similarly, ϕ (x, t) is said to be gH
(i)
p -differentiable with respect to x if ` (ϕ (x, t;℘)) is increasing

with respect to x in (a, b), for ℘ ∈ [0, 1] i.e. gH∂xϕ (x, t;℘) =
[
∂
∂xϕ (x, t;℘) , ∂∂xϕ (x, t;℘)

]
and

gH
(ii)
p -differentiable if ` (ϕ (x, t;℘)) is decreasing with respect to x in (a, b), for ℘ ∈ [0, 1] i.e.

gH∂xϕ (x, t;℘) =
[
∂
∂xϕ (x, t;℘) , ∂∂xϕ (x, t;℘)

]
(same results for gHp-derivative of ϕ (x, t) with respect

to t).

Let C F be the space of all continuous fuzzy-valued functions, AC F be the space of all absolutely
continuous fuzzy-valued functions and LF the space of all Lebesgue integrable fuzzy-valued functions
on [a, b] then FRLFI and FCgHFD is defined as follows.

2.5 Fuzzy Riemann-Liouville Fractional Integral

Let ϕ : [a, b]→ ΛF then FRLFI of order υ > 0 is stated as

I υ
a+
ϕ (x) =

1

Γυ

∫ x

a

(x− s)υ−1
ϕ (s) ds x > 0 (7)

and in form of ℘-level it is written as

I υ
a+
ϕ (x;℘) =

[
I υ
a+
ϕ (x;℘) , I υ

a+
ϕ (x;℘)

]
(8)

where I υ
a+
ϕ (x;℘) = 1

Γυ

∫ x
a

(x− s)υ−1
ϕ (s;℘) ds

and I υ
a+
ϕ (x;℘) = 1

Γυ

∫ x
a

(x− s)υ−1
ϕ (s;℘) ds, for ℘ ∈ [0, 1].

2.6 Fuzzy Caputo gH-Fractional Derivative

Let ϕ (x) ∈ C F

⋂
LF, then FCgHFD of order ν of fuzzy-valued function ϕ (x) is defined as, for

x > 0 and dνe − 1 < ν ≤ dνe,

C

gHDνa+ϕ (x) =
1

Γ (dνe − ν)

∫ x

a+

ϕ
(dνe)
gH (s)

(x− s)1−dνe+ν ds (9)

where ϕ
(m)
gH (s) is calculated as described in [28] and dνe denote the smallest integer greater than or

equal to ν. If ϕ (x;℘) =
[
ϕ (x;℘) , ϕ (x;℘)

]
then for ℘ ∈ [0, 1]

C

gHDνa+ϕ (x;℘) =

[
min{CgHDνa+ϕ (x;℘) , CgHD

ν
a+ϕ (x;℘)},

max{CgHDνa+ϕ (x;℘) , CgHD
ν
a+ϕ (x;℘)}

]
(10)

where

C

gHD
ν
a+ϕ (x;℘) =

1

Γ (dνe − ν)

∫ x

a+
(x− s)dνe−ν−1 ddνe

dsdνe
ϕ (x;℘) ds
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and

C

gHD
ν
a+ϕ (x;℘) =

1

Γ (dνe − ν)

∫ x

a+
(x− s)dνe−ν−1 ddνe

dsdνe
ϕ (x;℘) ds

Now ϕ : [a, b] → ΛF is said to be FCgHF (i)-differentiable at x ∈ [a, b] i.e. C
gHDνa+ϕ (x;℘) =[

C
gHD

ν
a+ϕ (x;℘) , CgHD

ν
a+ϕ (x;℘)

]
if ` (ϕ (x;℘)) is increasing in [a, b] for ℘ ∈ [0, 1] and FCgHF (ii)-

differentiable i.e. C
gHDνa+ϕ (x;℘) =

[
C
gHD

ν
a+ϕ (x;℘) , CgHD

ν
a+ϕ (x;℘)

]
if ` (ϕ (x;℘)) is decreasing in [a, b]

for ℘ ∈ [0, 1].

Consider ϕ : (x, t) → ΛF with x, t ∈ < then fuzzy Caputo gH-fractional partial derivative of order
ν with respect to x and t of ϕ (x, t) is determined as

C

gHDν
xϕ (x, t) =

1

Γ (dνe − ν)

∫ x

a+

gH∂(dνe)
x ϕgH (s, t)

(x− s)1−dνe+ν ds, x > 0, dνe − 1 < ν ≤ dνe (11)

C

gHDν
t ϕ (x, t) =

1

Γ (dνe − ν)

∫ t

a+

gH∂
(dνe)
t ϕgH (x, s)

(t− s)1−dνe+ν ds, t > 0, dνe − 1 < ν ≤ dνe (12)

respectively. In case of FCgHF
(i)
P -differentiable and FCgHF

(ii)
P -differentiable of ϕ (x, t), we con-

sider ` (ϕ (x, t;℘)) is increasing with respect to x and t both in [a, b] and ` (ϕ (x, t;℘)) is decreasing
with respect to x and t both in [a, b], accordingly, for ℘ ∈ [0, 1].

The operator C
gHDν

t satisfies the following properties that will be of an important use later. Since
for any real valued function η (x, t)

I νt
CDνt η (x, t) = η (x, t)−

dνe−1∑
l=0

∂(l)
t η (x, 0)

tl

l!
(13)

then for ϕ (x, t) ∈ ΛF and ℘ ∈ [0, 1].

I ν
t

C

gHDν
t ϕ (x, t;℘) = ϕ (x, t;℘)	

dνe−1∑
l=0

gH∂(l)
t ϕgH (x, 0;℘)

tl

l!
(14)

If ϕ (x, t) is FCgHF
(i)
P -differentiable and

I ν
t

C

gHDν
t ϕ (x, t;℘) = −

dνe−1∑
l=0

gH∂(l)
t ϕgH (x, 0;℘)

tl

l!
	 (−ϕ (x, t;℘)) (15)

when ϕ (x, t) is FCgHF
(ii)
P -differentiable.
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3 Shifted Chebyshev Polynomials and Operational Matrices

In this section, SCPs are defined for the approximation of fuzzy-valued functions along with the
SCOM of Caputo fractional derivative and SCOM of Riemann-Liouville fractional integration. The
detailed derivation of SCOMs is given in [22, 23].

3.1 Shifted Chebyshev Polynomial

The Chebyshev polynomials Ti for i = 0, 1, . . . are defined on (−1, 1). In order to make these
polynomials functional on the interval ξ ∈ (0, L), it is shifted by introducing the change of variable

ς = 2ξ
L −1. Let the polynomials Ti

(
2ξ
L − 1

)
, named as shifted Chebyshev polynomials be represented

by TL,i (ξ), with the orthogonal property

∫ L

0

TL,j (ξ) TL,k (ξ)ωL (ξ) dξ =

{
π for k = 0
π
2 for k ≥ 1

(16)

where ωL (ξ) = 1√
Lξ−ξ2

TL,i (ξ) = i

i∑
k=0

(−1)
i−k (i+ k − 1)!22k

(i− k)! (2k)!Lk
ξk (17)

where TL,i (0) = (−1)
i

and TL,i (L) = 1.

In this form, TL,i (ξ) may be generated with the aid of the following recurrence formula

TL,i+1 (ξ) = 2

(
2ξ

L
− 1

)
TL,i (ξ)− TL,i-1 (ξ) i = 1, 2, . . . (18)

where TL,0 (ξ) = 1 and TL,1 (ξ) = 2ξ
L − 1.

Any function y (ξ), square integrable in (0, L), can be expressed in terms of the SCPs as

y (ξ) =

∞∑
j=0

αjTL,j (ξ) (19)

where

αj =
1

hj

∫ L

0

y (ξ) TL,j (ξ)ωL (ξ) dξ, j = 0, 1, 2, . . . and hj =

{
π for j = 0
π
2 for j ≥ 1

(20)

In practice, only the first (N + 1)terms of SCPs are considered thus y (ξ) can be approximated as
the truncated series
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yN (ξ) ∼=
N∑
j=0

αjTL,j (ξ) = ATΨN (ξ) (21)

where the shifted Chebyshev coefficient vector A and the vector ΨN (ξ) are given by

AT = [α0, α1, . . . , αN] , ΨN (ξ) = [TL,0 (ξ) , TL,1 (ξ) , . . . , TL,N (ξ)] (22)

Similarly, Let y (ξ, t) ∈ [0, L)× [0, L) then it maybe expressed as

yM,N (ξ, t) =

M∑
m=0

N∑
n=0

βmnTL,m (t) TL,n (ξ) = ΨT

M (t) BΨN (ξ) (23)

with

B =


β00 β01 · · · β0N

β10 β11 · · · β1N

...
... · · ·

...
βM0 βM1 · · · βMN

 (24)

βmn =

(
1

hm

)(
1

hn

)∫ ∫ L

0

yM,N (ξ, t) TL,m (t)ωL (t) TL,n (ξ)ωL (ξ) dξdt (25)

where m = 0, 1, . . . ,M and n = 0, 1, . . . ,N.

3.2 Shifted Chebyshev Operational Matrix of Fractional Integration and Derivative

Theorem 3.2.1 Let ΨM (t) be the shifted Chebyshev vector then for υ > 0

I υΨM (t) ∼= P(υ)ΨM (t) (26)

where P(υ) is the (M + 1) × (M + 1) operational matrix of fractional integration of order υ in the
Riemann-Liouville sense and is defined as follows

P(υ) =



Hυ (0, 0) Hυ (0, 1) Hυ (0, 2) · · · Hυ (0,M)
Hυ (1, 0) Hυ (1, 1) Hυ (1, 2) · · · Hυ (1,M)

...
...

... · · ·
...

Hυ (m, 0) Hυ (m, 1) Hυ (m, 2) · · · Hυ (m,M)
...

...
... · · ·

...
Hυ (M, 0) Hυ (M, 1) Hυ (M, 2) · · · Hυ (M,M)


(27)
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where

Hυ (m, j) =

m∑
k=0

(−1)
i−k

Lυ (m+ k − 1)!Γ
(
k + υ + 1

2

)
ejΓ
(
k + 1

2

)
(m− k)!Γ (k + υ − j + 1) Γ (k + j + υ + 1)

(28)

with ej =

{
2 for j = 0
1 for j ≥ 1

.

Theorem 3.2.2 Let ΨN (ξ) be the shifted Chebyshev vector, then Caputo fractional derivative
of order ν of ΨN (ξ) is given by

CDνΨN (ξ) ∼= D(ν)ΨN (ξ) , dνe − 1 < ν ≤ dνe (29)

where D(ν) is the (N + 1)× (N + 1) operational matrix of Caputo fractional derivative and is given
by

D(ν) =



0 0 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · 0

Gν (dνe, 0) Gν (dνe, 1) Gν (dνe, 2) · · · Gν (dνe,N)
...

...
... · · ·

...
Gν (n, 0) Gν (n, 1) Gν (n, 2) · · · Gν (n,N)

...
...

... · · ·
...

Gν (N, 0) Gν (N, 1) Gν (N, 2) · · · Gν (N,N)


(30)

where

Gν (n, j) =

n∑
k=dνe

(−1)
i−k

L−ν2i (n+ k − 1)!Γ
(
k − ν + 1

2

)
ejΓ
(
k + 1

2

)
(m− k)!Γ (k − ν − j + 1) Γ (k + j − ν + 1)

(31)

with ej =

{
2 for j = 0
1 for j ≥ 1

.

Lemma 1. Let TL,j (ξ) be a SCPs then.

CDνTL,j (ξ) = 0, j = 0, 1, . . . , dνe − 1, ν > 0 (32)
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4 Fuzzy-valued Function Approximation

Consider fuzzy-valued function ϕ (ξ) ∈ C F [0,L]
⋂
LF [0,L], then ϕ (ξ) can be approximated by the

linear combination of SCP as

ϕ (ξ) =

∞∑
j=0

∗σj � TL,j (ξ) , ξ ∈ [0,L] (33)

where fuzzy coefficients σj are obtained by

σj =
1

hj

∫ L

0

ϕ (ξ) TL,j (ξ)ωL (ξ) dξ, j = 0, 1, 2 . . . (34)

In Eq. (33)
∑∗

and � means addition with respect to ⊕ and multiplication in ΛF, respectively.
Eq. (33) can be written in truncated form as

ϕ (ξ) ∼= ϕN (ξ) =

∞∑
j=0

∗σj � TL,j (ξ) = HT �ΨN (ξ) (35)

which can also be written in ℘-level as, for ℘ ∈ [0, 1]

ϕN (ξ;℘) =
[
ϕ

N
(ξ;℘) , ϕN (ξ;℘)

]
=

 ∞∑
j=0

σ
j
(℘) TL,j (ξ) ,

∞∑
j=0

σj (℘) TL,j (ξ)

 (36)

=
[
H (℘)

T
ΨN (ξ) ,H (℘)

T
ΨN (ξ)

]
So that ΨN (ξ) is obtained as given in Eq. (22) and fuzzy shifted Chebyshev coefficient vectors
H (℘)

T
and H (℘)

T
are determined as

H (℘)
T

= [σ0 (℘) , σ1 (℘) , . . . , σ
N

(℘)] , H (℘)
T

= [σ0 (℘) , σ1 (℘) , . . . , σN (℘)] (37)

Now consider fuzzy-valued function ϕ (ξ, t;℘) ∈ C F [0,L]
⋂

LF [0,L], then it can be written as linear
combination of SCPs same as in Eq. (23) i.e.

ϕM,N (ξ, t) =

M∑
m=0

N∑
n=0

∗εmn � TL,m (t) TL,n (ξ) = ΨT

M (t) K (℘) ΨN (ξ) (38)

m = 0, 1, . . . ,M, n = 0, 1, . . . ,N

where ΨT
M (t), ΨN (ξ) are same as in Eq. (22).

Let ϕ (ξ, t;℘) =
[
ϕ (ξ, t;℘) , ϕ (ξ, t;℘)

]
for ℘ ∈ [0, 1], then its lower and upper functions are approx-

imated as
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ϕM,N (ξ, t;℘) =
[
ϕ

M,N
(ξ, t;℘) , ϕM,N (ξ, t;℘)

]
=


M∑
m=0

N∑
n=0

ε
mn
TL,m (t) TL,n (ξ) ,

M∑
m=0

N∑
n=0

εmnTL,m (t) TL,n (ξ)


=
[
ΨT

M (t) K (℘) ΨN (ξ) ,ΨT

M (t) K (℘) ΨN (ξ)
]

(39)

with fuzzy shifted Chebyshev coefficients

K (℘) =


ε00 (℘) ε01 (℘) · · · ε

0N
(℘)

ε10 (℘) ε11 (℘) · · · ε
1N

(℘)
...

... · · ·
...

ε
M0

(℘) ε
M1

(℘) · · · ε
MN

(℘)

 , (40)

K (℘) =


ε00 (℘) ε01 (℘) · · · ε0N (℘)
ε10 (℘) ε11 (℘) · · · ε1N (℘)

...
... · · ·

...
εM0 (℘) εM1 (℘) · · · εMN (℘)


where εmn (℘) and εmn (℘) are calculated in the same way as defined in Eq. (25).

5 Proposed Technique

In this section, the shifted Chebyshev spectral-tau method is elaborated for the numerical solution
of FFDE and FFWE of space and time fractional, separately. See ref.[23].

5.1 Fuzzy Fractional Diffusion Equation

Let ϕ (ξ, t;℘) ∈ C F [0,L]
⋂
LF [0,L], consider the following time and space fractional fuzzy diffusion

equation

C

gHDν
t ϕ (ξ, t)	 C

gHDλ
ξ ϕ (ξ, t) = ϕ (ξ, t) ξ, t ∈ [0,L] , 0 < ν ≤ 1, 0 < λ ≤ 2 (41)

with boundary conditions

ϕ (ξ, 0) = g̃ (ξ) , ϕ (0, t) = h̃1 (t) , ϕ (1, t) = h̃2 (t) (42)

Integrate Eq. (41) using Eqs. (14) and (15), we get the following equations for ℘ ∈ [0, 1]

ϕ (ξ, t;℘)	 ϕ (ξ, 0;℘)	I ν
t

C

gHDλ
ξ ϕ (ξ, t;℘) = I ν

t ϕ (ξ, t;℘) (43)
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or

−ϕ (ξ, 0;℘)	 (−ϕ (ξ, t;℘))⊕
(
−I ν

t

C

gHDλ
ξ ϕ (ξ, t;℘)

)
= 	 (−I ν

t ϕ (ξ, t;℘)) (44)

Use SCPs and SCOM of fractional integral and Caputo fractional derivative to approximate Eq.
(43) as, for ℘ ∈ [0, 1],

ϕM,N (ξ, t;℘) = ΨT

M (t)�K (℘)�ΨN (ξ) , (45)

g̃ (ξ) = G (℘)�ΨN (ξ) (46)

and in ℘ -level

ϕM,N (ξ, t;℘) =
[
ΨT

M (t) K (℘) ΨN (ξ) ,ΨT

M (t) K (℘) ΨN (ξ)
]
, (47)

g̃ (ξ;℘) =
[
G (℘) ΨN (ξ) ,G (℘) ΨN (ξ)

]
(48)

where K (℘) and K (℘) are defined as in Eq. (40)and G (℘) is obtained as

G (℘) =


g̃0 (℘) g̃1 (℘) · · · g̃n (℘)

0 0 · · · 0
...

... · · ·
...

0 0 · · · 0

 =




g

0
(℘) g

1
(℘) · · · g

n
(℘)

0 0 · · · 0
...

... · · ·
...

0 0 · · · 0

 ,


g0 (℘) g1 (℘) · · · g
n
(℘)

0 0 · · · 0
...

... · · ·
...

0 0 · · · 0




(49)

where g
n
(℘) and g

n
(℘) are same as in Eq. (20). In addition, using Eq. (27) and (30) we can

approximate I ν
t

C
gHDλ

ξ ϕ (ξ, t;℘) and I ν
t ϕ (ξ, t;℘) as

I ν
t

C

gHDλ
ξ ϕ (ξ, t;℘) = ΨT

M (t) P(υ)T �K (℘)�D(λ)ΨN (ξ) , (50)

I ν
t ϕ (ξ, t;℘) = ΨT

M (t) P(υ)T �K (℘)�ΨN (ξ) (51)

Substitute Eqs. (45), (46), (50) and (51) in Eq. (43) we get the residual R̃M,N (ξ, t) for Eq. (43) in
the form
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R̃M,N (ξ, t) = ΨT

M (t)
(
K (℘)	G (℘)	P(υ)T �K (℘)�D(λ) 	P(υ)T �K (℘)

)
ΨN (ξ) (52)

which can be written in ℘-level form as

R
M,N

(ξ, t;℘) = ΨT

M (t)
(
K (℘)−G (℘)−P(υ)TK (℘) D(λ) −P(υ)TK (℘)

)
ΨN (ξ) (53)

and

RM,N (ξ, t;℘) = ΨT

M (t)
(
K (℘)−G (℘)−P(υ)TK (℘) D(λ) −P(υ)TK (℘)

)
ΨN (ξ) (54)

where RM,N (ξ, t;℘) and RM,N (ξ, t;℘) represent the residual for lower and upper functions, respec-

tively, K (℘) and K (℘) are described in Eq. (40). As in a typical tau method, (M + 1) (N− 1)
fuzzy linear algebraic equations in the unknown expansion coefficients εmn (℘), m = 0, 1, . . . ,M,
n = 0, 1, . . . ,N are generated by

∫ ∫ L

0

RM,N (ξ, t;℘) TL,m (t) TL,n (ξ) dξdt = 0 (55)

for lower function and ∫ ∫ L

0

RM,N (ξ, t;℘) TL,m (t) TL,n (ξ) dξdt = 0 (56)

for upper function, for m = 0, 1, . . . ,M, n = 0, 1, . . . ,N− 2.

The rest of the fuzzy linear algebraic equations are obtained from the boundary conditions as

ΨT

M (t) K (℘) ΨN (ξ) = h1 (tm;℘) , ΨT

M (t) K (℘) ΨN (ξ) = h
1

(tm;℘) (57)

and

ΨT

M (t) K (℘) ΨN (ξ) = h2 (tm;℘) , ΨT

M (t) K (℘) ΨN (ξ) = h
2

(tm;℘) (58)

Where tm, m = 0, 1, . . . ,M are the roots of TL,M+1 (t). Thus from fuzzy linear equations (55)-(58),
(M + 1) (N + 1) unknown fuzzy coefficients ε

mn
(℘) and εmn (℘) are calculated and so approximate

solution ϕM,N (ξ, t;℘) for FCgHF
(i)
P -differentiability is obtained from Eq. (47).

For Eq. (44), same approximations are taken into account as defined in Eq. (45)-(51) and following
same algorithm and using the residuals
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R
M,N

(ξ, t;℘) = ΨT

M (t)
(
−G (℘)−K (℘)−P(υ)TK (℘) D(λ) −P(υ)TK (℘)

)
ΨN (ξ) (59)

for lower function and

RM,N (ξ, t;℘) = ΨT

M (t)
(
−G (℘)−K (℘)−P(υ)TK (℘) D(λ) −P(υ)TK (℘)

)
ΨN (ξ) (60)

for upper function and approximate solution ϕM,N (ξ, t;℘) for FCgHF
(ii)
P -differentiability is ob-

tained.

5.2 Fuzzy Fractional Wave Equation

Now consider the following time and space fractional fuzzy wave equation

C

gHDν
t ϕ (ξ, t)⊕ C

gHDλ
ξ ϕ (ξ, t) = f̃ (ξ, t) ξ, t ∈ [0,L] , 0 < ν ≤ 2, 0 < λ ≤ 2 (61)

where f̃ (ξ, t) ∈ ΛF with boundary conditions

ϕ (ξ, 0) = g̃ (ξ) , gH∂tϕ (ξ, 0) = h̃1 (t) , ϕ (1, t) = h̃2 (t) (62)

On integrating Eq. (61) using Eqs. (14) and (15), we have the following equations for ℘ ∈ [0, 1]

ϕ (ξ, t;℘)	 ϕ (ξ, 0;℘)	 gH∂tϕ (ξ, 0) t⊕I ν
t

C

gHDλ
ξ ϕ (ξ, t;℘) = I ν

t f̃ (ξ, t;℘) (63)

or

−ϕ (ξ, t;℘)− gH∂tϕ (ξ, 0) t	 (−ϕ (ξ, 0;℘))	
(
−I ν

t

C

gHDλ
ξ ϕ (ξ, t;℘)

)
= 	

(
−I ν

t f̃ (ξ, t;℘)
)

(64)

Consider same approximations of ϕM,N (ξ, t;℘), g̃N (ξ) and I ν
t

C
gHDν

ξ ϕ (ξ, t;℘) as described in Eqs.
(45)-(51) in previous section with

f̃ (ξ, t;℘) = ΨT

M (t)� F (℘)�ΨN (ξ) (65)

in ℘ -level, for ℘ ∈ [0, 1],

f̃ (ξ, t;℘) =
[
ΨT

M (t) F (℘) ΨN (ξ) ,ΨT

M (t) F (℘) ΨN (ξ)
]

(66)

where F (℘) is
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F (℘) =


f̃00 (℘) f̃01 (℘) · · · f̃0N (℘)

f̃10 (℘) f̃11 (℘) · · · f̃1N (℘)
...

... · · ·
...

f̃M0 (℘) f̃M1 (℘) · · · f̃MN (℘)

 =




f
00

(℘) f
01

(℘) · · · f
0N

(℘)

f
10

(℘) f
11

(℘) · · · f
1N

(℘)
...

... · · ·
...

f
M0

(℘) f
M1

(℘) · · · f
MN

(℘)

 ,


f00 (℘) f01 (℘) · · · f0N (℘)

f10 (℘) f11 (℘) · · · f1N (℘)
...

... · · ·
...

fM0 (℘) fM1 (℘) · · · fMN (℘)




(67)

where f
mn

(℘) and fmn (℘) are same as in Eq. (25). Moreover, using Eq. (27), I ν
t f̃ (ξ, t) is approxi-

mated as

I ν
t f̃ (ξ, t) = ΨT

M (t) P(υ)T � F (℘)�ΨN (ξ) (68)

On substitution of Eqs. (45), (46), (50), (51) and (68) in Eq. (63) we get the residual R̃M,N (ξ, t)
for Eq. (63) in the form

R̃M,N (ξ, t) = ΨT

M (t)
(
K (℘)	G (℘)⊕P(υ)T �K (℘)�D(λ) 	P(υ)T � F (℘)

)
ΨN (ξ) (69)

and in its ℘ -level form as

RM,N (ξ, t;℘) = ΨT

M (t)
(
K (℘)−G (℘) + P(υ)TK (℘) D(λ) −P(υ)TF (℘)

)
ΨN (ξ) (70)

and

RM,N (ξ, t;℘) = ΨT

M (t)
(
K (℘)−G (℘) + P(υ)TK (℘) D(λ) −P(υ)TF (℘)

)
ΨN (ξ) (71)

Hence, (M + 1) (N− 1) fuzzy linear algebraic equations in the unknown expansion coefficients
εmn (℘), m = 0, 1, . . . ,M, n = 0, 1, . . . ,N are generated by

∫ ∫ L

0

RM,N (ξ, t;℘) TL,m (t) TL,n (ξ) dξdt = 0 (72)

for lower function and ∫ ∫ L

0

RM,N (ξ, t;℘) TL,m (t) TL,n (ξ) dξdt = 0 (73)
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for upper function, for m = 0, 1, . . . ,M, n = 0, 1, . . . ,N − 2 and remaining equations from the
boundary conditions

ΨT

M (t) K (℘) ΨN (ξ) = h1 (tm;℘) , ΨT

M (t) K (℘) ΨN (ξ) = h
1

(tm;℘) (74)

and

ΨT

M (t) K (℘) ΨN (ξ) = h2 (tm;℘) , ΨT

M (t) K (℘) ΨN (ξ) = h
2

(tm;℘) (75)

where tm, m = 0, 1, . . . ,M are the roots of TL,M+1 (t). Thus, (M + 1) (N + 1) unknown fuzzy co-
efficients εmn (℘) and εmn (℘) are calculated. Consequently, approximate solution ϕM,N (ξ, t;℘) for

FCgHF
(i)
P -differentiability is obtained from Eq. (47).

For Eq. (64), same approximations are taken into account as defined in Eqs. (45)-(51) and Eqs.
(65)-(68). Following same algorithm and on using the residuals

R
M,N

(ξ, t;℘) = ΨT

M (t)
(
−G (℘)−K (℘) + P(υ)TK (℘) D(λ) −P(υ)TF (℘)

)
ΨN (ξ) (76)

for lower function and

RM,N (ξ, t;℘) = ΨT

M (t)
(
−G (℘)−K (℘) + P(υ)TK (℘) D(λ) −P(υ)TF (℘)

)
ΨN (ξ) (77)

for upper function, the approximate solution ϕM,N (ξ, t;℘) for FCgHF
(ii)
P -differentiability is ob-

tained.

6 Illustrative Examples

In this sequel, we exemplify shifted Chebyshev spectral-tau method on some examples of fuzzy
fractional diffusion equation, fuzzy fractional heat equation and fuzzy fractional wave equation.
Each equation is converted to two different systems according to the FCgHFP -differentiability of
the fuzzy-valued function. Graphical solutions are obtained using Mathematica 10.

Example 6.1

Consider the following fuzzy fractional diffusion equation

C

gHDν
t ϕ (ξ, t)	 C

gHDλ
ξ ϕ (ξ, t) = ϕ (ξ, t) (78)

for 0 < ξ ≤ 1, 0 < t ≤ 1, 0 < ν ≤ 1 and 0 < λ ≤ 2, subjected to boundary conditions
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ϕ (ξ, 0) = [℘− 1, 1− ℘] ξ3, ϕ (0, t) = 0, ϕ (1, t) = 0 (79)

on integrating we obtain the following equations, for ℘ ∈ [0, 1]

ϕ (ξ, t;℘)	 [℘− 1, 1− ℘] ξ3 	I ν
t

C

gHDλ
ξ ϕ (ξ, t;℘) = I ν

t ϕ (ξ, t;℘) (80)

and

− [℘− 1, 1− ℘] ξ3 	 (−ϕ (ξ, t;℘))⊕
(
−I ν

t

C

gHDλ
ξ ϕ (ξ, t;℘)

)
= 	 (−I ν

t ϕ (ξ, t;℘)) (81)

Subsequent to the approximations and methodology defined in Section 5.1, we obtain the approxi-
mate solution from 25 fuzzy linear algebraic equations generated by taking N = 4 and M = 4. Fig.
1 plots the solutions of ϕ (ξ, t) by using Eq. (80) for ν = 0.85 and λ = 1.95, whereas for Eq. (81)
same graphical view is found for ν = 0.85 and λ = 1.95. Fig. 2 shows the point wise error variation
between exact values and calculated values of ϕ (ξ, t).

Example 6.2

Consider the following fuzzy fractional heat equation

C

gHDν
t ϕ (ξ, t)	 4� C

gHDλ
ξ ϕ (ξ, t) = 0 (82)

for 0 < ξ ≤ 1, 0 < t ≤ 1, 0 < ν ≤ 1, 0 < λ ≤ 2, subjected to boundary conditions

ϕ (ξ, 0) = [℘− 1, 1− ℘] sin (πξ) , ϕ (0, t) = 0, ϕ (1, t) = 0 (83)

on integrating we obtain the following equations

ϕ (ξ, t;℘)	 [℘− 1, 1− ℘] sin (πξ)	I ν
t

C

gHDλ
ξ ϕ (ξ, t;℘) = 0 (84)

and

− [℘− 1, 1− ℘] sin (πξ)	 (−ϕ (ξ, t;℘))⊕
(
−I ν

t

C

gHDλ
ξ ϕ (ξ, t;℘)

)
= 0 (85)

Following the approximations and scheme defined in Section 5.1, and taking N = 4 and M = 4, 25
fuzzy linear algebraic equations are generated and solution of ϕ (ξ, t) is obtained. Fig.3 draws the
solution of ϕ (ξ, t) on using Eq. (84), for ν = 0.95 and λ = 1.025 and same result is for Eq. (85).
The point wise error variation between exact values and calculated values of ϕ (ξ, t) is shown in
Fig.4.

Example 6.3
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Consider the following fuzzy fractional wave equation

C

gHDν
t ϕ (ξ, t)⊕ C

gHDλ
ξ ϕ (ξ, t) = [℘− 1, 1− ℘] ξet (86)

for 0 < ξ ≤ 2, 0 < t ≤ 1, 0 < ν ≤ 2, 0 < λ ≤ 2, subjected to boundary conditions

ϕ (ξ, 0) = [℘− 1, 1− ℘] ξ, ∂tϕ (ξ, 0) = 0, ϕ (0, t) = 0, ϕ (2, t) = [℘− 1, 1− ℘] 2et (87)

on integrating we obtain the following equations

ϕ (ξ, t;℘)	 [℘− 1, 1− ℘] ξ ⊕I ν
t

C

gHDλ
ξ ϕ (ξ, t;℘) = I ν

t [℘− 1, 1− ℘] ξet (88)

and

− [℘− 1, 1− ℘] ξ 	 (−ϕ (ξ, t;℘))	
(
−I ν

t

C

gHDλ
ξ ϕ (ξ, t;℘)

)
= 	

(
−I ν

t [℘− 1, 1− ℘] ξet
)

(89)

Subsequent to the approximations and scheme defined in Section 5.2, we attain the solutions of
ϕ (ξ, t) by solving 25 fuzzy linear algebraic equations that are generated by taking N = 4 and M = 4.
Solutions of Eqs.(88) and (89) for ν = 1.95 and λ = 1.95 are plotted in Figs.5 and 6, respectively.
Figs.7 and 8 depict the point wise error variation between exact values and calculated values of
ϕ (ξ, t) obtained from Eqs.(88) and (89), accordingly.

7 Conclusions

In this manuscript, we concerned with the fuzzy fractional diffusion equation and fuzzy fractional
wave equation in the direction of time and space both. The basic descriptions of fuzzy calculus
for one and two dimensional fuzzy-valued functions were elaborated. Moreover, the fuzzy Caputo
gH-partially-differentiability of increasing and decreasing bivariate fuzzy-valued functions, on the
basis of which each example of FFDE and FFWE were converted into two equations, had been
discussed. Solutions of each example were shown graphically for different values of ν and λ. Error
bar plots were depicted in comparison with exact numerical solutions that had been obtained by
using an appropriate command on Mathematica 10. Consequently, from facts and figures obtained
from Section 6, we have the following conclusions

• Spectral-tau method was found to be highly applicable to obtain effective fuzzy solutions of
FFDEs and FFWEs.

• This method completely discretizes the integral and differential equations that simplifies the
problem to a great extent and calculations of derivatives and integrals at different orders just
becomes the matter of changing the values of ν and λ in the analytical form of SCOM of
derivative and integration.
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• Small number of M and N is required to generate accurate fuzzy solutions of FFDEs and
FFWEs, subjected to initial and boundary conditions, graphically.

• Error analysis through error bar plots is significantly advantageous to cope out the point wise
errors as it locates the point wise variation between the exact and calculated values.

Figure 1: Fuzzy solutions of Example 6.1 for ℘ = 0.6
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Figure 2: Error bar plots of 25 points of calculated and exact values Example 6.1
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Figure 3: Fuzzy solutions of Example 6.2 for ℘ = 0.6
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Figure 4: Error bar plots of 25 points of calculated and exact values Example 6.2
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Figure 5: Fuzzy solutions of Example 6.3 for ℘ = 0.6
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Figure 6: Fuzzy solutions of Example 6.3 for ℘ = 0.6
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Figure 7: Error bar plots of 25 points of calculated and exact values Example 6.3 using Eq.(89)
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Figure 8: Error bar plots of 25 points of calculated and exact values Example 6.3 using Eq.(89)
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