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Abstract

In this study a relation between the Laplace transform and the generalized Hankel-Clifford
transform is established. The relation between distributional generalized Hankel-Clifford trans-
form and distributional one sided Laplace transform is developed. The results are verified
by giving illustrations. The relation between fractional Laplace and fractional generalized
Hankel-Clifford transformation is also established. Further inversion theorem considering frac-
tional Laplace and fractional generalized Hankel-Clifford transformation is proved in Zemanian
space.
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1 Introduction
The Laplace transform of a function of a function f(t) € L (0,00) is defined by the equation [1]

L(fip) = / T ertr )t (Re(p) > 0) (L1)

and Malgonde [4] investigated the variant of the generalized Hankel-Clifford transform defined by

(s ©=F© = [ (€07 0oy (2) £ 1, (-5 2 -1z (12

where J,_s (z) being the Bessel function of the first kind of order (o — ), in spaces of generalized
functions. In [6] Bhonsle developed a relation between Laplace and Hankel transforms. Panchal
[5] has developed a relation between Hankel and Laplace transforms of distributions. Namias
[7] introduced a number of fractional integral transforms. His representation in [7] has led to
extend fractional Hankel transform to fractional generalized Hankel-Clifford transformation in this
paper. The applications of fractional integral transforms in quantum mechanics and optics have
been presented in [9,10]. The paper [12] Taywade et.al hasgeneralized fractional Hankel transforms
in Zemanian space. In this paper the author develops the relation between Laplace transforms
and generalized Hankel-Clifford transformation and extends to fractional Laplace transforms and
fractional generalized Hankel-Clifford transformation. The author illustrates few examples to this
study. Relation between Laplace transforms and generalized Hankel-Clifford transformation to
the space of distributions is established. A study of Fractional Laplace transforms and fractional
generalized Hankel-Clifford transformation in Zemanian Space is also developed.
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2 Methodology

2.1 Relation between Laplace transforms and generalized Hankel-Clifford
transformation

Firstly, a relation between the Laplace transforms of t**# f (¢) and the generalized Hankel-Clifford
transform of f (¢) has been calculated, when (Re (o — 8) > —1). The result is stated in the form of
a theorem which is then illustrated by an example

Theorem 2.1. If f and (hagf) (€) belongs to L (0,00) and if

Re (a) > 0,Re(p) >0,Re (a+ B) > —1,
then
LU (00} = [ k0.6 (o) (©) .

where

k(pag) :piliafar(l%»a)lFl |:1+aal+aﬁaf)

Proof. Since f € L (0,00), by the generalized Hankel-Clifford inversion theorem [4], that

F)= /Ooo £ (ha,s.f) (€) Ja,p (€) dE.

Hence
I {to""ﬁf 1)} = /0 P (hasf) (€) L {ta-&-ﬂjaﬁ (t&)} de. (2.1)

The change of order of integration is justified because e P*t*+# ¢ L (0,00) if Re(a— ) >
—1;Re (p) > 0 and (hasf) (§) € L(0,00) ,J o5 (t€) being a bounded function of both the variables.
The theorem then follows from the fact [2] that

§

L{t*YVP T, 5t ;p} =p 7T (1+a)1F1 |1+ a,1+a— 8, | (2.2)
Example 2.1. Let f(t)=t""te~. Then
Lt f@t)spy = (4+a) " T (a+ B +n) (2.3)

and
(hapf) () =F (&) =¢&F /0 e Jo g (t1€) dt= L {1 T (1) 50} . (24)

This integral (2.4) can be evaluated by using (2.2). Substituting these expressions in the theorem
the result is given by
Jo € P (hapf) (&) Lt Tap (t€) } dE
= Jo &EPL{t P Top (1€)a} L{t*H0T0 s (1)} dE
-~ pIET (14 a) 1By L4+ oy 140 — B, — ]
0

X a 17T (1+a) 1 Fy [1 +a,l1+a-—4, —%]

(pta) "~ PT(atf+n)
T'(1+a+n)I'(14+2a+8)

dg

1 1
where a > 0, Re (a) > 0, Re (p) > 0, Re (a — ) > —5 Re (a) > fi,Re(onrn) > —1.
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2.2 Relation between fractional generalized Hankel-Clifford transformation and
fractional Laplace transforms

Theorem 2.2 Define a one-dimensional continuous fractional generalized Hankel-Clifford transfor-
mation with parameter 0 of f (z) for (o« — ) > —1/2 and 0 < 6 < ras follows:

B, (F () = Fy) =y / T () (@) de (2.4)

where the kernel

cot 0] i (L4 .\ (@T5)/2 o \1/2
ot (2+z)cg’5(ﬁ) Jos (2(5) ), 0 £ 0
3

Cz,ﬂ (.Z‘, y) = (xy)(a-‘rﬂ)/Q Ja—B (2 (Z‘y)l/Q) 0=
d(x—vy) ,0 =nm,Vn € Z.
and
) ei(a—,@ﬂ)(g—e)
Car = sin @
and fractional Laplace transforms is defined by Sharma [11] as:

% 22 —y? cotG mycsch( ) .

P @0 = s [
If L [f ()] (y) and h‘9 5 [f (2)] (y) belong to L (0,00), and

it (/o) =0 &zmg (\/|Ta>

& Re(icotf) >0 & Re (o) > —1 &3Re (o) + Re (B) < -2,

6

o g [wer vl f ()] (y) = r (csc ) HImD/Z [y masB L0 (£ (2)] (y) dy.

If y >0 img (/i) =0
)

& Re (icot0) > 0 & Re(a
hé [ « xycscb’f( )} (y)

2 3/2 cog p(1te) o 17r(1+a)(51n9)2( 5—3a+p3) 0 o
= AT @ ap) Jo 9 (W) y= > PLO[f (2)] (y) dy.
Proof.

hg,ﬁ [Iaezycsce‘f (I)} (y)
—a— Ty Ccs —|cot 0] @ ﬁ—i-ﬁ T (a+5)/2 T 1/2
ey Bffxey“%' o 2)(ﬁ) s (2 (gitr) ) £ @)

) 0o ag —|cot 0] 4 T 1/2
=Cplo T ( (\aln@) (2(|siny9|)

< (S fom e 1 >C°wy-a-ﬁL9 [ @) ) dy) da
By change of order of integration,
ho.g [zl f (2)] (y)
Jo v e PLOf (= )](y)x

_ ci,ﬁ (Sa B)/Q —i|cot 0] = dy

Varsing | [ (w )(a+ﬂ)/2j ﬁ(z(%)w) da
a— sin

|sin 6]

> —1 &3Re(a)+ Re (B) < -2,
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hiﬁ L:CocezycscOf (1’)} ( )

\/2;:;10(21“ I+a— ,8 2+a B)) fo _Q_BLQ [f (2)] (y)
y—3+5 (mte) ‘Smg‘ )3(—2-a+s)
(icot h) C0t9|s1n0|F(2+a—ﬂ)F(%+a)
- « | X [{2"’0‘} {272""’_* 1+§_’}7W} dy
-y’ Tl4+a-B)T(1+a)
e o 5 8] st
(icot 0) zcote|Sm9|F(2+O‘_B)F(%+O‘)
Let g (y) =y 71 XPFQ[{5+O‘}’{%’%+’_*1+% g}m}
T (1+a—-B)T(1+a)
S 5 4] st

hos [22e™ = f ()] (y)
Ci 52—3/2 COoS 9(1+a)ei7r(1+a) (sin 9)%(—5—3044-/3)

- ViT(1+a—-3)T2+a-pj) /0 9@y LY [f (2)] (y) dy.
Thus
1 (/pkar) =0 & img (/i) = 0
&Re(zcot&) >0 & Re(a) > -1 &3Re( )+ Re (B8) < —2,
[:L‘ 6zycsc0f )} (y)

= 252 (esc ) CHITI2 [3ymaB L0 [ £ (2)] (y) dy.

If yZO&zmg(\/@Tg)*O

& Re (icotf) >0 & Re(a) > —1 &3Re (o) + Re (B) < -2,
hfi,g [zl f (2)] (y)

c 273/2 cos 91+ e ”(1+°‘)(51n9)l(7573a+ﬂ) 0o —a—
= VAL (I+a—B)T(24+a—7p) fo 9y oLe [f ()] (y) dy.
Thus proved the theorem.

gm

2.3 Relation between fractional Laplace transform and fractional generalized
Hankel-Clifford transformation

Theorem 2.3: If f(x) and h?l”,_; [f (2)] (y) belong to L(0,00) and if
1/|sm9 =0 Re(a) > %,then

LY [zl f (2)] (y) = Al o5 /0 00 ) (W,0f) () dy,

B (csc 0)(0‘#371)/2.

\/ﬂ

IERand

\sm 0

Q%

where g (y) =y~ Pe ¥ “cotf and Al op =
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) 1 Yy Yy 1
-1 — l J— / — _Z >
if < Re (« B)<2,zf \sin9|€R& Snd] 0 Re (a) > 2&y 0,

then
LP [zemvescl f (z)] (y) = Ag,a,ﬁ o 92 () (hi Bf) (y) dy,

|sin 0| 3+39+8) /2P (14-24)
L(—a—pB) ’

And

where g, (y) = yl*%*ﬁe*iy2 cott gnd Agya’ﬁ \/ﬂ
Proof. By definition,
L0 [ « atycscOf( )]Q(y)
\/27rsm fO e (x - )COtg—iEyCS(De aezycscef (JU) d.’L’
27_r31n fo :E —y )cot@ af( )dx

By definition of inverse fractional generalized Hankel-Clifford transformation,

F@ = ((hs) " F) @) =y / "G o) (H5f) ) dy, € By

where
2

G = () a0 () (o )

o . —|cot 8] @ ( %-+2%- (at+B)/2 " 1/2
= Ci,ﬁ sin fe ( ) (‘Sme‘) Ja—p |2 (|siny0|) .

L0 [xaexycscaf( )] (y)

— .
Cq 58N 0 Ooxaef(ac —y )cot@

27rSinoi —a-8 —|cot 0] 4 (%“r%) Ty (a+p)/2 Ty 1/2 0
X fO Y € (\sin 9\) ‘]0‘_/3 2 <|sin 0|) (ha,ﬂf) (y) dy dx.

By change of order of integration,
L0 [,Iae:vy csc Gf (’JJ)] (y)

sin 6
mfo ( >y) 2 o 1/2
(Rt ) () o) ) o)

sin 0 O a —a—B8 —iy?co T (a+8)/2 T 1/2
\/Q;T fo ( ) (y) <f0 gy e ot (|siriya|) Ja—p <2 (\sinye\) >dz> dy.

In extension to [8], the result obtained is
LH [iraewy csc Gf (x)] (y)

_ 3‘1;:%9 s (he f> (y) y~o—Beiv’ cott <f000 o~ <%>(a+ﬁ)/2 Tos (2 (|Sﬁiy9)1/2> d:v) 0.
I ‘Smg‘eR&\/‘SITg 0 Re(a) > —1

Lo[ eryesed f )] (y) = j%fo ( a@f) y)y —a—f y—iy® cot 0 (|sir119\
and if \sme\ ER&\/E 0 Re (« >—7 &y > 0, then

c s1n0 A 1—a|gin 9| Ba+B+2)/2p(1 19
0 [x ewycscaf (x)] (y) = 27r§m fO ( ) (y)y=® Be—iy 2cot 0 (y |sin IF(—a—ﬁ) 1+ O‘))dy.

(a+B)/2
) dy;
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1
If \/ \51110\ ER& \bln@\ =0 R@( ) 2

L0 [iezy csc Gf ( ) (y)
< at+pb— >, —a—0B,—1
_ jﬁ (CSCQ)( +B-1)/2 fo y B e—iy® cot § (hfiﬂf) (y) dy

. 5 )
Let g1 (y) =y > Pe 0 and Af  , = E(CSCG)(‘HB D72 then

LY [zev el f (z)] (y) = Af aﬁfooo g1 (v) ( he ﬁf) (y) dy
and if \sme\eR& =0 Re(a)>—1% &y >0, then
L0 [xa atycscef( )] (y)
0 .
_ Cq, |sin @ (3+3a+8)/2 14-2a) o —iy? —a
— ﬁ(s \ o ﬂ)( ¢ )fo (haﬁf) ) ,6’6 Y cotGyI dy

Let go (y) — yl 20— Befzy cotf and Ag o = f;;? (|sin9|(3-;3((:+j)_/;)r(1+2a)> . then
L0 [zt f @)] (y) = AL s fy 92 () (W 5F) (1) dy

Thus the proof.

‘Sll’l o] —

3 Testing function space

3.1 Relation between Laplace transforms and generalized Hankel-Clifford
transformation to the space of distributions

Let (ha,af) (€) is a testing function space for generalized Hankel-Clifford transform and (hfx sf ) €3

is its dual. L (w,z) and L (w) are testing function spaces for Laplace transform and L' (w, z) and

L’ (w) are their duals respectively. Since the testing function space (ha,gf) (§), L (w, z) and L (w)

are subspace of F, the space of distributions of compact support E’ is a subspace of all the general-

ized function space (h’ Bf> (&) ,L' (w,z) and L' (w). The restriction f € (h:l’ﬁf> EONL (w,z)to

E is a member of E’[4]. In order to extend the relation (2.2) to the space of distributions, considered

a lemma to prove

Lemma 3.1. If f € L' (w,2) then the mapping f (z) — 2= BTy 5 (x\,) f (2) is a linear and
continuous from L' (w) into itself.
Proof. For each integer k > 0 there exists an integer ny such that

(14 )Nk Dk (277 PTq 5 (xAn)] ‘
= (14 z)M Z;'n:o :1 Dk=mpm [z=2=F 7, 5 (x)\n)]‘
e [ (5 ) Do [ @)y Ma-a-s (28|

m
m —(atgH) o
k Sreai (@) At 2 N g (2vaN,)
m % (71)k7m l,(a+5+k7ﬂ1)/2 |:)‘T_l(a_ﬁ_j+k_m)/2<]a—ﬁ—j+k—m (2 T)\n)}
where 0 < 2 < oo and where the a; (o) are constants depending on « only. Therefore
m_("_ﬁ)/QJa_,g (2 ()\nx)l/Q) € 0pr. As e P*L (w, z) the mapping

at+B+j a+B+j
2 2

))\z‘l—mx(

~Ja+ 0] |

e PT x_(a_ﬁ)/2Ja75 (2 ()\nif)l/z) e PT
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is linear and continuous from L (w, z) into itself and the adjoint mapping

f@) =37 PT, 5 (x\) f (2)

defined by
(27 s (@A) £ (@), €777) = (£ (@) 2™ T (wha) €77*) (3

is a linear and continuous from L’ (w, z) into itself [3] [Theorem 1.10 and Sec. 2.5], where

fel (wz) e cL(wz), 27 PTs5(\) € 0.

Lemma 3.2. Let f € (h’a,ﬂf> (&), then mapping f (x) — e P* f (x) is a linear and continuous
(h;ﬁf) (&) into itself.

. o . . “ep)rere
Proof. Since for each nonnegative integer k there exists an integer Ny, such that (D) e

14+aNk/2

oo for 0 < 2 < 0o . Thus e P* € 0y the space of multipliers for (hy gf) (§) [4]. As e P* € Oy, the

mapping
27 P, 5 (xAn) = e PP T, 5 (xN,,)

is a linear and continuous from (hy gf) (§) into itself and the adjoint mapping
f@) = e f(2), f € (hapf) (€)

defined by
<e_pr (x), a:_“_ﬁjaﬁ (x)\n)> = <f (x), x_o‘_ﬁja,@ (2An) e_p’”> (3.2)

is a linear and continuous from (h’a 3 f) (€) into itself where

fe(hyph) (€, P Tap (@in) € (hasf) (€).

Theorem 3.1. If f € E’ then
(7P (2),27 P Tap (zAn)) = (27 P Tas (xAn) f (2) , €777)

for Re (p) < oo, A\, > 0500 — 3 > —%.
Proof. Since the testing function space (hqgf) (§),L (w,z) and L (w)are subspace of E, the
space of distributions of compact support E’is a subspace of all the generalized function space

(hgéﬁf) (&),L' (w,z) and L' (w) [4]. Therefore the restriction of f € L' (w) to L(w,z) is in
L' (w, z) and the restriction of f € (h’aﬁf> &)L (w,z)to E is a member of E’. In view of above

the result is obvious from Lemma 2.1 and Lemma 2.2 for every f € E’, since the right hand sides
of the equations (3.1) and (3.2) are equal. Thus the equality

<€_pr (z), x_a_ﬁja,ﬂ (mAn)> = <x_a_6~7a,ﬁ (xAn) f (z) ’e—pw>

holds good for 0 < Re (p) < 00, A, > ;a0 — 3 > —3.
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Example 3.1. For 0 < Re (p) < 00, A\, > 0;a — 3> —1, from (2.4) as illustrated in [5],

(e f(2),27 P Tap (@hn)) = (27 Tap (@hn) f(2),e777)
= a *PT.p(a\,)e P for f(z)
= d(z—a).

Put f(x) =4 (x — a), then

e P (z —a) € (b, 5f) (£), 2 P T (xAn) 0 (z —a) € L' (w, 2).

(e~ ”””f 0 Jap (2A )>
<.f T 5\7a,ﬁ( /\n)
= <x_a_5ja,5 (xAn) f(2),e pm>.

For f(z)=6(x—a),

(e7P%§ (z — a) B T (@A)
=0(x—a),z Bjag An)e” ”’”>
= x_o‘_ﬁja,g (zAn)d(x—a),e” p””>
= a’o‘*ﬁjaﬁ (ad,) e~ Pe.

3.2 Fractional Laplace transforms and fractional generalized Hankel-Clifford
transformation in Zemanian Space
An infinitely differentiable complex-valued function ¢ on R™ belongs to E (R™) or E if for each
compact set K C S,, where
Se={z:x €R, |z|<a,a>0}

and

Yk (¢) = sup |[D¥p (2)] < 0.
reK

If fe E'(R),sup f C S, and a one-dimensional continuous fractional generalized Hankel-Clifford
transformation with parameter  of f (z) for (¢ — ) > —1/2 and 0 < 6 < T, hgﬁ (f (y)) and

LY [f (x)] (y) is considered
Lemma 3.3. For p(x) € E, a one-dimensional continuous fractional generalized Hankel-
Clifford transformation with parameter 0 of f(x) for (o« — ) > —1/2 and 0 < 6 < 7 as follows:

[0 (@)] (9) = HE. s (4) 0 (3) = / " o (0)CT, (g da.

Then for any fized number r, where 0 < r < oo,

[ (@ 6n) vwar = (776 [ ey vwar ). (33)

—_~—

where fractional Laplace transforms is represented as L [f ()] (y) = f(¢) and y = 0 +iT € C™
and ¢ is restricted to a compact subset of R.
Proof. If ¢ (z) = 0 the case is trivial. If ¢ (x) # 0, consider a Rienmann-sum for describing

Iy <J7§T</), Cl 5 (s, y)> ¥ (y) dr.
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Jo <J7‘3\? ),C8 4 (<7y)> ¥ (y) dr

= hm <J79—\(_/) Z;nz_ol 02_5 ()¢ (v) Ay>
= Jim (770, 5050 € (6,0 + iTnam) 00 + i7m) A
Consider

e {2y €85 (6,0 + i) (0 +im) ATy = [ C8 5 (5,9) ¥ (y) dr }
= SGUI](? [Zm ! cha B (§ o+ ZTn m) ATn m for 00 (§, y) ¢ (y) dT:|
S
lim Y 1D’“C€ﬁ(<,a+wnm ATpm — [; CO y) ¥ (y)dr — 0

m—o0

as r — oo forall¢ e K.

k

It follows that for every m, the summation is a member of F and it converges in E. Hence the
proof.
Lemma 3.4. For ¢ (z) € E, and y € C, ¢ is restricted to a compact subset of R then,

)= /07' Cl 5 (s,y) (/OOO go(x)Cde) ds, (3.5)

converges in F to ¢ (¢) asr — oo.
Proof. In it is shown that M, — ¢ (s) as r — oco.Also it is shown that

Yk [Mr — ¢ (5)] = Seulzg [DE{M,} —¢(5)] =0 as r — .

Vi K (M /C,,B gy(/ w(x)Cde)dg—gp(g)%Oas r — 00.

This is to say that lim M, = ¢ (s).
r—00

Since the integrand is a C*°function of ¢ and ¢ (x) € E, repetitively differentiating under integral
sign in (3.3) and the integrals are uniformly convergent. Thus

Sup [Df {M,}— (C)]
seK

= [y DkCO (fo ¢ (x)CY 5 (,y) dgc) ds—¢(s) =0
as r — 00 foraHgEK.
Hence the claim.
Theorem 3.2 (Inversion theorem) Let ¢ () € E. Show that

</OOO X/Q;W o (@ )cot@zgcsce/ooc {y‘a—ﬂm (hi’ﬁf) (v) dy} dmp(x)>

— <f9 (x),<p(ac)> as r — 00. (3.6)
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Proof. From the analyticity of (hiﬁf) (y) on Cand ¢ (z) is a compact support in R, it follows

that the left side expression in (3.6) is merely a repeated integral with respect to 2 and y and the
integral in (3.6) is a continuous function of zas the closed bound domain of integration. Therefore

I (@) [ I @eg(xte) cot 6 csc { [Ty (o) (hi ﬁf) o dy} dT} )
= Jy (776 .CLs () w (v d.

Since ¢ () is a compact support, and the integrand is a continuous function of (z,y) the order
of integration is changed. The change of the order of integration is justified, where

v) = [ )T, s

/OT <J75?</),CZ,5 (c,y)> ¥ (y)dr = <175?</)/000 Cl 5 ()Y () dT>~
From Lemma (3.3),

<%/0°° Coss )Y (y) dT>

converges

P

<f“’ (<),<p(<)> as 1 — 0.
This completes the proof.

4  Discussions

In the first section the introduction to the related work is presented. In the second section of this
work the classical work related to Laplace transforms and the generalized Hankel-Clifford transform
is represented. In this section applying fractional Laplace transforms to fractional generalized
Hankel-Clifford transformation and the fractional generalized Hankel-Clifford transformation to
fractional Laplace transforms, observations were made. Relation between Laplace transform and
generalized Hankel-Clifford transformation to the space of distributions has been derived in the
third section. Examples have been demonstrated at the end of each section in the methodology and
development. In this section study of fractional Laplace transform and the fractional generalized
Hankel-Clifford transformation is done in Zemanian space. The new developments can be used in
engineering applications.

5 Conclusion

The reader can further develop a relation between Laplace transform and the finite generalized
Hankel-Clifford transform, its relation in distributional sense. The readers can find the relation
between fractional Laplace transform and the finite fractional generalized Hankel-Clifford trans-
formation is my next paper. The partial differential equations related to these transforms will be
useful for proving the applications of the said transforms. The developed relations in this study
would open new areas of applications in mechanics and optics. This study helps reader who would
encounter kernels in fractional Laplace transform and fractional generalized Hankel-Clifford trans-
formation during their experiments.



A perspective on fractional Laplace transforms ... 33

References
[1] D. Rainville Earl, Special Functions, Chesla Publication Co. Bronx; (1960) NY.
[2] LN. Sneddon, Use of Integral Transforms, T.M.H. Edition. (1979)
[3] A.H. Zemanian, Generalized Integral Transformations, Interscience Publications, (1968) NY.
[4] S. P. Malgond, and V. R. Lakshmi Gorty, The generalized Hankel-Clifford transformation on
M and its representation, IEEE Xplore Digital Library (2013), http://ieceexplore.ieee.org ,
page(s): 1 - 9.
[5] S .K. Panchal, Relation between Hankel and Laplace transforms of distributions, Bulletin of
the Marathwada Mathematical Society, Vol. 13, No. 1 (2012), 30-32.
[6] B.R. Bhounsle, A relation between Laplace and Hankel transforms,
journals.cambridge.org/article_S2040618500034432.
[7] V. Namias, Fractionalisation of Hankel transform, J. Inst. Math. Appl., 26 (1980), 187-197.
[8] H. Bateman, Tables of integral transforms, Vol. II, McGraw-Hill book company Inc., New York
(1954).
[9] D. Z. Fange and W. Shaomi, Fractional Hankel transform and the diffraction of misaligned
optical systems, J. of Modern optics, Vol. 52, No.1 (2005), 61-71.
[10] H. K. Fiona, A Fractional power theory for Hankel transforms, Int. J. of Mathematical Analysis
and Application, 158 (1991), 114-123.
[11] K.K. Sharma, Fractional Laplace transform, Journal of Signal, Image and Video Processing,
Vol. 4 (2010), 377-379.
[12] R.D. Taywade, A.S. Gudadhe and V.N. Mahalle, Inversion of Fractional Hankel Transform

in the Zemanian Space, International Conference on Benchmarks in Engineering Science and
Technology ICBEST (1991); page 31-34.



