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Abstract. Two cross caps in Euclidean 3-space are said to be infinitesimally iso-

metric if their Taylor expansions of the first fundamental forms coincide by taking a

local coordinate system. For a given C∞ cross cap f , we give a method to find all cross

caps which are infinitesimally isomeric to f . More generally, we show that for a given

C∞ metric with singularity having certain properties like as induced metrics of cross

caps (called a Whitney metric), there exists locally a C∞ cross cap infinitesimally

isometric to the given one. Moreover, the Taylor expansion of such a realization is

uniquely determined by a given C∞ function with a certain property (called charac-

teristic function). As an application, we give a countable family of intrinsic invariants

of cross caps which recognizes infinitesimal isometry classes completely.

Key words: cross cap, Whitney umbrella, positive semi-definite metric, isometric de-

formation, intrinsic invariant.

Introduction

Singular points of a positive semi-definite metric dσ2 are the points

where the metric is not positive definite. In the authors’ previous work

[4] with Hasegawa and Saji, a class of positive semi-definite metrics on

2-manifolds called ‘Whitney metrics’ was given. Singularities of Whitney

metrics are isolated and the pull-back metrics of cross caps in Euclidean

3-space R3 are typical examples of Whitney metrics.

In [5] with Hasegawa, the authors gave three intrinsic invariants α2,0,

α1,1 and α0,2 for cross caps. After that they were generalized in [4] as invari-
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ants of Whitney metrics. In this paper, we construct a series of invariants

{αi,j}i+j≥2 as an extension of α2,0, α1,1 and α0,2. This series of invariants

can distinguish isometric classes of real analytic Whitney metric completely

(see Section 5), and are related to the following problem:

Problem Can each singular point of a Whitney metric locally be isomet-

rically realized as a cross cap in R3?

The authors expect the answer will be affirmative, under the assumption

that the metric is real analytic. In fact, for real analytic cuspidal edges and

swallowtails, the corresponding problems are solved affirmatively (see [4] and

[6]). Moreover, the moduli of isometric deformations of a given generic real

analytic germ of cuspidal edge and swallowtail singularity was completely

determined in [6] and [8]. In this paper, we construct all isometric realiza-

tions of a given Whitney metric germ at its singular point as formal power

series solutions of the problem. The above family of invariants {αi,j}i+j≥2

corresponds to the coefficients of the Taylor expansion of a certain real-

ization (called a ‘normal cross cap’) of the Whitney metric associated to

a given cross cap singular point. So we can give an explicit algorithm to

compute the invariants (cf. Section 5). Although it seems difficult to show

the convergence of the power series, we can approximate it by C∞ maps by

applying Borel’s theorem (cf. [3, Lemma 2.5 in Chapter IV]), and get our

main result (cf. Theorem 1.11).

1. Preliminaries and main results

1.1. Characteristic functions of cross caps

We recall fundamental properties of cross caps (cf. [9], [2], [5], [4]). Let

f : U → R3 be a C∞ map, where U is a domain in R2. A point p (∈ U) is

called a singular point if f is not an immersion at p. Consider such a map

given by

f0(u, v) = (u, uv, v2), (1.1)

which has an isolated singular point at the origin (0, 0), and is called the

standard cross cap. A singular point p of the map f : U → R3 is called a

cross cap or a Whitney umbrella if there exist a local diffeomorphism φ on

R2 and a local diffeomorphism Φ on R3 satisfying Φ ◦ f = f0 ◦ φ such that

φ(p) = (0, 0) and Φ(f(p)) = (0, 0, 0).
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Let f : (U ;u, v) → R3 be a C∞ map such that (u, v) = (0, 0) is a

cross cap singular point and fv(0, 0) = (∂f/∂v)(0, 0) = 0. Since cross cap

singularities are of co-rank one, fu(0, 0) ̸= 0. We call the line

{f(0, 0) + tfu(0, 0); t ∈ R}

the tangential line at the cross cap. The plane passing through f(0, 0)

spanned by fu(0, 0) and fvv(0, 0) is called the principal plane. The principal

plane is determined independently of the choice of the local coordinate sys-

tem (u, v) satisfying fv(0, 0) = 0. By definition, the principal plane contains

the tangential line.

On the other hand, the plane passing through f(0, 0) perpendicular to

the tangential line is called the normal plane. The unit normal vector ν(u, v)

near the cross cap at (u, v) = (0, 0) can be extended as a C∞ function of

(r, θ) by setting u = r cos θ and v = r sin θ, and the limiting normal vector

ν(θ) := lim
r→0

ν(r cos θ, r sin θ) ∈ Tf(0,0)R
3

lies in the normal plane.

We have the following normal form of f at a cross cap singularity:

Fact 1.1 (West [9]) Let f : (U ;u, v) → R3 be a germ of cross cap at

(u, v) = (0, 0). Then there exist an orientation preserving isometry T

and a local diffeomorphism (x, y) 7→ (u(x, y), v(x, y)) such that f(x, y) :=

f(u(x, y), v(x, y)) satisfies

T ◦ f(x, y) = (x, xy + b(y), z(x, y)), (1.2)

where b(y) and z(x, y) are smooth functions satisfying

b(0) = b′(0) = b′′(0) = 0, z(0, 0) = zx(0, 0) = zy(0, 0) = 0,

zyy(0, 0) > 0. (1.3)

Moreover, if we assume

det

(
xu xv

yu yv

)
> 0 (1.4)
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at (u, v) = (0, 0), then the function germs x = x(u, v), y = y(u, v), z =

z(x, y) and b = b(y) are uniquely determined.

This special local coordinate system (x, y) is called the canonical co-

ordinate system or the normal form of f at the cross cap singularity. In

particular, the function b(y) is called the characteristic function associated

to the cross cap f . Historically, West [9] initially introduced this normal

form of cross caps (see also [1]). An argorithmic approach to determine

the coefficients of the Taylor expansions of b(y) and z(x, y) can be found in

Fukui-Hasegawa [2, Proposition 2.1], which we will apply at Section 5. For

the sake of the later discussions, we give here a proof of the last assertion of

Fact 1.1 as follows:

Proof of the uniqueness of the normal form. Without loss of generality,

we may assume that f(0, 0) = (0, 0, 0). Suppose that there exists another

such normal form

T̃ ◦ f̃(x̃, ỹ) =
(
x̃, x̃ỹ + b̃(ỹ), z̃(x̃, ỹ)

)
, (1.5)

where f̃(x̃, ỹ) := f(u(x̃, ỹ), v(x̃, ỹ)). Since f(0, 0) = (0, 0, 0), two isometries

T and T̃ can be considered as matrices in SO(3). By (1.2) and (1.5), it

holds that T (fx(0, 0)) = T̃ (f̃x̃(0, 0)) = e1, where e1 := (1, 0, 0). Since the

tangential lines of f and f̃ coincide, we have

T̃ ◦ T−1(e1) = T̃ (fx(0, 0)) = T̃
(
f̃x̃(0, 0)

)
= e1.

Hence, e1 is an eigenvector of the matrix S := T̃ ◦ T−1. On the other

hand, by (1.2) and (1.5) again, both of T (fyy(0, 0)) and T̃ (f̃ỹỹ(0, 0)) must

be proportional to e3 := (0, 0, 1). Since the principal planes of f and f̃

coincide, we have

T̃ ◦ T−1(Re1 +Re3) = T̃ (Rfx(0, 0) +Rfyy(0, 0))

= T̃
(
Rf̃x̃(0, 0) +Rf̃ỹỹ(0, 0)

)
= Re1 +Re3.

Since we know that e1 is an eigenvector of S, we can conclude that e3 is

also an eigenvector of S. Thus e2 = (0, 1, 0) is also an eigenvector of S, and

we can write
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S =

ε1 0 0
0 ε2 0
0 0 ε1ε2

 (εi = ±1, i = 1, 2).

Then we get the expressionε1 0 0
0 ε2 0
0 0 ε1ε2

 x
xy + b(y)
z(x, y)

 =

 x̃
x̃ỹ + b̃(ỹ)
z̃(x̃, ỹ)

.

Comparing the first components, we have

ε1x = x̃. (1.6)

Next, comparing the second components, we have

ε2(xy + b(y)) = ε1xỹ + b̃(ỹ). (1.7)

Substituting x = 0, we get ε2b(y) = b̃(ỹ), and therefore ε2xy = ε1xỹ. So we

can conclude that ỹ = ε1ε2y. By (1.4), we have ε2 = 1. By comparing the

third components, ε1z(x, y) = z̃(ε1x, ε1y) holds. Hence we have

ε1zyy(x, y) = z̃yy(ε1x, ε1y) = z̃ỹỹ(x̃, ỹ) > 0.

Since zyy(x, y) > 0, we can conclude that ε1 = 1. In particular, we have

x = x̃, y = ỹ, and z(x, y) coincides with z̃(x̃, ỹ). Then (1.7) reduces to

b(y) = b̃(y), proving the assertion. □

In the statement of Fact 1.1, two functions b and z can be taken as real

analytic if f is real analytic. The following assertion was proved in [5]:

Fact 1.2 Under the assumption that f is real analytic, the characteristic

function b(y) vanishes identically if and only if the set of self-intersections

of f lies in the intersection of the principal plane and the normal plane.

Definition 1.3 Cross caps whose characteristic functions vanish identi-

cally are called normal cross caps (cf. [5]).

Let C∞
o (R2) (resp. C∞

o (R)) be the set of C∞ function germs at the

origin o of the (u, v)-plane R2 (resp. the line R). Two functions h1(u, v),

h2(u, v) ∈ C∞
o (R2) (resp. h1(t), h2(t) ∈ C∞

o (R)) are called jet-equivalent
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(denoted by h1 ∼ h2) if the Taylor series of h1 coincides with that of h2 at

the origin. By the well-known Borel theorem (cf. [3, Lemma 2.5 in Chapter

IV]), the quotient space C∞
o (R2)/ ∼ (resp. C∞

o (R)/ ∼) can be identified

with the space R[[u, v]] (resp. R[[t]]) of formal power series in the variables

u, v (resp. t) at the origin o, that is, the formal power series

[h] :=

∞∑
k,l=0

∂k+lh(0, 0)

∂uk∂vl
ukvl

k!l!

(
resp. [h] :=

∞∑
j=0

djh(0)

dtj
tj

j!

)
(1.8)

represents the jet-equivalent class containing h in C∞
o (R2)/ ∼ (resp. in

C∞
o (R)/ ∼). The following assertion is an immediate consequence of our

main result (Theorem 1.11):

Proposition 1.4 Let fj : (U ;u, v) → R3 (j = 1, 2) be two real analytic

cross cap singularities such that the first fundamental form (i.e. the pull

back of the canonical metric of R3) of f1 coincides with that of f2. Then, f1
coincides with f2 up to orientation-preserving isometries in R3 if and only

if the Taylor series of their characteristic functions coincide.

Proposition 1.4 tells us that an analytic isometric deformation of cross

caps can be controlled by the corresponding deformation of characteristic

functions. Examples of isometric deformations of cross caps are constructed

in [5] (cf. Figure 1). By the definition of normal cross caps (cf. Definition

1.3), we get the following corollary:

Corollary 1.5 (The rigidity of normal cross caps) Two germs of real

analytic normal cross caps are congruent if and only if they have the same

first fundamental form.

Figure 1. An isometric deformation of the standard cross cap.
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Corollary 1.5 suggests us the following:

Question Can a given cross cap germ in R3 be isometrically deformed

into a normal cross cap?

If the answer to the problem in the introduction is affirmative, so it is

for the above question. Since the standard cross cap (cf. (1.1)) is normal,

the deformation of the standard cross cap in Figure 1 can be re-interpreted

as a normalization of the rightmost cross cap to the normal cross cap (i.e.

the leftmost cross cap). We give here another example:

Example 1.6 We consider a cross cap germ

f1(u, v) =

(
u, uv +

v3

6
,
u2

2
+

v2

2

)
.

Here, (u, v) gives the canonical coordinate system at (0, 0) (see Figure 2,

left). Since b ̸= 0, this cross cap is not normal. We suppose that there exists

a real analytic germ f2 of a normal cross cap which is isometric to f1. By

Corollary 1.5, we know the uniqueness of f2. Moreover, for a given positive

integer n, we can determine the coefficients of its Taylor expansion of order at

most n using our algorithm as in the proof of Theorem 1.11. Figure 2, right

is an approximation of f2 by setting n = 10. The main difference between

the figures of f1 and f2 appears on the set of self-intersection. The set of

self-intersection of the figure of f2 consists of a straight line perpendicular

to the tangential direction of the surface at (0, 0).

1.2. Whitney metrics

We fix a 2-manifold M2, and a positive semi-definite metric dσ2 on M2.

A point p ∈ M2 is called a singular point of the metric dσ2 if the metric is

not positive definite at p.

Figure 2. Example 1.6: The cross cap f1 (left) and an approximation of its
corresponding normal cross cap f2 (right).
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Let p be a singular point of dσ2, and (u, v) a local coordinate system

centered at p, and assume that the null space of dσ2 at p is one-dimensional.

We set

dσ2 = E du2 + 2F du dv +Gdv2. (1.9)

The local coordinate system (u, v) is called admissible if ∂/∂v is a null

direction of the metric dσ2 at the origin, that is, it holds that F (0, 0) =

G(0, 0) = 0. Since the nullity of dσ2 is 1 at the origin, E(0, 0) > 0 holds.

Definition 1.7 A singular point p of the metric dσ2 is called admissible1

if there exists an admissible local coordinate system (u, v) centered at p

satisfying E > 0 and

Ev = 2Fu, Gu = Gv = 0

at the origin. If each singular point of dσ2 is admissible, then dσ2 is called

admissible.

Definition 1.8 ([4]) Let p be a singular point of an admissible (positive

semi-definite) metric dσ2 on M2 in the sense of Definition 1.7. Let (u, v) be

an admissible local coordinate system centered at p and set

δ := EG− F 2,

where E,F,G are functions satisfying (1.9). If the Hessian

Hessu,v(δ) := det

(
δuu δuv
δuv δvv

)
does not vanish at p, then p is called an intrinsic cross cap of dσ2. Moreover,

if dσ2 admits only intrinsic cross cap singularities on M2, then it is called a

Whitney metric on M2.

The definition of intrinsic cross caps is independent of the choice of

admissible coordinate systems. A Gauss-Bonnet type formula for Whitney

metrics is given in [4]. The following fact is important:

1Admissibility was originally introduced by Kossowski [7]. He called it d(⟨, ⟩)-flatness.
Our definition of admissibility is equivalent to the original one, see [4, Proposition 2.7].
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Fact 1.9 ([4]) Let f : (U ;u, v) → R3 be a C∞ map. Then p ∈ U is a

cross cap singular point of f if and only if p is an intrinsic cross cap of the

first fundamental form of f .

Definition 1.10 Two metrics dσ2
j (j = 1, 2) defined on a neighborhood

of p ∈ M2 are called jet-equivalent at p if, for each local coordinate system

(u, v) of M2 centered at p,

[E1] = [E2], [F1] = [F2], [G1] = [G2]

hold at (0, 0) (see (1.8) for the definition of the bracket [ ]), where

dσ2
j = Ej du

2 + 2Fj du dv +Gj dv
2 (j = 1, 2).

We write dσ2
1 ≈ dσ2

2 if two metrics are jet-equivalent.

The following is the main result of this paper:

Theorem 1.11 Let p be a singular point of a Whitney metric dσ2. For any

choice of C∞ function germ b ∈ C∞
o (R) satisfying b(0) = b′(0) = b′′(0) = 0,

there exist a local coordinates (x, y) centered at (0, 0) and a C∞ map germ

f(x, y) into R3 having a cross cap singularity at p satisfying the following

two properties:

(1) f(x, y) is a normal form of cross cap,

(2) the first fundamental form of f (i.e. the pull-back of the canonical metric

of R3 by f) is jet-equivalent to dσ2 at p,

(3) the characteristic function of f is jet-equivalent to b, that is, it has the

same Taylor expansion at 0 as b.

Moreover, such an f is uniquely determined up to addition of flat functions2

at p. In other words, the Taylor expansion of f gives a unique formal power

series solution for the realization problem of the Whitney metric dσ2 as a

cross cap.

If the problem in the introduction is affirmative, then the set of analytic

cross cap germs which have the same first fundamental form can be identified

with the set of convergent power series in one variable.

2A C∞ function h(u, v) is called flat (at p) if ∂k+lh(p)/∂uk∂vl vanishes at p for all
non-negative integers k, l.
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Proof of Proposition 1.4. The uniqueness of f modulo flat functions and

the second assertion of Theorem 1.11 immediately imply Proposition 1.4, by

setting dσ2 = f∗
1 ds

2
R3 , where ds2R3 is the canonical metric of the Euclidean

3-space R3. □

1.3. The strategy of the proof of Theorem 1.11

From now on, we fix a Whitney metric

dσ2 = E du2 + 2F du dv +Gdv2

defined on a neighborhood U of the origin o = (0, 0) in the (u, v)-plane R2.

We suppose that o is a singular point of dσ2. We set

E := [E], F := [F ], G := [G],

that is, E , F , G are the formal power series in R[[u, v]] associated to the

coefficients of the metric dσ2.

Definition 1.12 A formal power series

P :=

∞∑
k,l=0

P (k, l)

k!l!
ukvl (P (k, l) ∈ R) (1.10)

in R[[u, v]] is said to be of order at least m if

P (k, l) = 0 (k + l < m).

We denote by Om the ideal of R[[u, v]] consisting of series of order at

least m. By definition, O0 = R[[u, v]]. In [4], the following assertion was

given:

Fact 1.13 ([4, Theorem 4.11]) One can choose a local coordinate system

(u, v) centered at the singular point of dσ2 so that

E (= [E]) = 1 + a22,0u
2 + 2a2,0a1,1uv + (1 + a21,1)v

2 +O3(u, v), (1.11)

F (= [F ]) = a2,0a1,1u
2 + (a2,0a0,2 + a21,1 + 1)uv

+ a1,1a0,2v
2 +O3(u, v), (1.12)
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G (= [G]) = (1 + a21,1)u
2 + 2a1,1a0,2uv + a20,2v

2 +O3(u, v), (1.13)

where a0,2 (> 0) and a2,0, a1,1 are real numbers3, and O3(u, v) is a certain

element of O3.

So we can assume that our local coordinate system (u, v) satisfies (1.11),

(1.12) and (1.13). We write these formal power series as follows:

E =

∞∑
k,l=0

E(k, l)
k!l!

ukvl (E(k, l) ∈ R),

F =

∞∑
k,l=0

F(k, l)

k!l!
ukvl (F(k, l) ∈ R),

G =

∞∑
k,l=0

G(k, l)
k!l!

ukvl (G(k, l) ∈ R).

For example, by (1.11), E(2, 0) = 2a22,0 holds. We now fix a C∞ function

germ b(t) satisfying b(0) = b′(0) = b′′(0) = 0.

Lemma 1.14 Let f = (x, xy+b(y), z(x, y)) be a C∞ map germ that gives

a normal form of cross cap at (0, 0) satisfying (1.4) whose first fundamental

form coincides with the Whitney metric dσ2. Suppose that (u, v) satisfies

(1.11), (1.12) and (1.13). Then, f can be rewritten as

f(u, v) =
(
x(u, v), x(u, v)y(u, v) + b(y(u, v)), z(u, v)

)
, (1.14)

where z(u, v) := z(x(u, v), y(u, v)) and

x(0, 0) = y(0, 0) = 0, z(0, 0) = zu(0, 0) = zv(0, 0) = 0,

zvv(0, 0) > 0, (1.15)

xu(0, 0) = ±1, xv(0, 0) = 0, xu(0, 0)yv(0, 0) > 0 (1.16)

hold.

Proof. (1.15) follows from the fact that f is a normal from. Then, we have

3As shown in [4], a2,0, a1,1 and a0,2 are invariants of the Whitney metric dσ2.
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fu(0, 0) = (xu(0, 0), 0, 0). In particular, (the dot denotes the inner product

of R3)

1 = E(0, 0) = fu(0, 0) · fu(0, 0) = xu(0, 0)
2

holds and xu(0, 0) = ±1. On the other hand, we have

0 = F(0, 0) = fu(0, 0) · fv(0, 0) = xu(0, 0)xv(0, 0),

and we get xv(0, 0) = 0. By (1.4),

0 <
∂(x, y)

∂(u, v)

∣∣∣∣
(u,v)=(0,0)

= xu(0, 0)yv(0, 0)

holds, proving the assertion. □

Replacing (u, v) by (−u,−v) if necessary, we may assume that

xu(0, 0) = 1, yv(0, 0) > 0. (1.17)

The map f as in Lemma 1.14 satisfies

fu · fu = (1 + y2)x2
u + 2

(
x+ b′(y)

)
yxuyu

+
(
x2 + 2xb′(y) + b′(y)2

)
y2u + z2u, (1.18)

fu · fv = (1 + y2)xuxv +
(
x+ b′(y)

)
y(xuyv + xvyu)

+
(
x2 + 2xb′(y) + b′(y)2

)
yuyv + zuzv, (1.19)

fv · fv = (1 + y2)x2
v + 2

(
x+ b′(y)

)
yxvyv

+
(
x2 + 2xb′(y) + b′(y)2

)
y2v + z2v , (1.20)

where

b′(y) :=
db(y)

dy
. (1.21)

Definition 1.15 We call the functions
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x2
u, y2x2

u, xyxuyu, b′(y)yxuyu, x2y2u,

xb′(y)y2u, b′(y)2y2u, z2u, (1.22)

obtained by expanding the right-hand side of (1.18), the terms of fu · fu.
Similarly, the terms of fu · fv (resp. the terms of fv · fv) are also defined.

Let πm : R[[u, v]] → R[u, v] be a homomorphism defined by

πm(P ) :=
∑

i+j≤m

P (i, j)

i!j!
uivj , (1.23)

where R[u, v] is the set of the real polynomial ring in two variables. We set

X := [x] =

∞∑
k,l=0

X(k, l)

k!l!
ukvl, (1.24)

Y := [y] =

∞∑
k,l=0

Y (k, l)

k!l!
ukvl, (1.25)

Z := [z] =

∞∑
k,l=0

Z(k, l)

k!l!
ukvl. (1.26)

Proposition 1.16 Let f(u, v) be a germ of cross cap satisfying the prop-

erties of Lemma 1.14 and (1.17). Then, for each m ≥ 2, the m-th order

coefficients

E(i, j), F(i, j), G(i, j) (i+ j = m)

of E ,F ,G (cf. (1.11), (1.12), (1.13)) can be expressed as polynomials in the

variables

X(k1, l1), Y (k2, l2), Z(k3, l3),

where

k1 + l1 ≤ m+ 1, k2 + l2 ≤ m− 1, k3 + l3 ≤ m.
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Proof. Since, the first fundamental form of f is dσ2, we have

E = [fu · fu], F = [fu · fv], G = [fv · fv].

By (1.15), (1.18), (1.19) and (1.20), the assertion can be proved using the

following lemma (i.e. Lemma 1.17). □

Lemma 1.17 Each m-th order coefficient of the power series associated to

b′(y(u, v)) can be expressed as a polynomial in the variables Y (k, l) (k+ l ≤
m− 1).

Proof. We can write (cf. (1.21))

B′(t) := [b′(t)] =

∞∑
r=2

br+1

r!
tr, (1.27)

where

(B(t) :=)[b(t)] =

∞∑
r=3

br
r!
tr. (1.28)

Since Y ∈ O1 and the index satisfies r ≥ 2, each coefficient of πm(Y r) is a

polynomial in the variables Y (k, l) (k + l ≤ m− 1). □

Regarding the statement of Proposition1.16, we consider the following

three polynomials in u, v:

Xm+1 := u+
∑

2≤k+l≤m+1

X̂(k, l)

k!l!
ukvl, (1.29)

Ym−1 :=
∑

1≤k+l≤m−1

Ŷ (k, l)

k!l!
ukvl, (1.30)

Zm :=
∑

2≤k+l≤m

Ẑ(k, l)

k!l!
ukvl. (1.31)

We set
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fm :=
(
Xm+1,Xm+1Ym−1 + Bm+1(Ym−1),Zm

)
,

Bm+1(t) :=

m+1∑
j=2

bj+1

j!
tj , (1.32)

where {bj}∞j=3 is a sequence determined by (1.28). By definition, each coef-

ficient of fm is a polynomial in the variables u and v. To describe the key

assertion (cf. Proposition 1.20), we prepare a terminology as follows:

Definition 1.18 A triple of polynomials (Xm+1,Ym−1,Zm) as in (1.29),

(1.30) and (1.31) are called the m-th formal solution with respect to dσ2

and b ∈ C∞
o (R) if they satisfy (cf. (1.15) and (1.17))

X̂(0, 0) = Ŷ (0, 0) = 0, X̂(1, 0) = 1, Ŷ (0, 1) > 0,

Ẑ(0, 0) = Ẑ(1, 0) = Ẑ(0, 1) = 0, Ẑ(0, 2) > 0

and

πm(E) ∼ fm
u · fm

u , πm(F) ∼ fm
u · fm

v , πm(G) ∼ fm
v · fm

v . (1.33)

As a consequence of Proposition 1.16, we get the following:

Corollary 1.19 Let f(u, v) be a germ of cross cap satisfying the properties

of Lemma 1.14 and (1.17). Then, for each m ≥ 2, the m-th formal solution

fm satisfies πm([f ]) = πm(fm), that is,

πm+1([x]) = Xm+1, πm−1([y]) = Ym−1, πm([z]) = Zm

hold, where Xm+1,Ym−1,Zm are power series associated with the m-th for-

mal solution fm (cf. (1.32)). In particular, we get the following relations

X(k, l) = X̂(k, l), (k + l ≤ m+ 1),

Y (k, l) = Ŷ (k, l), (k + l ≤ m− 1),

Z(k, l) = Ẑ(k, l), (k + l ≤ m).

The key assertion, which we would like to prove in Section 4, is stated

as follows:
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Proposition 1.20 Let (u, v) be a local coordinate system satisfying (1.11),

(1.12) and (1.13). Then for each m ≥ 2, there exists a unique m-th formal

solution. Moreover, it satisfies πm−1(f
m) = πm−1(f

m−1).

We prove here the case m = 2 of the proposition:

Lemma 1.21 Let (u, v) be a local coordinate system satisfying (1.11),

(1.12) and (1.13). Then there exists a unique second formal solution. More

precisely it has the following expressions:

X3 = u, Y1 = v, Z2 =
1

2
(a2,0u

2 + 2a1,1uv + a0,2v
2).

In particular,

x = u+O4(u, v), (1.34)

y = v +O2(u, v), (1.35)

z =
1

2
(a2,0u

2 + 2a1,1uv + a0,2v
2) +O3(u, v) (1.36)

hold, where x, y, z are the functions as in (1.14), and Oj(u, v) (j = 2, 3, 4)

are functions belonging to the set Oj.

Proof. By a straightforward calculation using b(0) = b′(0) = b′′(0) = 0, we

have

[fu · fu] = 1 + 2uX(2, 0) + 2vX(1, 1) +O2(u, v).

Since 1 = E = [fu·fu]+O2(u, v), we can conclude thatX(2, 0) = X(1, 1) = 0.

Similarly, using zu(0, 0) = zv(0, 0) = 0, we have

0 = F = [fu · fv] = vX(0, 2) +O2(u, v).

In particular, X(0, 2) = 0. Using the fact X(j, k) = 0 (j + k = 2), we have

[fu · fu] = 1 + u2
(
X(3, 0) + 4Y (1, 0)2 + Z(2, 0)2

)
+ 2uv (X(2, 1) + 2Y (0, 1)Y (1, 0) + Z(1, 1)Z(2, 0))

+ v2
(
X(1, 2) + Y (0, 1)2 + Z(1, 1)2

)
+O3(u, v).
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By the first equation of (1.33), we have

X(3, 0) + 4Y (1, 0)2 + Z(2, 0)2 = a22,0, (1.37)

X(2, 1) + 2Y (0, 1)Y (1, 0) + Z(1, 1)Z(2, 0) = a2,0a1,1, (1.38)

X(1, 2) + Y (0, 1)2 + Z(1, 1)2 = 1 + a21,1. (1.39)

On the other hand, by the second equation of (1.33), we have

1

2
X(2, 1) + 2Y (0, 1)Y (1, 0) + Z(1, 1)Z(2, 0) = a2,0a1,1, (1.40)

X(1, 2) + Y (0, 1)2 + Z(1, 1)2 + Z(0, 2)Z(2, 0) = 1 + a21,1 + a2,0a0,2, (1.41)

X(0, 3) + 2Z(0, 2)Z(1, 1) = 2a1,1a0,2. (1.42)

Similarly, the third equation of (1.33) yields

Y (0, 1)2 + Z(1, 1)2 = 1 + a21,1, (1.43)

Z(0, 2)Z(1, 1) = a1,1a0,2, (1.44)

Z(0, 2)2 = a20,2. (1.45)

Since Z(0, 2) and a0,2 are positive (cf. Fact 1.13 and (1.15)), (1.45) reduces

to Z(0, 2) = a0,2. Then (1.44) yields that Z(1, 1) = a1,1. Moreover, (1.43)

reduces to Y (0, 1) = 1 because of Y (0, 1) > 0 (cf. (1.17)). On the other

hand, (1.42) implies X(0, 3) = 0. Also X(1, 2) = 0 follows from (1.39).

Then (1.41) yields Z(2, 0) = a2,0. Finally, (1.38) and (1.40) reduce to

X(2, 1) + 2Y (1, 0) = 0, X(2, 1) + 4Y (1, 0) = 0.

So we have X(2, 1) = Y (1, 0) = 0. Moreover, (1.37) yields X(3, 0) = 0. By

Corollary 1.19, we have

X(i, j) = X̂(i, j) (i+ j ≤ 3),

Y (i, j) = Ŷ (i, j) (i+ j ≤ 1),

Z(i, j) = Ẑ(i, j) (i+ j ≤ 2),
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and get the assertion. □

An outline of the proof of Proposition 1.20. By Lemma 1.21, the second

formal solution f2 is found. So we prove the case for m(≥ 3) by induction.

Suppose that fm−1 has been uniquely determined from the equations ob-

tained by at most (m − 1)-th order terms of (1.33). We then try to find

the m-th order solution fm of (1.33). If it exists, (1.33) induce a 3m-family

of equations which can be considered as a system of linear equations with

unknown 3m-variables

Xm+1 := {X(j, k)}j+k=m+1, (1.46)

Ym−1 := {Y (j, k)}j+k=m−1, (1.47)

Zm := {Z(j, k)}j+k=m (1.48)

that can be rewritten in the form

Ωmζm = ηm, (1.49)

where ζm ∈ R3m is a column matrix given by

ζm =

Xm+1

Ym−1

Zm

,

and Ωm and ηm are a (3m) × (3m)-matrix and a 3m-dimensional column

vector, respectively, which are both written in terms of

X(j, k) (j + k < m+ 1),

Y (j, k) (j + k < m− 1),

Z(j, k) (j + k < m).

We then show that Ωm is a non-singular matrix and then Xm+1, Ym−1, Zm

are determined uniquely. As a consequence, the existence of fm follows.

The precise proof is given in Section 4. □

Now we can prove Theorem 1.11 under the assumption that Proposition

1.20 is proved:
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Proof of Theorem 1.11. We fix a germ of the Whitney metric dσ2 and

b ∈ C∞
0 (R). Suppose that there exists a desired normal form f(x, y) of a

cross cap germ at (x, y) = (0, 0) satisfying the properties of Theorem 1.11.

Take a local coordinate system (u, v) satisfying (1.18), (1.19) and (1.20).

Then x, y can be considered as functions of u, v, and f = f(u, v) can be

expressed as (1.14). We may assume that f satisfies (1.15) and (1.17) by

Lemma 1.14. To prove the uniqueness of the desired f , it is sufficient to

show that the Taylor expansions of x(u, v), y(u, v) and z(u, v) are uniquely

determined by the first fundamental form dσ2 and the characteristic function

b. In fact, as shown in the outline of the proof of Proposition 1.20, πm(f)

coincides with πm(fm), where fm is the m-th formal solution with respect

to dσ2 and b ∈ C∞
o (R). Thus the uniqueness of fm shown in Proposition

1.20 implies the uniqueness of desired f .

Thus, it is sufficient to show the existence. Applying Proposition 1.20

and letting m → ∞, we get formal power series X, Y , Z ∈ R[[u, v]] such

that the vector-valued formal power series Φ := (X,XY + b(Y ), Z) satisfies

E = [Φu · Φu], F = [Φu · Φv], G = [Φv · Φv]. (1.50)

Then by Borel’s theorem, there exist C∞ functions x, y, z whose Taylor

series are X, Y , Z, respectively. If we set

f(u, v) :=
(
x(u, v), x(u, v)y(u, v) + b

(
y(u, v)

)
, z(u, v)

)
,

then the first fundamental form of f is jet-equivalent to dσ2. By Fact 1.9,

(0, 0) is a cross cap singularity of f . By Lemma 1.21, the map (u, v) 7→
(x(u, v), y(u, v)) is a local diffeomorphism at the origin. Taking (x, y) as a

new local coordinate system, we can write u = u(x, y) and v = v(x, y). So

(x, y) gives the canonical coordinate system of the cross cap germ f . Thus

f satisfies (2) and (3) of Theorem 1.11. □

2. Properties of power series

In this section, we prepare several properties of power series to prove the

case m ≥ 3 of Proposition 1.20. As in Section 1, we denote by R[[u, v]] the

ring of formal power series with two variables u, v in real coefficients. Each

element of R[[u, v]] can be written as in (1.10). Each P (k, l) (k, l ≥ 0) is

called the (k, l)-coefficient of the power series P . Moreover, the sum k+ l is
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called the order of the coefficient P (k, l). In particular, P (k, l) (k + l = m)

consist of all coefficients of order m. The formal partial derivatives of P

denoted by

Pu := ∂P/∂u, Pv := ∂P/∂v

are defined in the usual manner.

Lemma 2.1 The (k, l)-coefficient of the (formal) partial derivatives Pu

and Pv of P are given by

Pu(k, l) = P (k + 1, l), Pv(k, l) = P (k, l + 1).

Linear operations on power series also have a simple description as fol-

lows:

Lemma 2.2 Let P , Q be two power series in R[[u, v]], and let α, β ∈ R.

Then

(αP + βQ)(k, l) = αP (k, l) + βQ(k, l).

The coefficient formula for products is as follows:

Lemma 2.3 Let P1, . . . , PN be power series in R[[u, v]]. Then

(P1 · · ·PN )(k, l) = k!l!
∑

s1+···+sN=k,
t1+···+tN=l

P1(s1, t1) · · ·PN (sN , tN )

s1!t1! · · · sN !tN !
. (2.1)

If N = 2, and P1 = P and P2 = Q, then the formula (2.1) reduces to

the following:

(PQ)(k, l) := k!l!

k∑
s=0

l∑
t=0

P (s, t)Q(k − s, l − t)

s!t!(k − s)!(l − t)!
. (2.2)

Moreover, setting Q to be the monomial u or v, we get the following:

Corollary 2.4

(uP )(k, l) = kP (k − 1, l), (vP )(k, l) = lP (k, l − 1)
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hold, where coefficients with negative induces P (−k, l), P (m,−n) (k, n >

0, l,m ∈ Z) are considered as 0.

In Definition 1.12, we defined the ideal Om of R[[u, v]] consisting of

formal power series of order at least m. The following assertion is obvious:

Lemma 2.5 If P ∈ On and Q ∈ Om, then PQ ∈ On+m and P +Q ∈ Or,

where r = min{n,m}.

Let Pk (k = 1, . . . , N) be a power series in Onk
. For a given integer m

satisfying m ≥ n1 + · · ·+ nN , we set

⟨Pj |P1, . . . , PN ⟩m := m−
∑
k ̸=j

nk. (2.3)

Roughly speaking, this number is an upper bound of the degree of the terms

of Pj to compute the m-th order term of the product P1 · · ·PN , as follows.

Proposition 2.6 Let Pj be a power series in Onj (j = 1, . . . , N). Then

the product P1 · · ·PN belongs to the class On1+···+nN
. Moreover, each (k, l)-

coefficient (P1 · · ·PN )(k, l) (k+ l = m) of order m can be written as a linear

combination of monomials of degree N of the following form

N∏
i=1

Pi(si, ti)
(
ni ≤ si + ti ≤ ⟨Pi|P1, . . . , PN ⟩m

)
.

Proof. Take a non-zero term in (2.1) in the following form:

k!l!

s1!t1! · · · sN !tN !
P1(s1, t1) · · ·PN (sN , tN ).

Here, sk + tk ≥ nk holds for each k because Pk ∈ Onk
and Pk(sk, tk) ̸= 0.

Hence for each j, we have

nj ≤ sj + tj = (s1 + · · ·+ sN ) + (t1 + · · ·+ tN )−
∑
k ̸=j

(sk + tk)

= (k + l)−
∑
k ̸=j

(sk + tk) ≤ m−
∑
k ̸=j

nk = ⟨Pj |P1, . . . , PN ⟩m.

Hence we have the conclusion. □
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As a consequence of Proposition 2.6, we get the following:

Corollary 2.7 Let πm : R[[u, v]] → R[[u, v]] be the canonical homomor-

phism defined by (1.23). The m-th order term of the product P1 · · ·PN

coincides with the m-th order term of the product of

πm1
(P1), . . . , πmN

(PN ),

where

mi := ⟨Pi|P1, . . . , PN ⟩m (i = 1, . . . , N).

In other words, the m-th order terms of P1 · · ·PN depend only on the terms

of Pi of degree at most mi (i = 1, . . . , N).

Example 2.8 We set P ∈ O2 and Q ∈ O1 as

P := c1uv + c2v
2 + c3u

3v +O5(u, v), Q := d1u+ d2v + d3u
3 +O4(u, v),

respectively, where Oj(u, v) (j = 4, 5) are terms in Oj . Then it holds that

⟨P |P,Q⟩3 = 3− 1 = 2, ⟨Q|P,Q⟩3 = 3− 2 = 1.

To compute PQ modulo O4, we need the information of π2(P ) and π1(Q).

So, we have that

PQ = (c1uv + c2v
2)(d1u+ d2v) +O4(u, v)

= (c1d2 + c2d1)uv
2 + c1d1u

2v + c2d2v
3 +O4(u, v),

and so PQ ∈ O3, where O4(u, v) is an element of O4. The coefficients of

the terms of order 3 are

c1d2 + c2d1, c1d1, c2d2.

They are homogeneous polynomials of degree 2 in the variables c1, c2, d1,

d2.

Let Q1, . . . , Qr be power series in R[[u, v]]. We set
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Pi = Qµi
,
∂Qµi

∂u
, or

∂Qµi

∂v
(i = 1, . . . , r), (2.4)

where µi ∈ {1, . . . , r}. Then, each coefficient of the product P1 · · ·PN can

be expressed as coefficients of Q1, . . . , Qr. For each non-negative integer m,

we set

⟨Qµi
;Pi|P1, . . . , PN ⟩m

=

{
⟨Pi|P1, . . . , PN ⟩m if Pi = Qµi ,

⟨Pi|P1, . . . , PN ⟩m + 1 if Pi = (Qµi
)u or (Qµi

)v.
(2.5)

Roughly speaking,

the number ⟨Qµi
;Pi|P1, . . . , PN ⟩m is an upper bound of the

degree of the terms of Qµi
which comes from the factor Pi

to compute the m-th order term of the product P1 · · ·PN .
(2.6)

In fact, by applying Lemma 2.6 and Lemma 2.1 to this situation, we get the

following:

Proposition 2.9 Under the convention (2.4), each (k, l)-coefficient

(P1 . . . PN )(k, l) (k + l = m) of order m can be written as a linear com-

bination of monomials of degree N of the following form

N∏
i=1

Qµi
(si, ti)

(
0 ≤ si + ti ≤ ⟨Qµi

;Pi|P1, . . . , PN ⟩m
)
.

Corollary 2.10 The m-th order terms of the product P1 · · ·PN coincides

with that of

πm′
1
(Qµ1), . . . , πm′

n
(QµN

),

where

m′
i := ⟨Qµi

;Pi|P1, . . . , PN ⟩m (i = 1, . . . , N).

In other words, the m-th order terms of P1 · · ·PN depend only on the terms

of Qµi
of degree at most m′

i (i = 1, . . . , N).
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Example 2.11 We set

Q1 := a1uv + a2v
2 + a3u

3v +O5(u, v), Q2 := b1u+ b2v + b3u
3 +O4(u, v),

and P1 := (Q1)u, P2 := (Q2)u, where Oj(u, v) (j = 4, 5) are terms in

Oj(u, v), respectively. Then,

P1 = a1v + 3a3u
2v +O4(u, v), P1P2 = b1 + 3b3u

2 +O3(u, v),

where O4(u, v) ∈ O4 and O3(u, v) ∈ O3. Since P1 ∈ O1 and P2 ∈ O0, we

have

⟨Q1;P1|P1, P2⟩1 = ⟨P1|P1, P2⟩1 + 1 = (1− 0) + 1 = 2,

⟨Q2;P2|P1, P2⟩1 = ⟨P2|P1, P2⟩1 + 1 = 1.

So we have

Q1Q2 = (π2(Q1))u(π1(Q2))u +O2(u, v)

=
(
a1uv + a2v

2
)
u
(b1u+ b2v)u +O2(u, v) = a1b1v +O2(u, v).

Moreover,

⟨Q1;P1|P1, P2⟩2 = ⟨P1|P1, P2⟩2 + 1 = (2− 0) + 1 = 3,

⟨Q2;P1|P1, P2⟩2 = ⟨P2|P1, P2⟩2 + 1 = (2− 1) + 1 = 2.

So we have

Q1Q2 = (π3(Q1))u (π2(Q2))u +O3(u, v)

=
(
a1uv + a2v

2 + a3u
3v
)
u
(b1u+ b2v)u +O3(u, v)

= a1b1v +O3(u, v).

In this case, the upper bound ⟨Q2;P2|P1, P2⟩2 = 2 of the order of Q2 for the

contribution of the order 2 coefficients of P1P2 is not sharp. In fact, there

are no order 2 terms for P1P2. Also, this does not contradict Proposition

2.9, since 0 can be considered as a homogeneous polynomial of order 2 whose

coefficients are all zero.
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3. The ignorable terms when determining fm

We fix a germ of the Whitney metric dσ2 and b ∈ C∞
0 (R). Take a local

coordinate system (u, v) satisfying (1.18), (1.19) and (1.20). We suppose

that there exists a germ of cross cap f(u, v) satisfying the properties of

Lemma 1.14.

3.1. The leading terms and ignorable terms

We let P be a polynomial in

x, xu, xv, y, yu, yv, z, zu, zv, b′(y).

Each term of (fu · fu), (fu · fv) or (fv · fv) is a typical example of such

polynomials. We denote by P |m the finite formal power series in u, v (i.e. a

polynomial in u, v) that results after the substitutions

x := πm+1(X), y := πm−1(Y ), z := πm+1(Z), b(y) :=

m+1∑
j=3

bj
j!
yj

into P , where X := [x], Y := [y] and Z := [z].

Definition 3.1 A term T of (fu · fu), (fu · fv) or (fv · fv) is called an

m-ignorable term (m ≥ 3) if each m-th order coefficient

(T |m)(j, k) (j + k = m)

does not contain any of the top term coefficients (1.46), (1.47), (1.48) of

πm+1(X), πm−1(Y ), πm(Z) (cf. (1.29), (1.30) and (1.31)). In the proof of

Proposition 1.20 at the end of this section, m-ignorable terms of fu · fu,
fu · fv and fv · fv will be actually ignorable to determine the matrix Ωm

given in (1.49). A term which is not m-ignorable is called a leading term of

order m.

For the computation of leading terms, we will use the following two

convenient equivalence relations: Let A be the associative algebra generated

by

X(j, k), Y (j, k), Z(j, k) (j, k = 0, 1, 2, . . . ).

We denote by Am the ideal of A generated by
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X(j, k) (j + k ≤ m+ 1),

Y (j, k) (j + k ≤ m− 1),

Z(j, k) (j + k ≤ m).

If two elements δ1, δ2 ∈ A satisfy δ1 − δ2 ∈ Am−1, then we write

δ1 ≡m δ2. (3.1)

Let P , Q be two polynomials in

x, xu, xv, y, yu, yv, z, zu, zv, b′(y).

If all of the coefficients of P |m−Q|m (as a polynomial in u, v) are contained

in Am−1, we denote this by

P ≡m Q.

This notation is the same as the one used in (3.1), and this is rather useful

for unifying the symbols. For example, if the term T satisfies T ≡m 0 if and

only if the term T is m-ignorable.

3.2. The properties of terms containing b′(y)

In the right hand sides of (1.18), (1.19) and (1.20), terms containing b′

appear, and they are

b′(y)yxuyu, b′(y)xy2u, b′(y)2y2u (in fu · fu), (3.2)

b′(y)yxuyv, b′(y)yxvyu, b′(y)xyuyv, b′(y)2yuyv (in fu · fv), (3.3)

b′(y)yxvyv, b′(y)xy2v , b′(y)2y2v (in fv · fv), (3.4)

respectively.

In this subsection, we show that the terms as in (3.2), (3.3) and (3.4)

are all m-ignorable.

For the fixed characteristic function b ∈ C∞
0 (R), we set

B′(Y ) := [b′(y)] =

∞∑
r=2

br+1

r!
Y r (Y := [y]).
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Let P1, . . . , PN be power series in R[[u, v]], and assume that at least one of

Pj ’s is B′(Y ). In this situation,

⟨Y |B′(Y )|P1, . . . , PN ⟩m := ⟨B′(Y )|P1, . . . , PN ⟩m − 1. (3.5)

Then, this number gives

an upper bound of the degree of the terms of Y which comes
from the factor B′(Y ) to compute the m-th order term of the
product P1 · · ·PN .

(3.6)

The expressions in (2.6) and (3.6) are similar. This is the reason why we

used the same notation in (2.5) and (3.5).

Proposition 3.2 For each m ≥ 3, the terms given in (3.2), (3.3) and

(3.4) are all m-ignorable.

Proof. Since b(0) = b′(0) = b′′(0) = 0 and y = y(u, v) ∈ O1,

b′(y) ∈ O2. (3.7)

We categorize the terms in (3.2), (3.3) and (3.4) into three classes. One is

b′(y)yxuyu ∈ O2O1O0O1, b′(y)yxuyv ∈ O2O1O0O0,

b′(y)yxvyu ∈ O2O1O3O1, b′(y)yxvyv ∈ O2O1O3O0. (3.8)

For example, we wrote b′(y)yxuyu ∈ O2O1O0O1. In fact, b′(y) ∈ O2 holds

by (3.7), xu ∈ O0 holds by (1.34), and the relations y ∈ O1, yu ∈ O1 follow

from (1.35). The other two classes are

b′(y)xy2u ∈ O2O1O1O1, b′(y)xyuyv ∈ O2O1O1O0,

b′(y)xy2v ∈ O2O1O0O0, (3.9)

and

b′(y)2y2u ∈ O2O2O1O1, b′(y)2yuyv ∈ O2O2O1O0,

b′(y)2y2v ∈ O2O2O0O0, (3.10)

respectively. For example, we wrote
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b′(y)xy2u = b′(y)xyuyu ∈ O2O1O1O1,

because b′(y) ∈ O2, x ∈ O1, yu ∈ O1. First, we show that the term

b′(y)yxuyv in (3.8) is m-ignorable. Let

P1 := [b′(y)] = B′(Y ), P2 := [y(u, v)], P3 := [xu(u, v)], P4 := [yv(u, v)].

Then it is sufficient to show the m-th coefficient

Q(k, l) := (P1P2P3P4)(k, l) (k + l = m)

depends only on X(s, t) (s+ t < m+ 1) and Y (s, t) (s+ t < m− 1). Since

b′(y) ∈ O2, the highest order of Y (s, t) in Q(k, l) by the contribution of the

first factor P1 is computed by (cf. (3.5))

⟨Y |B′(Y )|B′(Y ), Y,Xu, Yv⟩m = ⟨B′(Y )|B′(Y ), Y,Xu, Yv⟩m
= (m− 1− 0− 0)− 1 = m− 2.

Here we used the fact that y ∈ O1, xu ∈ O0 and yv ∈ O0. Since m − 2 is

less than m − 1, B′(Y ) does not effect the leading term (cf. Lemma 1.17).

Similarly, we have that

⟨Y |B′(Y ), Y,Xu, Yv⟩m = m− 2− 0− 0 = m− 2 (< m− 1),

⟨X;Xu|B′(Y ), Y,Xu, Xv⟩m = (m− 2− 1− 0) + 1 = m− 2 (< m+ 1),

⟨Y ;Yv|B′(Y ), Y,Xu, Yv⟩m = (m− 2− 1− 0) + 1 = m− 2 (< m− 1),

and we can conclude that b′(y)yxuyv is an m-ignorable term. Similarly, one

can also prove that other three terms in (3.8) are also m-ignorable.

We next consider the term b′(y)xy2v in (3.9). We have

⟨Y |B′(Y )|B′(Y ), X, Y, Yv, Yv⟩m = (m− 1− 0− 0)− 1 = m− 2 (< m− 1).

Hence, the coefficients of Y appeared in B′(Y ) do not effect the leading

term. Similarly, the facts

⟨X|B′(Y ), X, Yv, Yv⟩m = m− 2− 0− 0 = m− 2 (< m),

⟨Y ;Yv|B′(Y ), X, Yv, Yv⟩m = (m− 2− 1− 0) + 1 = m− 2 (< m− 1),
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imply that the term b′(y)xy2v is an m-ignorable term. Similarly, other two

terms in (3.9) are also m-ignorable.

Finally, we consider the term b′(y)2y2v in (3.10). Since

⟨Y |B′(Y )|B′(Y ),B′(Y ), Yv, Yv⟩m = (m− 2− 0− 0)− 1 = m− 3 (< m− 1),

the coefficients of Y appearing in b′(Y ) do not effect the leading term. We

have

⟨Y ;Yv|B′(Y ),B′(Y ), Yv, Yv⟩m = (m− 2− 2− 0) + 1 = m− 3 (< m− 1),

and can conclude that b′(y)2y2v is an m-ignorable term. Similarly, other two

terms in (3.10) are also m-ignorable. □

The following terms

x2y2u (in fu · fu), (3.11)

xuxvy
2, xyxvyu (in fu · fv), (3.12)

xyxvyv, x2
v, x2

vy
2 (in fv · fv) (3.13)

appear in (1.18), (1.19) and (1.20). We show the following:

Proposition 3.3 For each m ≥ 3, the terms given in (3.11), (3.12) and

(3.13) are all m-ignorable terms.

Proof. Since x2y2u ∈ O1O1O1O1, we have

⟨X|X,X, Yu, Yu⟩m = m− 1− 1− 1 = m− 3 (< m+ 1),

⟨Y ;Yu|X,X, Yu, Yu⟩m = (m− 1− 1− 1) + 1 = m− 2 (< m− 1).

This implies that x2y2u is m-ignorable. On the other hand, both xuxvy
2 and

x2
vy

2 consist of two derivatives of x and y2, and the former term has lower

total order, so if we show xuxvy
2 is m-ignorable, then so is x2

vy
2. In fact,

since xuxvy
2 ∈ O0O3O1O1, we have

⟨X;Xu|Xu, Xv, Y, Y ⟩m ≤ ⟨X;Xv|Xu, Xv, Y, Y ⟩m

= m− 0− 1− 1 + 1 = m− 1 (< m+ 1),
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⟨Y |Xu, Xv, Y, Y ⟩m = m− 0− 3− 1 = m− 4 (< m− 1).

So xuxvy
2 is m-ignorable. We next observe that both xyxvyu and xyxvyv

consist of xy and derivatives of x, y. The term xyxvyv has lower total order.

So if it ism-ignorable, then so is xyxvyu. The fact that xyxvyv ∈ O1O1O3O0

is m-ignorable follows from the following computations:

⟨X|X,Y,Xv, Yv⟩m = ⟨Y |X,Y,Xv, Yv⟩m

= m− 1− 3− 0 = m− 4 (< m− 1),

⟨X;Xv|X,Y,Xv, Yv⟩m = (m− 1− 1− 0) + 1 = m− 1 (< m+ 1),

⟨Y ;Yv|X,Y,Xv, Yv⟩m = (m− 1− 1− 3) + 1 = m− 4 (< m− 1).

Finally, x2
v ∈ O3O3 is m-ignorable because

⟨X;Xv|Xv, Xv⟩m = m− 2 (< m+ 1). □

4. The existence of the formal power series solution

We fix a germ of the Whitney metric dσ2 and b ∈ C∞
0 (R). Take a

local coordinate system (u, v) satisfying (1.18), (1.19) and (1.20). Like as in

the previous section, we suppose that the existence of f(u, v) satisfying the

properties of Lemma 1.14.

4.1. Leading terms of (fu · fu), (fu · fv) and (fv · fv)

Applying the computations in the previous section, we prove the follow-

ing:

Proposition 4.1 Let m be an integer greater than 2, and k, l non-negative

integers such that

k + l = m ≥ 3. (4.1)

Then the m-th order terms of the equalities (1.33) reduce to the following

relations:

E(k, l) ≡m 2
(
X(k + 1, l) + (k + 1)lY (k, l − 1)

+ ka2,0Z(k, l) + la1,1Z(k + 1, l − 1)
)
, (4.2)
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F(k, l) ≡m X(k, l + 1) +mkY (k − 1, l) + ka2,0Z(k − 1, l + 1)

+ma1,1Z(k, l) + la0,2Z(k + 1, l − 1), (4.3)

G(k, l) ≡m 2
(
k(k − 1)Y (k − 2, l + 1)

+ ka1,1Z(k − 1, l + 1) + la0,2Z(k, l)
)
, (4.4)

where

Y (m,−1) = Y (−1,m) = Y (−2,m+ 1) = Y (m+ 1,−2)

= Z(−1,m+ 1) = Z(m+ 1,−1) = 0.

Proof. Removing the m-ignorable terms (3.2) and (3.11) from [fu · fu] in
(1.18), we have

[fu · fu] ≡m L1, L1 := X2
u + Y 2X2

u + 2XYXuYu + Z2
u.

Similarly, we get from (1.19), (1.20), (3.2) and (3.11) that

[fu · fv] ≡m L2, [fv · fv] ≡m L3,

where

L2 := XuXv +XYXuYv +X2YuYv + ZuZv, L3 := X2Y 2
v + Z2

v .

The first term of L1 is X2
u. We can write X = u+ X̃ (X̃ ∈ O4). Since

⟨X̃; X̃u|X̃u, X̃u⟩m = m− 2 (< m+ 1),

we have

X2
u = (1 + X̃u)

2 ≡m 2X̃u

and

X2
u(k, l) ≡m 2X̃u(k, l) ≡m 2Xu(k, l) = 2X(k + 1, l)

(k + l = m ≥ 3), (4.5)

where we have applied Lemma 2.1. The second term of L1 is Y 2X2
u. Since
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⟨X;Xu|Y, Y,Xu, Xu⟩m = m− 1− 1− 0 + 1 = m− 1 (< m+ 1)

and

⟨Y |Y, Y,Xu, Xu⟩m = m− 1− 0− 0 = m− 1,

the m-th order terms of Y 2X2
u might not be m-ignorable. In fact, it can be

written in terms of the (m − 1)-st order coefficients of Y as follows. Since

Xu = 1+ X̃u (X̃u ∈ O3), we have Y
2X2

u ≡m Y 2. Since Y = v+ Ỹ (Ỹ ∈ O2)

and ⟨Ỹ |Ỹ , Ỹ ⟩m = m − 2 (< m − 1), Ỹ 2 is an m-ignorable term. Thus, we

have

Y 2 ≡m v2 + 2vỸ + Ỹ 2 ≡m 2vỸ ,

and so

(Y 2X2
u)(k, l) ≡m 2(vỸ )(k, l) ≡m 2(vY )(k, l) ≡m 2lY (k, l − 1), (4.6)

where we have applied Corollary 2.4. We examine the third term XYXuYu

of L1. Since

⟨X|X,Y,Xu, Yu⟩m = m− 1− 0− 1 = m− 2 (< m+ 1),

⟨Y |X,Y,Xu, Yu⟩m = m− 1− 0− 1 = m− 2 (< m− 1),

⟨X;Xu|X,Y,Xu, Yu⟩m = (m− 1− 1− 1) + 1 = m− 2 (< m+ 1),

⟨Y ;Yu|X,Y,Xu, Yu⟩m = (m− 1− 1− 0) + 1 = m− 1,

the m-th order terms of XYXuYu can be written in terms of the coefficients

of Yu modulo Am−1. Thus

XYXuYu = (u+ X̃)(v + Ỹ )(1 + X̃u)Yu ≡m uvYu

and

(XYXuYu)(k, l) ≡m (uvYu)(k, l) = klYu(k−1, l−1) ≡m klY (k, l−1). (4.7)

The fourth term of L1 is Z2
u. Since Z2

u ∈ O1O1 (cf. (1.36)), we have

⟨Z;Zu|Zu, Zu⟩m = (m− 1) + 1 = m.
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Hence the m-th order terms of Z2
u can be written in terms of the coefficients

of Zu modulo Am−1. If we write (cf. (1.36))

Z =
1

2
(a2,0u

2 + 2a1,1uv + a0,2v
2) + Z̃ (Z̃ ∈ O3),

then Z̃2
u is an m-ignorable term, and

Z2
u ≡m (a2,0u+ a1,1v + Z̃u)

2 ≡m 2
(
a2,0uZ̃u + a1,1vZ̃u

)
.

Since Z(k, l) = Z̃(k, l) for k + l ≥ 3, we have

Z2
u(k, l) ≡m 2a2,0(uZu)(k, l) + 2a1,1(vZu)(k, l)

= 2a2,0kZu(k − 1, l) + 2a1,1lZu(k, l − 1)

= 2ka2,0Z(k, l) + 2la1,1Z(k + 1, l − 1). (4.8)

By (4.5), (4.6), (4.7) and (4.8), we have (4.2).

We next prove (4.3). Since

⟨X;Xu|Xu, Xv⟩m = m− 3 + 1 = m− 2 (< m+ 1),

⟨X;Xv|Xu, Xv⟩m = m− 0 + 1 = m+ 1,

Xv contributes to the leading term. Thus

XuXv ≡m (1 + X̃u)Xv ≡m Xv

and

(XuXv)(k, l) ≡m Xv(k, l) = X(k, l + 1). (4.9)

On the other hand, since

⟨X|X,Y,Xu, Yv⟩m = m− 1− 0− 0 = m− 1 (< m+ 1),

⟨Y |X,Y,Xu, Yv⟩m = m− 1− 0− 0 = m− 1,

⟨X;Xu|X,Y,Xu, Yv⟩m = (m− 1− 1− 0) + 1 = m− 1 (< m+ 1),

⟨Y ;Yu|X,Y,Xu, Yu⟩m = (m− 1− 1− 0) + 1 = m− 1,



34 A. Honda, K. Naokawa, M. Umehara, and K. Yamada

the coefficients of the factors Y and Yv appear in the leading terms. Thus

XYXuYv ≡m (u+ X̃)(v + Ỹ )(1 + X̃u)(1 + Ỹv)

≡m u(v + Ỹ )(1 + Ỹv) ≡m uvỸv + uỸ

and

(XYXuYv)(k, l) ≡m (uvYv)(k, l) + (uY )(k, l)

≡m klYv(k − 1, l − 1) + kY (k − 1, l)

≡m k(l + 1)Y (k − 1, l). (4.10)

The third term of L2 is X2YuYv. Since

⟨X|X,X, Yu, Yv⟩m = m− 1− 1− 0 = m− 2 (< m+ 1),

⟨Y ;Yu|X,X, Yu, Yv⟩m = m− 1− 1− 0 + 1 = m− 1,

⟨Y ;Yv|X,X, Yu, Yv⟩m = m− 1− 1− 1 + 1 = m− 2 (< m− 1),

only the factor Yu affects the computation of the leading term. So we have

X2YuYv ≡m (u+ X̃)2Yu(1 + Ỹv) ≡m u2Yu

and

(X2YuYv)(k, l) ≡m (u2Yu)(k, l)

≡m k(k − 1)Yu(k − 2, l) ≡m k(k − 1)Y (k − 1, l). (4.11)

The fourth term of L2 is ZuZv ∈ O1O1. Since

⟨Z;Zu|Zu, Zv⟩m = ⟨Z;Zv|Zu, Zv⟩m = m− 1 + 1 = m,

both Zu and Zv contribute to the leading terms, and

ZuZv = (a2,0u+ a1,1v + Z̃u)(a1,1u+ a0,2v + Z̃v)

≡m (a1,1u+ a0,2v)Z̃u + (a2,0u+ a1,1v)Z̃v.

So we have
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(ZuZv)(k, l) ≡m

(
(a1,1u+ a0,2v)Zu

)
(k, l) +

(
(a2,0u+ a1,1v)Zv

)
(k, l)

≡m ka1,1Z(k, l) + la0,2Z(k + 1, l − 1)

+ ka2,0Z(k − 1, l + 1) + la1,1Z(k, l)

= ka2,0Z(k − 1, l + 1) +ma1,1Z(k, l) + la0,2Z(k + 1, l − 1).

(4.12)

By (4.9), (4.10), (4.11) and (4.12), we obtain (4.3).

Finally, we consider L3. The first term of L3 is X2Y 2
v . Since

⟨X|X,X, Yv, Yv⟩m = m− 1− 0− 0 = m− 1 (< m+ 1),

⟨Y ;Yv|X,X, Yv, Yv⟩m = m− 1− 1− 0 + 1 = m− 1,

the coefficients of Yv affect the leading term of X2Y 2
v . We have

(X2Y 2
v ) ≡m (u+ X̃)2(1 + Ỹv)

2 ≡m 2u2Ỹv

and

(X2Y 2
v )(k, l) ≡m 2

(
u2Yv

)
(k, l) ≡m 2k(k − 1)Y (k − 2, l + 1). (4.13)

The second term of L3 is Z2
v . Since

Z2
v ≡m (a1,1u+ a0,2v + Z̃v)

2 ≡m 2(a1,1u+ a0,2v)Z̃v,

we have

Z2
v (k, l) ≡m 2

(
(a1,1u+ a0,2v)Zv

)
(k, l)

≡m 2ka1,1Z(k − 1, l + 1) + 2la0,2Z(k, l). (4.14)

By (4.13) and (4.14), we obtain (4.4). □

4.2. Proof of Proposition 1.20

We prove the assertion by induction. By Lemma 1.21, we have already

determined the coefficients

X̂(i, l) (0 ≤ i+l ≤ 3), Ŷ (j, l) (0 ≤ j+l ≤ 1), Ẑ(k, l) (0 ≤ k+l ≤ 2).
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For the sake of simplicity, we set

X̂i := X̂(i,m− i+1), Ŷj := Ŷ (k,m− j− 1), Ẑk := Ẑ(k,m−k). (4.15)

We say that W = X̂i, Ŷj , Ẑk is m-fixed if it is uniquely expressed in terms

of

X̂(i, l) (0 ≤ i+ l ≤ m),

Ŷ (j, l) (0 ≤ j + l ≤ m− 2),

Ẑ(k, l) (0 ≤ k + l ≤ m− 1),

E(i, l), F(i, l), G(i, l) (0 ≤ i+ l ≤ m),

using (4.2), (4.3) and (4.4). To prove the assertion, it is sufficient to prove

that

X̂i (i = 0, . . . ,m+ 1), Ŷj (j = 0, . . . ,m− 1), Ẑk (k = 0, . . . ,m)

are all m-fixed. (We remark that this conclusion is equivalent that the

matrix Ωm as in (1.49) is non-singular, although we do not use Ωm in this

proof explicitly.) By (4.2), (4.3) and (4.4), we can write

X̂k+1 + (k + 1)(m− k)Ŷk + ka2,0Ẑk + (m− k)a1,1Ẑk+1 = Ẽk, (4.16)

X̂k +mkŶk−1 + ka2,0Ẑk−1 +ma1,1Ẑk + (m− k)a0,2Ẑk+1 = F̃k, (4.17)

k(k − 1)Ŷk−2 + ka1,1Ẑk−1 + (m− k)a0,2Ẑk = G̃k, (4.18)

for k = 0, . . . ,m, where Ẽk, F̃k and G̃k are all previously m-fixed terms, by

the inductive assumption.

If we set k = 0 in (4.18), we have

Ẑ0 =
G̃0

ma0,2
, (4.19)

where we used the fact that a0,2 > 0. If we next set k = 1 in (4.18), then

we have

a1,1Ẑ0 + (m− 1)a0,2Ẑ1 = G̃1
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and

Ẑ1 =
G̃1 − a1,1Ẑ0

(m− 1)a0,2
. (4.20)

Hence Ẑ1 is m-fixed (cf. (4.19)). On the other hand, (4.18) for 2 ≤ k ≤ m

can be rewritten as

(1 + k)(2 + k)Ŷk + a1,1(2 + k)Ẑk+1 + a0,2(−2− k+m)Ẑk+2 = G̃k+2 (4.21)

for k = 0, . . . ,m− 2. If we set k = 0 in (4.17), then we have

X̂0 +ma1,1Ẑ0 +ma0,2Ẑ1 = F̃0. (4.22)

Thus X̂0 can be m-fixed. On the other hand, (4.17) for 1 ≤ k ≤ m can be

rewritten as

X̂k+1 +m(k + 1)Ŷk + (k + 1)a2,0Ẑk +ma1,1Ẑk+1 + (m− k − 1)a0,2Ẑk+2

= F̃k+1, (4.23)

where k = 0, . . . ,m− 1. Subtracting (4.16) from (4.23), we have

k(k+1)Ŷk +a2,0Ẑk +ka1,1Ẑk+1+(m−k− 1)a0,2Ẑk+2 = F̃k+1−Ẽk (4.24)

for k = 0, . . . ,m− 1. By (4.24) and (4.21), we have

Ẑk+2 =
1

a0,2(2m− k − 2)

(
−a2,0(2 + k)Ẑk + (k + 2)(F̃k+1 − Ẽk)− kG̃k+2

)
(4.25)

for k = 0, . . . ,m− 2. Thus Ẑ2, . . . , Ẑm are m-fixed. Then Ŷ0, . . . , Ŷm−1 are

m-fixed by (4.24), and X̂1, . . . , X̂m are also m-fixed by (4.23). Finally, if we

set k = m in (4.16), then we have

X̂m+1 +ma2,0Ẑm = Ẽm, (4.26)

and X̂m+1 is m-fixed. We then get the desired m-th formal solution
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fm =
(
Xm+1,Xm+1Ym−1 + Bm+1(Ym−1),Zm

)
satisfying (1.33), since the terms Ẽk, F̃k and G̃k as in (4.16), (4.17) and (4.18)

can be computed using the coefficients of Xm, Ym−2, Zm−1 and E ,F ,G.
The uniqueness of fm and the relation πm−1(f

m) = πm−1(f
m−1) are now

obvious from our construction.

Remark 4.2 If needed, using the above proof, we can explicitly write

down the lower order terms Ẽk, F̃k and G̃k as in (4.16), (4.17) and (4.18),

and write down the non-singular matrix Ωm and the vector ηm, that would

give a recursive formula for the highest order coefficients of the m-th formal

solution fm in terms of its lower order coefficients for each m ≥ 3. However

we omit such formulas here, as they are complicated.

5. New intrinsic invariants of cross caps

Let W be the set of germs of Whitney metrics at their singularities.

Two metric germs dσ2
i (i = 1, 2) in W are called isometric if there exists a

local diffeomorphism germ φ such that dσ2
2 is the pull-back of dσ2

1 by φ. A

map

I : W → R

is called an invariant of Whitney metrics if it takes a common value for

all metrics in each isometric class. For a cross cap singularity, we can take

a canonical coordinate system (x, y) such that f(x, y) is expressed as (cf.

(1.2))

f(x, y) = (x, xy + b(y), z(x, y)),

[b(y)] =

∞∑
i=3

bi
i!
yi, [z(x, y)] =

∞∑
j+k≥2

aj,k
j!k!

xjyk. (5.1)

As shown in [5, Theorem 6], the coefficients a2,0, a1,1 and a0,2 are intrinsic

invariants. By (1.11), (1.12) and (1.13), one can observe that these three

invariants are determined by the second order jets of E,F and G. So one

might expect that the coefficients of the Taylor expansions of the functions

E,F,G are all intrinsic invariants of cross caps. However, for example,
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Evvv(0, 0) = 6a1,1a1,2

is not an intrinsic invariant of f , since a1,2 is changed by an isometric de-

formation of cross caps (cf. [5, Theorem 4]). In this section, we construct a

family of intrinsic invariants {αi,j}i+j≥2 of Whitney metrics (α2,0, α1,1 and

α0,2 have been already defined in [5]). When the metric is induced from a

cross cap expressed by the canonical coordinate, then a2,0, a1,1 and a0,2 as

in (5.1) coincide with α2,0, α1,1 and α0,2 for the induced Whitney’s metric.

Let dσ2 be a Whitney metric defined on a 2-manifold M2, and p ∈ M2 a

singular point of the metric. Applying Theorem 1.11 for b = 0, there exists

a C∞ map germ f into R3 defined on a neighborhood U of p having a cross

cap singularity at p satisfying the following two properties:

(1) the first fundamental form dσ2
f of f is jet-equivalent (cf. Definition 1.10)

to dσ2 at p,

(2) the characteristic function of f is a flat function at p, that is, the Taylor

expansion at p is the zero power series.

If f is real analytic, it is a normal cross cap (cf. Definition 1.3). However,

we do not assume here the real analyticity of dσ2
f and f . Taking the normal

form of f , we may assume that f is expressed as

f(x, y) = (x, xy, z(x, y)),

where

x = x(u, v), y = y(u, v), z = z(x, y)

are smooth functions defined on a neighborhood of p = (0, 0). For each

pair of integers (i, j) satisfying i+ j ≥ 2 and i, j ≥ 0, there exists a unique

assignment

dσ2 7→ αdσ2

i,j ∈ R

such that

[z] =

∞∑
n=2

n∑
i=0

αdσ2

i,n−i

i!(n− i)!
xiyn−i.
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So we may regard the series

α(dσ2, p) := {αdσ2

i,j }i+j≥2, i,j≥0

as a family of invariants of dσ2. By Theorem 1.11, we get the following

assertion:

Theorem 5.1 Let dσ2
1 and dσ2

2 be Whitney metrics on M2 having a sin-

gularity at the same point p ∈ M2. Then the two metrics are jet-equivalent

if and only if α(dσ2
1 , p) = α(dσ2

2 , p).

In other words, α is a family of complete invariants distinguishing the

jet-equivalence classes of Whitney metrics at p. This family of invariants

also induces a family of intrinsic invariants for cross caps in an arbitrarily

given Riemannian 3-manifold (N3, g) as follows. Let f : M2 → N3 be a C∞

map which admits only cross cap singularities. Then the induced metric

dσ2
f gives a Whitney metric. Let p ∈ M2 be a cross cap singularity of f .

Then we set

A(f, p) := α(dσ2
f , p),

which can be considered as a family of intrinsic invariants of a germs of

cross cap singularities. When (N3, g) is the Euclidean 3-space, we can give

an explicit algorithm to compute the invariants as follows:

1. Take the (m+ 1)-st (m ≥ 2) canonical coordinate system (u, v) centered

at p, that is, f has the following Taylor expansion at p = (0, 0):

[f ] =

(
u, uv +

m+1∑
n=3

bnv
n

n!
,

m+1∑
n=2

n∑
i=0

ai,n−i

i!(n− i)!
uivn−i

)
+Om+2(u, v).

Such a coordinate system can be taken using Fukui-Hasegawa’s algorithm

given in [2].

2. Using this coordinate system (u, v), we can determine the coefficients

of the following expansion up to (m + 1)-st order terms because of the

expression f = (u, 0, 0) +O2(u, v):
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[E] =
∑

i+j≤m+1

E(i, j)

i!j!
uivj +Om+2(u, v),

[F ] =
∑

i+j≤m+1

F (i, j)

i!j!
uivj +Om+2(u, v),

[G] =
∑

i+j≤m+1

G(i, j)

i!j!
uivj +Om+2(u, v),

where dσ2
f = E du2 + 2F du dv +Gdv2.

3. Setting b = 0, we compute

X(k, l) (0 ≤ k + l ≤ m+ 2),

Y (k, l) (0 ≤ k + l ≤ m),

Z(k, l) (0 ≤ k + l ≤ m+ 1),

according to the algorithm given in the proof of Theorem 1.11.

4. We formally set

u :=
∑

i+j≤m

U(i, j)

i!j!
xiyj +Om+1(x, y),

v :=
∑

i+j≤m

V (i, j)

i!j!
xiyj +Om+1(x, y),

and substitute them into the expansions

x =
∑

i+j≤m

X(i, j)

i!j!
uivj +Om+1(u, v),

y =
∑

i+j≤m

Y (i, j)

i!j!
uivj +Om+1(u, v).

Then we can determine all of the coefficients

U(k, l), V (k, l) (0 ≤ k + l ≤ m).
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5. Using them, we can finally determine all of the coefficients of the expan-

sion

[Z] =
∑

i+j≤m

Ai,j

i!j!
xiyj +Om+1(x, y), (5.2)

where {Ai,j}i+j≥2 = A(f, p).

However, the uniqueness of the expression (5.2) was already shown, and

one can alternatively compute {Ai,j}i+j≤m via any suitable method. We

remark that the normal cross cap shown in the right-hand side of Figure 2

is drawn using the invariants Ai,j for 0 ≤ i+ j ≤ 11.

One can get the following tables of intrinsic invariants;

A2,0 = a2,0, A1,1 = a1,1, A0,2 = a0,2,

A3,0 = −
b3a

2
1,1a2,0 + b3a2,0 − 2a3,0a

2
0,2

2a20,2
, A2,1 = −b3a1,1a2,0 − 6a0,2a2,1

6a0,2
,

A1,2 =
b3a

2
1,1 + 2a0,2a1,2 + b3

2a0,2
, A0,3 =

3b3a1,1 + 2a0,3
2

.

The numerators of the above invariants have been computed in [5]. The

authors also computed the fourth order invariants Ai,j (i+j = 4), which are

more complicated. For example, A0,4 has the simplest expression amongst

them, which is given by

A0,4 =

4a0,2(4b4a1,1 + 3a0,4)

+ 3b3
(
b3(15a

2
1,1 − 4a0,2a2,0 + 7) + 4(a0,3a1,1 + 4a0,2a1,2)

)
12a0,2

.
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