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A characterization for tropical polynomials

being the minimum finishing time of project networks
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Abstract. A tropical polynomial is called R-polynomial if it can be realized as the

minimum finishing time of a project network. R-polynomials satisfy the term extend-

ability condition, and correspond to simple graphs. We give a characterization of

R-polynomials in terms of simple graphs.
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1. Introduction

Max-plus algebra (or tropical algebra) is the semiring with the operations
‘max’ as the addition and ‘+’ as the multiplication. The algebra appears in
various fields of mathematics and other studies, such as algebraic dynamical
systems [1], computer science [6], and phylogenetics [4]. The algebra is also
effectively used to analyze discrete event systems, such as project networks
[3] and railway networks [2].

In this paper, we treat project networks. A project network consists of
some activities, where each activity can be started after all the preceding
activities have finished. We may regard the set of activities as an ordered
set. By taking the Hasse diagram, a project network is represented as a
directed acyclic graph. Each activity is endowed with a non-negative real
number ti, called time cost. We may consider that the time cost of an activity
represents the time to complete the activity. The minimum finishing time of
a project network is the minimum time taken for finishing all the activities
in that network. The minimum finishing time is represented by a tropical
polynomial of t1, . . . , tn.

A tropical polynomial is called realizable polynomial or R-polynomial if
it can be realized as the minimum finishing time of a project network. An
R-polynomial satisfies the following three conditions (Proposition 2 in [3]):
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(1) the degree on each variable is exactly one, (2) the coefficient of each term
is a unity and (3) no term is divisible by any other terms (‘indivisibility’).
A tropical polynomial satisfying those conditions is called prerealizable poly-
nomial or P -polynomial. A P -polynomial is not always an R-polynomial.
A simplest example of a P -polynomial which is not an R-polynomial is
t1t2 + t2t3 + t3t1 ([3]).

A characterization of R-polynomials using poset is known (Proposition
2.3), but it is not effective for judging whether a given P -polynomial is an R-
polynomial. In this paper, we introduce another characterization by graph
theory. We do this by two steps. We first show that every R-polynomial
satisfies a term extendability condition, which we will define later, and prove
the following theorem.

Theorem 1.1 There is a one-to-one correspondence between the set of
P -polynomials f(t) = f(t1, . . . , tn) having term extendability and the set of
simple graphs with the vertex set [n]. Via this correspondence, two simple
graphs are isomorphic if and only if the corresponding P -polynomials coin-
cide up to a permutation of variables.

Secondly, by this theorem, we will give a characterization for R-
polynomials in the context of graph theory. The following is our main
theorem.

Theorem 1.2 Let f(t) be a P -polynomial of degree d with the term ex-
tendability. Then f(t) is an R-polynomial if and only if there is a vertex
coloring of the term graph TG(f) with the color set {1, . . . , d} such that
every increasing path of three vertices is a clique of TG(f).

By this theorem, we can give some examples of judging whether a given
polynomial is an R-polynomial.

As for P -polynomials, we have a correspondence between the set of
P -polynomials and the set of abstract complexes.

2. Project networks

In this section, we recall the relation between project networks and
tropical algebra. For detail of this section, see [3].

Formally, a project network is an acyclic directed graph with no short-
cuts, where a graph is said with no short-cuts if the following condition
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Figure 1. project network

holds: if there are two distinct paths from activity a to activity b, then both
paths consist of more than one arrow.

Proposition 2.1 (Proposition 1 in [3]) Let X be a finite set. There is a
one-to-one correspondence between the set of partial orders on X and the
set of simple directed graphs with vertex set X without cycles or short-cuts.

The correspondence in Proposition 2.1 is given as follows. For a given
partial order of X, we take its Hasse diagram as the corresponding graph.
For a given project network with the vertex set X, we define the correspond-
ing partial order on X so that, for each arrow, its head is greater than its
tail.

Each activity is endowed with a non-negative real number ti, called
time cost. We may consider that the time cost of an activity represents the
time to complete the activity. The minimum finishing time of a project
network is the minimum time taken for finishing all the activities in that
network. Then the minimum finishing time is a function of t1, . . . , tn, which
has following properties.

Proposition 2.2 (Proposition 2 in [3]) The minimum finishing time
f(t) = f(t1, . . . , tn) can be written as a tropical polynomial of t1, . . . , tn
satisfying the following three conditions:

(1) the degree on each variable is exactly one,
(2) the coefficient of each term is a unity,
(3) no term is divisible by any other terms. (‘indivisibility’)

A tropical polynomial is called a realizable polynomial or an R-
polynomial if it can be obtained as the minimum finishing time of a project
network. Also, a tropical polynomial is called a prerealizable polynomial or
a P -polynomial if it satisfies the condition (1)–(3). A P -polynomial is not
always an R-polynomial.
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For a set of variables {ti}i∈Λ and a subset I ⊂ Λ, we denote the
monomial

∏
i∈I ti by tI . We know the following characterization of R-

polynomials.

Proposition 2.3 (Proposition 3 in [3]) Let f(t) =
∑

I∈I tI be a tropical
polynomial in n variables. Then f(t) is an R-polynomial if and only if there
exist a poset structure on the index set [n] such that

I is a maximal totally ordered subset ⇔ tI is a term of f(t).

If we want to check whether a given P -polynomial is an R-polynomial
by this characterization, for example, we may list up the all poset structure
on [n]. However, the calculation amount is not realistic. Thus we introduce
another approach in the later section.

3. Term extendability

In this section, we introduce our key condition, called term extendability,
which holds for every R-polynomial. For a given P -polynomial, checking for
term extendability is easier than checking whether the polynomial is an
R-polynomial. Many P -polynomials are excluded from the candidates for
R-polynomials by restricting via this condition. Furthermore, in the next
section, we will construct a correspondence between P -polynomials with
term extendability and simple graphs. The correspondence is important for
our new characterization. Unfortunately, there is a P -polynomial that has
term extendability but is not an R-polynomial. We will see some examples
of such polynomials in this section.

In the later of this section, we will estimate the number of terms of R-
polynomials by using term extendability condition. In addition, we will show
that if the number of terms is smaller than 5, then the term extendability
condition is sufficient for a P -polynomial to be an R-polynomial.

First, we give a definition and a proposition. Let f(t) = f(t1, . . . , tn)
be a P -polynomial. For i, j ∈ [n], we say that i and j are comparable in
f(t) if f(t) has a term which is divisible by titj . Note that if f(t) is an R-
polynomial, then i and j are comparable if and only if i and j are comparable
in the usual sense in the poset of the corresponding project network.

Proposition 3.1 Let f(t) = f(t1, . . . , tn) be an R-polynomial and I ⊂ [n]
be a subset. Suppose that any two elements of I are comparable. Then f(t)
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has a term which is divisible by tI .

Proof. Let N be the corresponding project network to f(t). Since any
two distinct elements of I are comparable, the set I forms a totally ordered
vertex set of N . Then there is a maximal totally ordered vertex set J of N

containing I. Therefore tJ is a term of f(t), which is divisible by tI . ¤

Now we define the term extendability. Let f(t) = f(t1, . . . , tn) be a
P -polynomial. Then f(t) has term extendability if, for any subset I ⊂ [n]
such that any two distinct elements of I are comparable in f(t), there is a
term of f(t) divisible by tI .

Proposition 3.1 means that every R-polynomial has term extendability.

Example 3.2 The P -polynomial of the form (t1t2 + t2t3 + t3t1)f(t)+g(t)
(f(t), g(t) be P -polynomials) does not have term extendability. Indeed,
suppose that h(t) := (t1t2 + t2t3 + t3t1)f(t) + g(t) has term extendability.
Let tI be a term of f(t). (If f(t) is constant, let I = ∅). Consider the set
I ′ := I ∪ {1, 2, 3}. Any two element of I ′ are comparable, so h(t) has a
term divisible by tI′ . Since h(t) also has a term tIt1t2, this contradicts the
indivisibility for h(t). We conclude that h(t) is not an R-polynomial.

There is an example that h(t)f(t)+g(t) has term extendability although
h(t) does not have.

Example 3.3 The polynomial h(t) = t1t2t4 + t1t3t5 + t2t3t6 does not
satisfy term extendability for I = {1, 2, 3}, while the polynomial h(t) +
t1t2t3 = t1t2t4 + t1t3t5 + t2t3t6 + t1t2t3 satisfies term extendability.

This polynomial is in fact not an R-polynomial, but h(t) + t1t2t3 +
t2t4t6 = t1t2t4 + t1t3t5 + t2t3t6 + t1t2t3 + t2t4t6 is an R-polynomial. We will
show that in Example 4.12.

Next we estimate the number of terms of R-polynomials.

Proposition 3.4 Let f(t) be a P -polynomial having term extendability.
If tI , tJ and tK are distinct three terms of f(t), then I ∪ J 6= I ∪K.

Proof. Suppose that I ∪ J = I ∪K. We use term extendability for the set
J ∪K. To do this we show that every two distinct elements of J ∪K are
comparable.

Let i, j ∈ J ∪ K. If i, j ∈ J or i, j ∈ K, then i and j are obviously
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comparable. If i ∈ J rK and j ∈ K r J , we have i ∈ I ∪ J = I ∪K. Then
i ∈ I. Similarly, j ∈ I. Hence i and j are comparable.

By the term extendability, f(t) has a term divisible by tJ∪K . Since
J ( J ∪K, this contradicts the indivisibility for f(t). ¤

Corollary 3.5 Let f(t) = f(t1, . . . , tn) be a P -polynomial having term
extendability. Let d be the degree of f(t). Then f(t) has at most∑min{d,n−d}

i=0

(
n−d

i

)
terms.

Proof. Let tI0 be a term of f(t) of degree d. Consider the map tI 7→ I0 ∪ I

from the set of terms of f(t) to the set {J ⊂ [n] | I0 ⊂ J and #J ≤ 2d}. By
Proposition 3.4, this map is injective. Then the number of terms of f(t) is
at most #{J ⊂ [n] | I0 ⊂ J and #J ≤ 2d} =

∑min{d,n−d}
i=0

(
n−d

i

)
. ¤

Note that this estimate is best bound if min{d, n − d} = n − d, i.e.
2d ≥ n. Indeed, in that case, the number of terms of f(t) is at most∑n−d

i=0

(
n−d

i

)
= 2n−d. It can be attained by the minimum finishing time of

the project network in Figure 3.

Figure 2.

Proposition 3.6 Let f(t) = f(t1, . . . , tn) be a P -polynomial. If
deg(f(t)) ≥ n − 2, then f(t) is an R-polynomial if and only if f(t) has
term extendability.

Proof. If deg(f(t)) = n, we have f(t) = t1 · · · tn and so f(t) is an R-
polynomial.

If deg(f(t)) = n − 1, then f(t) is a binomial by Corollary 3.5. Note
that f(t) is not a monomial because every variable appears at least once.
Let f(t) = tI + tJ . Then f(t) is the minimum finishing time of the project
network in Figure 3, so f(t) is an R-polynomial.

If deg(f(t)) = n−2, we may assume that f(t) has a term t[n−2]. By the
indivisibility, the term other than t[n−2] is divisible by tn−1 or tn. Moreover,
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Figure 3.
Figure 4.

there is at most one term of the form tItn−1 (I ⊂ [n− 2]). Indeed, if tItn−1

and tJ tn−1 (I, J ⊂ [n− 2]) are the terms of f(t), we have [n− 2]∪ (I ∪{n−
1}) = [n− 2]∪ (J ∪{n− 1}), which contradicts Proposition 3.4. It is similar
for the term of the form tItn and tItn−1tn (I ⊂ [n − 2]). Thus there are
following 4 cases:

If f(t) is of the form t[n−2] + tItn−1tn (I ⊂ [n − 2]), then f(t) is a
binomial. Therefore we can show that f(t) is an R-polynomial by the same
argument with the case deg(f(t)) = n− 1.

If f(t) is of the form t[n−2] + tItn−1 + tJ tn (I, J ⊂ [n− 2]), then f(t) is
the minimum finishing time of the project network in Figure 4. Therefore
f(t) is an R-polynomial.

Suppose f(t) is of the form t[n−2] + tItn−1 + tJ tn−1tn (I, J ⊂ [n − 2]).
By the term extendability, there must be a term of f(t) which is divisible
by tI∪J tn−1. If the term is tJ tn−1tn, we have I ⊂ J , which contradicts the
indivisibility. Thus the term is tItn−1, so we have I ⊃ J . Then f(t) is the
minimum finishing time of the project network in Figure 5. Hence f(t) is
an R-polynomial.

Suppose f(t) is of the form t[n−2] + tItn−1 + tJ tn + tKtn−1tn (I, J,K ⊂
[n− 2]). In the same way with the above case, we have I ⊃ K and J ⊃ K,
and hence I ∩ J ⊃ K. If I ∩ J 6= K, there is i ∈ (I ∩ J)rK. By the term
extendability, there is a term of f(t) which is divisible by titn−1tn. However,
any terms of f(t) are not divisible by titn−1tn. Thus we have I ∩ J = K.
Then f(t) is the minimum finishing time of the project network in Figure
6. Hence f(t) is an R-polynomial. ¤

Corollary 3.7 For n ≤ 4, f(t) is an R-polynomial if and only if f(t) has
term extendability.

Remark 3.8 For n = 5, the polynomial t1t2 + t2t3 + t3t4 + t4t5 + t5t1 is a
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Figure 5. Figure 6.

counterexample. We will show that this polynomial is not an R-polynomial
in Example 4.11.

We remark that we may associate an abstract complex with a P -
polynomial as follows. Let f(t1, . . . , tn) =

∑
I∈I tI be a P -polynomial. Then

the set

{J ⊂ [n] | J is a subset of some I ∈ I}

forms an abstract complex. Conversely, for a given abstract complex
with the vertex set [n], the tropical polynomial

∑
I:maximal face tI is a P -

polynomial. Then the following proposition is clear.

Proposition 3.9 Let Pn be the set of P -polynomials with the variables
t1, . . . , tn and An be the set of abstract complexes with the vertex set [n].
Then the above constructions give bijections between Pn and An, which are
inverse of each other. Moreover, a P -polynomial has term extendability if
and only if the corresponding complex is flag complex, i.e. for any I ⊂ [n],
if {i, j} is a simplex for all i, j ∈ I, then I is a simplex.

4. Term graphs

In this section, we show Theorem 4.7, the main theorem of this paper.
The theorem gives us a characterization for R-polynomials. As a prepara-
tion, we show the following theorem.

Theorem 4.1 There is a one-to-one correspondence between the set of
P -polynomials f(t) = f(t1, . . . , tn) having term extendability and the set of
simple graphs with the vertex set [n]. Via this correspondence, two sim-
ple graphs are isomorphic if and only if the corresponding P -polynomials
coincide up to a permutation of variables.

Remark 4.2 This theorem follows from Proposition 3.9 and a well-known
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fact that there is a bijection between the set of flag complexes and the set
of ‘clique complexes’ (see [5]). Here, we directly construct a bijection in
Theorem 4.1.

First of all, let us associate a simple graph to a given P -polynomial.

Definition 4.3 Let f(t) = f(t1, . . . , tn) be a P -polynomial. We define
the term graph of f(t) as the simple graph TG(f) = (V, E), where V = [n]
is the vertex set and E is the edge set which consists of the pairs that are
comparable in f(t).

It is clear by definition that if tI is a term of f(t), then I forms a clique
in TG(f).

By the following lemma, a P -polynomial f(t) can be reconstructed by
the term graph TG(f) if f(t) has term extendability.

Lemma 4.4 Let f(t) = f(t1, . . . , tn) be a P -polynomial having term ex-
tendability. Then for any subset I ⊂ [n], the monomial tI is a term of f(t)
if and only if the set I is a maximal clique of TG(f).

Proof. We show this by the induction for #I. Let d be the maximum size
of the cliques of TG(f). If #I > d, then I is not a clique of TG(f), and
then tI is not a term of f(t). Thus we may assume #I ≤ d.

We consider the case #I = d at first. If tI is a term of f(t), then I

is a clique of TG(f), and the maximality follows from the definition of d.
Conversely, if I is a maximal clique of TG(f), then any two distinct elements
of I are comparable. Therefore, by the term extendability, f(t) has a term
tI′ which is divisible by tI . Then I ′ is a clique of TG(f) containing I. By
the maximality of I, we have I ′ = I. Hence tI is a term of f(t).

Next we assume that #I < d and the statement holds for any J ⊂ [n]
such that #J > #I. If tI is a term of f(t), then I is a clique of TG(f).
If I is not a maximal clique, then there is a maximal clique I ′ containing
I properly. By the assumption of induction, tI′ is a term of f(t), which
contradicts the indivisibility of f(t). Hence I is maximal. Conversely, if I

is a maximal clique of TG(f), we can show that tI is a term of f(t) by the
proof similar to the above case. ¤

This lemma means that the map f(t) 7→ TG(f) between the two sets in
Theorem 4.1 is injective.

For showing the surjectivity, we construct the inverse map. For a given
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simple graph G with the vertex set [n], we associate the following tropical
polynomial fG;

fG(t) =
∑

I:maximal clique of G

tI .

Lemma 4.5 The polynomial fG(t) has term extendability.

Proof. Let I ⊂ [n] be a subset such that any two distinct elements of I

are comparable in fG(t). Let i and j be distinct elements of I. Since i and
j are comparable, then fG(t) has a term which is divisible by titj . Thus
the original graph G has a clique including i and j, and then i and j are
adjacent in G. Hence any two distinct elements of I are adjacent in G, i.e.
I forms a clique of G. Let I ′ be a maximal clique including I. Then the
term tI′ of fG(t) is divisible by tI . ¤

Proof of Theorem 4.1. By Lemma 4.4 and Lemma 4.5, we obtain a one-to-
one correspondence between the set of P -polynomials f(t) = f(t1, . . . , tn)
having term extendability and the set of simple graphs with the vertex set
[n]. The remaining part is clear. ¤

Finally we describe a characterization for R-polynomials. To do this,
we use vertex colorings of term graphs.

Definition 4.6 Let G be a simple graph. Assume that there is a vertex
coloring of G with the color set {1, . . . , d}. Then the sequence of vertices
v1, . . . , vm of G is an increasing path if vi and vi+1 are adjacent for i =
1, . . . , m− 1 and the colors of them are increasing.

Theorem 4.7 Let f(t) be a P -polynomial of degree d having term ex-
tendability. Then f(t) is an R-polynomial if and only if there is a vertex
coloring of the term graph TG(f) with the color set {1, . . . , d} such that
every increasing path of three vertices is a clique of TG(f).

Remark 4.8 The condition that every increasing path of three vertices
is a clique of TG(f) is equivalent to the condition that every increasing
path is a clique of TG(f). Indeed, assume that every increasing path of
3 vertices is a clique and let v1, . . . , vm is an increasing path. Then, for
k ≤ m − 2, the sequence vk, vk+1, vk+2 forms an increasing path. Thus
{vk, vk+1, vk+2} is a clique, and then vk and vk+2 are adjacent. Hence the
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sequence vk, vk+2, vk+3 forms an increasing path for k ≤ m−3. By repeating
this argument, every pair of two distinct vertices in v1, . . . , vm are adjacent.
It means that {v1, . . . , vm} is a clique.

The length of a path of a project network is the number of arrows in the
path.

Lemma 4.9 Let N be a project network with the vertex set [n]. Let d be
the maximum length of paths of N . We define the subsets V0, . . . , Vd ⊂ [n]
as follows:

V0 := {v ∈ [n] | v is minimal in [n]},

Vk :=
{

v ∈ [n] | v is minimal in [n]r
k−1⋃

l=0

Vl

}
(k = 1, . . . , d).

Then V0, . . . , Vd satisfy the followings:

(1) The set [n] is the disjoint union of V0, . . . , Vd.
(2) Each Vk is non-empty.
(3) For each path of N and each k = 0, . . . , d, the intersection of the path

and Vk is empty or singleton.

Proof. (1) Suppose that the set [n]r
⋃d

k=0 Vk is not empty and let i be a
minimal vertex of [n] r

⋃d
k=0 Vk. We claim that there is a vertex vd ∈ Vd

such that vd < i.
Indeed, let m be the number

max{k | 0 ≤ k ≤ d, there is a vertex j ∈ Vk such that j < i}.

By the minimality of i, i is a minimal vertex of [n] r
⋃m

k=0 Vk. Thus, if
m < d, then i ∈ Vm+1. It contradicts the definition of i. Hence m = d, and
there is a vertex vd ∈ Vd such that vd < i.

By the same proof, there are vertices vd−1, . . . , v0 of N such that vk ∈
Vk (k = 0, . . . , d − 1) and v0 < · · · < vd. Then there is a path through
v0, . . . , vd, i, which contradicts the definition of d.

(2) We denote [n] r
⋃k−1

l=0 Vl by Wk. Let (v0, . . . , vd) be a maximal
path of N and vi ∈ Vki

. We claim that ki < ki+1. Otherwise, we have
vi ∈ Wki

⊂ Wki+1 . Hence vi, vi+1 ∈ Wki+1 and vi < vi+1, but vi+1 is a
minimal vertex of Wki+1 because vi+1 ∈ Vki+1 . It is a contradiction. Thus
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we have 0 ≤ k0 < · · · < kd ≤ d, which means that ki = i. Hence vk ∈ Vk 6= ∅.
(3) is clear. ¤

Proof of Theorem 4.7. If f(t) is an R-polynomial, let N be the correspond-
ing project network with the vertex set [n]. The maximum length of paths
of N is d. Take V1, . . . , Vd as Lemma 4.9 for N . Note that the vertex sets
of TG(f) and N are same, namely, are [n]. For each k = 1, . . . , d, color the
vertices in Vk with k.

Let v1, v2, v3 be an increasing path of TG(f). For k = 1, 2, vk and vk+1

are adjacent in TG(f), so tvk
and tvk+1 are comparable in f(t). Hence vk

and vk+1 are comparable in N . Since the color of vk+1 is greater than that
of vk, we have vk < vk+1. Therefore v1, v2, v3 is totally ordered in N . Then
f(t) has a term divisible by tv1tv2tv3 , which means that the set {v1, v2, v3}
is a clique of TG(f).

Conversely, if there is a vertex coloring of the term graph TG(f) by d

colors 1, . . . , d such that every increasing path is a clique of TG(f), we may
define the partial order of [n] by the following way: For i, j ∈ [n], i and j

are comparable if and only if i and j are adjacent in TG(f). The order of
them is induced by the order of their colors.

Using this order, we can define the project network N on [n]. Let g(t)
be the minimum finishing time of N . We claim that g(t) = f(t). Let I ⊂ [n]
be a subset. Then

tI is a term of g(t)
⇔ I is the vertex set of a maximal path of N

⇔ I is the vertex set of a maximal increasing path of TG(f)
⇔ I forms a maximal clique of TG(f)
⇔ tI is a term of f(t).

Hence g(t) = f(t). ¤

Corollary 4.10 Let f(t) = f(t1, . . . , tn) be a homogeneous P -polynomial
of degree 2. Then f(t) is R-polynomial if and only if the term graph TG(f)
is a bipartite graph.

Example 4.11 The polynomial f(t) = t1t2 + t2t3 + t3t4 + t4t5 + t5t1 is not
an R-polynomial. Indeed, the term graph TG(f) is just a pentagon, which
is not a bipartite graph.
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Figure 7.

Figure 8.

Example 4.12 g(t) := t1t2t4 + t1t3t5 + t2t3t6 + t1t2t3 is not an R-
polynomial, but g(t) + t2t4t6 is an R-polynomial.

Indeed, the term graph TG(g) is the graph in Figure 7. If g(t) is an
R-polynomial, there is a vertex coloring with the colors c1, c2 and c3 (c1 <

c2 < c3). By symmetry, we may assume that the colors of the vertex 1, 2, 3
are c1, c2, c3 respectively. Since the vertex set {1, 2, 6} is not a clique in
TG(g), the sequence (1, 2, 6) is not an increasing path. Then the color of 6
is less than c2, and hence the color of 6 is c1. Similarly the color of 4 is c3.
Therefore the sequence (6, 2, 4) is an increasing path, but the set 6, 2, 4 is
not a clique. This is a contradiction.

On the other hand, g(t) + t2t4t6 is the minimum finishing time of the
project network in Figure 8. Hence f(t) is an R-polynomial.
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