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Generalized Lucas Numbers of the form wx2 and wVmx2
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Abstract. Let P ≥ 3 be an integer. Let (Vn) denote generalized Lucas sequence

defined by V0 = 2, V1 = P , and Vn+1 = PVn − Vn−1 for n ≥ 1. In this study, when

P is odd, we solve the equation Vn = wx2 for some values of w. Moreover, when P is

odd, we solve the equation Vn = wkx2 with k | P and k > 1 for w = 3, 11, 13. Lastly,

we solve the equation Vn = wVmx2 for w = 7, 11, 13.

Key words: Generalized Lucas sequence, Generalized Fibonacci sequence, congruence,

square terms in Lucas sequences.

1. Introduction

Let P and Q be nonzero integers such that P 2+4Q > 0. Generalized Fi-
bonacci sequence (Un(P, Q)) and Lucas sequence (Vn(P, Q)) are defined by
U0(P, Q) = 0, U1(P, Q) = 1; V0(P, Q) = 2, V1(P, Q) = P , and Un+1(P, Q) =
PUn(P, Q) + QUn−1(P, Q), Vn+1(P, Q) = PVn(P, Q) + QVn−1(P, Q) for
n ≥ 1. The numbers Un(P, Q) and Vn(P, Q) are called n-th general-
ized Fibonacci and Lucas numbers, respectively. Generalized Fibonacci
and Lucas sequences for negative subscripts are defined as U−n(P, Q) =
−Un(P, Q)/(−Q)n and V−n(P, Q) = Vn(P, Q)/(−Q)n for n ≥ 1. Since
Un(−P, Q) = (−1)n−1Un(P, Q) and Vn(−P, Q) = (−1)nVn(P, Q), it will be
assumed that P ≥ 1. For P = Q = 1, we have classical Fibonacci and Lucas
sequences (Fn) and (Ln). For P = 2 and Q = 1, we have Pell and Pell-
Lucas sequences (Pn) and (Qn). For more information about generalized
Fibonacci and Lucas sequences one can consult [7].

The terms in Lucas sequences of the form kx2 have been investigated
since 1962. When P is odd and Q = ±1, by using elementary argument
many authors solved the equation Un = kx2 or Vn = kx2 for specific integer
values of k. The reader can consult [13] or [9] for a brief discussion of the
subject. In [5], the authors solved Un = x2, Vn = x2, Un = 2x2, and
Vn = 2x2 for odd relatively prime integers P and Q. In [8], the same
authors solved Un = 3x2 for relatively prime odd integers P and Q. In [14],
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the authors solved Vn = 3x2 and Vn = 6x2 for relatively prime odd integers
P and Q. Moreover, in [11], the authors solved Un = 6x2 for relatively
prime odd integers P and Q. In [2], the authors solved Vn(P,−1) = 5x2 and
Un(P,−1) = 5x2 for odd integer P ≥ 3. In [3], the authors solved Un = 7x2

and Vn = 7x2 for odd integer P ≥ 1 with Q = 1. In [1], the author solved
Vn = Vmx2 and Vn = 2Vmx2 for odd value of P with Q = ±1. In [11],
the author solved Vn = Vmx2, Vn = 2Vmx2, and Vn = 6Vmx2 for relatively
prime odd values of P and Q. In [2], the authors solved Vn = 5Vmx2 for
odd value of P with Q = −1.

In this study, we assume that Q = −1. We solve the equation Vn = wx2

for some values of w. Moreover, we solve the equation Vn = wkx2 with k | P
and k > 1 for w = 3, 11, 13. Lastly, we solve the equation Vn = wVmx2 for
w = 7, 11, 13.

Throughout this study, (∗/∗) will denote the Jacobi symbol. Our
method is elementary and used by Cohn, Ribenboim, and McDaniel in [1]
and [8], respectively.

2. Preliminaries

From now on, instead of Un(P,−1) and Vn(P,−1), we sometimes write
Un and Vn, respectively. The following theorem is given in [12].

Theorem 2.1 Let n ∈ N ∪ {0} and m, r ∈ Z. Then

V2mn+r ≡ (−1)nVr(mod Vm) (2.1)

and

V2mn+r ≡ Vr(mod Um) (2.2)

if m 6= 0.

From (2.1), it follows that if a is odd, then

V2·2ra+m ≡ −Vm(mod V2r ). (2.3)

Since 8 | U3 when P is odd, we get

V6q+r ≡ Vr(mod 8). (2.4)
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When P is odd, we have V2r ≡ 7(mod 8) and thus,

(
2

V2r

)
= 1 (2.5)

and
(−1

V2r

)
= −1 (2.6)

for r ≥ 1. Moreover, we have

(
3

V2r

)
=





1 if r ≥ 1 and 3 - P,

−1 if r = 1 and 3 | P,

1 if r ≥ 2 and 3 | P.

(2.7)

Then it follows from (2.7) that

(
3

V2r

)
= 1 (2.8)

for r ≥ 2.
When P is odd, we have

(
P − 1
V2r

)
=

(
P + 1
V2r

)
=

(
P 2 − 1

V2r

)
= 1 (2.9)

for r ≥ 1 and

2 | Vn ⇔ 2 | Un ⇔ 3 | n. (2.10)

Moreover, it can be seen that if n is odd, then

V2n ≡ 2, 7(mod 8). (2.11)

and if n is odd and 3 - n, then

Vn ≡ P (mod 8). (2.12)

The following identities are well known (see [7]).
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V−n = Vn. (2.13)

V3n = Vn(V 2
n − 3) = Vn(V2n − 1). (2.14)

Um | Un ⇔ m | n. (2.15)

Vm | Vn ⇔ m | n and n/m is odd. (2.16)

U2n = UnVn. (2.17)

V2n = V 2
n − 2. (2.18)

If d = (m,n), then

(Vm, Vn) =

{
Vd if m/n and n/m odd,

1 or 2 otherwise.
(2.19)

Now we give the following theorems from [10].

Theorem 2.2 Let P be odd. If Vn = kx2 for some k | P with k > 1, then
n = 1.

Theorem 2.3 Let P be odd. If Vn = 2kx2 for some k | P with k > 1,
then n = 3.

Lemma 1

Vn ≡
{

2(−1)n(mod P ) if n is even,

0(mod P ) if n is odd.

3. Divisibility of Vn by Small Values of k

From now on, we will assume that n and m are positive integers.

Lemma 2 3 | Vn if and only if 3 | P and n is odd.

Proof. If 3 | P and n is odd, then 3 | Vn by Lemma 1. Assume that
3 | Vn. Let 3 - P . Then 3 | P 2 − 1 and therefore 3 | U3. Let n = 6q ± r

with 0 ≤ r ≤ 3. Then by (2.2), Vn ≡ V±r(mod U3), which implies that
Vn ≡ Vr(mod 3). It can be seen that 3 - Vr for 0 ≤ r ≤ 3. Thus, 3 - Vn.
Therefore 3 | P and it is seen that n is odd by Lemma 1. ¤
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Lemma 3 7 | Vn if and only if 7 | P and n is odd or P 2 ≡ 2(mod 7) and
n = 2t for some odd integer t.

Proof. Let 7 | P and n be odd. Then by Lemma 1, we get 7 | Vn. Let
P 2 ≡ 2(mod 7) and n = 2t for some odd integer t. Then 7 | V2. Since
n = 4q + 2, it follows that Vn ≡ ±V2(mod V2) by (2.1). Thus, we have
7 | Vn. Now assume that 7 | Vn. If 7 | P , then n must be odd by Lemma
1. Let 7 - P . Then P 2 ≡ 1, 2, 4(mod 7). Let P 2 ≡ 1(mod 7). Then 7 | U3.
We may write n = 6q ± r with 0 ≤ r ≤ 3. Thus, Vn = V6q+r ≡ Vr(mod U3)
by (2.2), which implies that Vn ≡ Vr(mod 7). Then we must have 7 | Vr

for 0 ≤ r ≤ 3, which is impossible. Let P 2 ≡ 4(mod 7) and n = 14q ± r,
0 ≤ r ≤ 7. Then 7 | U7 and thus, Vn = V14q±r ≡ V±r(mod U7), which
implies that Vn ≡ Vr(mod 7). This is impossible since 7 - Vr for 0 ≤ r ≤ 7.
Let P 2 ≡ 2(mod 7). Then 7 | V2. Let n = 2q + r, 0 ≤ r ≤ 1. If q is even,
then Vn = V2q+r ≡ ±Vr(mod V2) by (2.1). This is impossible since 7 - Vr for
0 ≤ r ≤ 1. Let q be odd. Then q = 2t + 1 and thus, by (2.1), we get

Vn = V2q+r = V2(2t+1)+r = ±Vr+2(mod V2),

which implies that Vn ≡ ±Vr+2(mod 7) since 7 | V2. But this is possible
only if r = 0. Thus, n = 2q with q odd. ¤

The ideas behind of the proof of the following lemmas are similar to
that of the lemma above and we omit the proofs here.

Lemma 4 5 | Vn if and only if 5 | P and n is odd.

Lemma 5 11 | Vn if and only if 11 | P and n is odd or P 2 ≡ 3(mod 11)
and n = 3t for some odd integer t.

Lemma 6 13 | Vn if and only if 13 | P and n is odd or P 2 ≡ 3(mod 13)
and n = 3t for some odd integer t.

4. Main Theorems

Theorem 4.1 If P is odd and 11 | P , then Vn = 11x2 has the solution
n = 1. If P 2 ≡ 3(mod 11), then the equation Vn = 11x2 has no solutions.

Proof. Assume that Vn = 11x2 for some integer x. By Lemma 5, 11 | Vn if
and only if 11 | P and n is odd or P 2 ≡ 3(mod 11) and n = 3t for some odd
integer t. Let 11 | P and n be odd. Then by Theorem 2.2, we get n = 1.
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Now assume that P 2 ≡ 3(mod 11) and n = 3t for some odd integer t. Let
t = 4q ± 1. Then n = 12q ± 3 and so

Vn ≡ V±3 ≡ V3(mod U3)

by (2.2). Now assume that P is odd. Since 8 | U3, it follows that

11x2 ≡ V3 ≡ P (P 2 − 3)(mod 8).

Thus, 11x2 ≡ −2P (mod 8), which implies that x2 ≡ −6P (mod 8). This is
impossible since P is odd. Now assume that P is even. It can be seen that
if n is odd, then Vn ≡ P (mod P 2 − 4). Using the fact that n is odd, it
follows that 11x2 = Vn ≡ P (mod P 2−4). Since P is even, we get 4 | P 2−4,
which implies that 4 | P . This shows that P 2 − 1 ≡ 7(mod 8). Since
11x2 ≡ P (P 2 − 3)(mod U3), we get 11x2 ≡ −2P (mod P 2 − 1). Then it
follows that (11/(P 2 − 1)) = (−2P/(P 2 − 1)). Since P 2 ≡ 3(mod 11), we
get

(
11

P 2 − 1

)
= −

(
P 2 − 1

11

)
= −

(
2
11

)
= 1.

But

1 =
(

11
P 2 − 1

)
=

( −2P

P 2 − 1

)
=

( −2
P 2 − 1

)(
P

P 2 − 1

)
= −

(
P

P 2 − 1

)

= −
(

2ra

P 2 − 1

)
= (−1)

(
a

P 2 − 1

)
= (−1)(−1)(a−1)/2

(
P 2 − 1

a

)

= (−1)(−1)(a−1)/2

(−1
a

)
= −1,

a contradiction. ¤

From now on, we will assume that P is odd.

Theorem 4.2 Let Vn = 7x2 for some integer x. Then n = 1 or 2.

Proof. Assume that Vn = 7x2 for some integer x. By Lemma 3, 7 | Vn

if and only if 7 | P and n is odd or P 2 ≡ 2(mod 7) and n = 2t for some
odd integer t. Let 7 | P . Then n = 1 by Theorem 2.2. Assume that
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P 2 ≡ 2(mod 7) and n = 2t for some odd integer t. Let t > 1. Then
t = 4q ± 1 for some q > 0 and so n = 2t = 2 · 2ra± 2 with a odd and r ≥ 2.
Therefore we get 7x2 ≡ −V±2 ≡ −V2(mod V2r ) by (2.3). This shows that

(
7

V2r

)
=

(−1
V2r

)(
V2

V2r

)
= −

(
V2

V2r

)
(4.1)

by (2.6). Let r = 2. Then

(
7
V4

)
= −

(
V2

V4

)
=

(
V4

V2

)
=

(
V 2

2 − 2
V2

)
=

(−2
V2

)
= −1.

Thus, we get

−1 =
(

7
V4

)
= −

(
V4

7

)
= −

(
V 2

2 − 2
7

)
= −

(−2
7

)
= 1,

which is a contradiction. Now let r ≥ 3. Then V2r ≡ 2(mod 7) and V2r ≡
2(mod V2). Thus,

(
7

V2r

)
= −

(
V2r

7

)
= −

(
2
7

)
= −1

and
(

V2

V2r

)
= −

(
V2r

V2

)
= −

(
2
V2

)
= −1.

But this is impossible by (4.1). Thus, t = 1 and therefore n = 2. ¤

Theorem 4.3 The equation Vn = 13x2 has the solution n = 1 if 13 | P

and has no solutions if P 2 ≡ 3(mod 13).

Proof. Let Vn = 13x2 for some integer x. By Lemma 6, 13 | Vn if and only
if 13 | P and n is odd or P 2 ≡ 3(mod 13) and n = 3t for some odd integer t.
Assume that 13 | P . Then by Theorem 2.2, we get n = 1. Now assume that
P 2 ≡ 3(mod 13) and n = 3t for some odd integer t. Then n = 3t = 6q + 3
and so by (2.4), we get

13x2 ≡ V3 = P (P 2 − 3)(mod 8).
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Since P 2 ≡ 1(mod 8), it follows that x2 ≡ −2P (mod 8). However, this is
impossible since P is odd. ¤

Theorem 4.4 If Vn = 3kx2 for some k | P with k > 1, then n = 1.

Proof. Let Vn = 3kx2 for some k | P with k > 1. Since 3 | Vn, we get
3 | P and n is odd by Lemma 2. Let n = 6q + r with r ∈ {1, 3, 5}.
Then Vn ≡ V1, V3, V5(mod 8) by (2.4). Thus we get 3kx2 ≡ P,−2P (mod 8).
Let P = kM . Then 3kMx2 ≡ PM,−2PM(mod 8). That is, 3Px2 ≡
PM,−2PM(mod 8). This implies that 3x2 ≡ M,−2M(mod 8) since P is
odd. Thus, we get x2 ≡ 3M, 2M(mod 8). This shows that M ≡ 3(mod 8)
since M is odd. Let n > 1. Then n = 4q ± 1 for some q > 0. Thus, we
can write n = 2 · 2ra ± 1 with a odd and r ≥ 1. Then by (2.3), we get
3kx2 = Vn ≡ −V±1(mod V2r ), which implies that 3kx2 ≡ −P (mod V2r ).
Since (k, V2r ) = 1, we get 3x2 ≡ −M(mod V2r ). This shows that

(
3

V2r

)
=

(−1
V2r

)(
M

V2r

)
= −

(
M

V2r

)
. (4.2)

Let r = 1. Then
(

3
V2

)
= −

(
M

V2

)
=

(
V2

M

)
=

(
P 2 − 2

M

)
=

(−2
M

)
= 1.

Since 3 | P , we get (3/V2) = −1 by (2.7). But this is impossible since
(3/V2) = 1. Let r ≥ 2. Then (3/V2r ) = 1 by (2.8) and V2r ≡ 2(mod M).
Thus,

1 =
(

3
V2r

)
= −

(
M

V2r

)
=

(
V2r

M

)
=

(
2
M

)
= −1,

which is impossible. ¤

Theorem 4.5 If Vn = 11kx2 for some k | P with k > 1, then n = 1.

Proof. Let Vn = 11kx2 for some k | P with k > 1. Since 11 | Vn, n is odd
by Lemma 5. Let P = kM . Similarly, it can be seen that M ≡ 3(mod 8).
Since 11 | Vn, it follows that 11 | P and n is odd or P 2 ≡ 3(mod 11) and
n = 3t with t odd. Let n > 1. Then n = 4q ± 1 for some q > 0 and so
n = 2 · 2ra ± 1 with a odd and r ≥ 1. Thus, 11kx2 = Vn ≡ −V1(mod V2r )
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by (2.3). This shows that 11x2 ≡ −M(mod V2r ), which implies that

(
11
V2r

)
=

(−1
V2r

)(
M

V2r

)
= −

(
M

V2r

)
. (4.3)

Now let r = 1. If 11 | P or P 2 ≡ 3(mod 11), then it can be seen that
(11/V2) = (M/V2). This is impossible by (4.3). Let r ≥ 2. If P 2 ≡
3(mod 11), then it can be seen that V2r ≡ −1(mod 11) and V2r ≡ 2(mod M).
If 11 | P , then V2r ≡ 2(mod 11) and V2r ≡ 2(mod M). In both cases, it is
seen that (11/V2r ) = (M/V2r ), which is impossible by (4.3). Therefore
n = 1. ¤

Since the proof of the following theorem is similar to those of the above
theorems, we omit it.

Theorem 4.6 If Vn = 13kx2 for some k | P with k > 1, then n = 1.

Theorem 4.7 Let P 2 ≡ 3(mod 13). Let m = 2a13a25a37a411a5 > 1 with
aj = 0 or 1 for 1 ≤ j ≤ 5. If Vn = 13mx2 for some integer x, then n = 3.

Proof. Assume that Vn = 13mx2 for some integer x. Since P 2 ≡ 3(mod 13)
and 13 | Vn, we get n = 3t for some odd integer t by Lemma 6. Thus, n

is odd. If 7 | m, then 7 | Vn and so it follows that 7 | P by Lemma 3.
Therefore we get 7 | Vt since t is odd. It is clear that 3a25a3 | Vt by Lemmas
2 and 4. Let m2 = 3a25a37a4 . Then it follows that m2 | Vt. Suppose that
P 2 ≡ 3(mod 11). Then by (2.14), we get

2a1 · 11 · 13 ·m2 · x2 = Vn = V3t = Vt(V 2
t − 3) = Vt(V2t − 1),

which implies that 2a1 · 11 · 13 · x2 = (Vt/m2)(V 2
t − 3). Since (Vt, V

2
t − 3)

= 1 or 3, it follows that V2t − 1 = wa2 for some integers a and w where
w = 2a3b11c13d with a, b, c, d ∈ {0, 1}. Assume now that t > 1 and therefore
2t = 2(4q ± 1) = 2 · 2ra ± 2 with a odd and r ≥ 2. Thus, it follows
that wa2 + 1 = V2t ≡ −V2(mod V2r ) by (2.1). This implies that wa2 ≡
−(P 2 − 1)(mod V2r ). Therefore

(
w

V2r

)
=

(−1
V2r

)(
P 2 − 1

V2r

)
.

Then
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(
w

V2r

)
= −1 (4.4)

by (2.6) and (2.9). Since V2 = P 2−2 ≡ 1(mod 11), we get V2r ≡ −1(mod 11)
for r ≥ 2. Thus,

(
11
V2r

)
= −

(
V2r

11

)
= −

(−1
11

)
= 1.

Moreover, since V2 = P 2 − 2 ≡ 1(mod 13), we get V2r ≡ −1(mod 13) for
r ≥ 2. Thus,

(
13
V2r

)
=

(
V2r

13

)
=

(−1
13

)
= 1.

Moreover, we get (2/V2r ) = (3/V2r ) = 1 by (2.5) and (2.8), respectively.
Then it follows that (w/V2r ) = 1, which is impossible by (4.4). Now suppose
that 11 | P . Then 11 | Vt by Lemma 5. Let m1 = 3a25a37a411a5 . Then it
follows that m1 | Vt and so

2a1 · 13 ·m1 · x2 = Vn = V3t = Vt(V 2
t − 3) = Vt(V2t − 1),

which implies that 2a1 · 13 ·x2 = (Vt/m1)(V 2
t − 3). Since (Vt, V

2
t − 3) = 1 or

3, it follows that V2t−1 = wa2 for some integers a and w where w = 2a3b13c

with a, b, c ∈ {0, 1}. In a similar way, if t > 1, then a contradiction follows.
So we get t = 1 and therefore n = 3. ¤

Since the proof of the following theorem is similar to that of the above
theorem, we omit it.

Theorem 4.8 Let P 2 ≡ 3(mod 11). Let m = 2a13a25a37a413a5 > 1 with
aj = 0 or 1 for 1 ≤ j ≤ 5. If Vn = 11mx2 for some integer x, then n = 3.

Corollary 1 Let m = 3a15a27a311a413a5 > 1 with aj = 0 or 1 for 1 ≤
j ≤ 5. If Vn = 2mx2, then n = 3.

Proof. Assume that Vn = 2mx2 for some integer x. If m | P , then we
get n = 3 by Theorem 2.3. If a4 = 1 and P 2 ≡ 3(mod 11) or a5 = 1 and
P 2 ≡ 3(mod 13), then by Theorems 4.8 and 4.7, we get n = 3. ¤

By using Theorems 4.7, 4.8, and 2.2, we can give the following corollaries.
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Corollary 2 Let m = 3a15a27a311a413a5 > 1 with aj = 0 or 1 for 1 ≤
j ≤ 5. Suppose that a4 6= 0 or a5 6= 0. If Vn = mx2 for some integer x, then
n = 1 or 3.

Corollary 3 If Vn = 14x2 for some integer x, then n = 3.

Proof. Let Vn = 14x2 for some integer x. If 7 | P , then n = 3 by Theorem
2.3. Now assume that P 2 ≡ 2(mod 7) and n = 2t for some odd t. Moreover,
since 2 | Vn, it follows that 3 | n by (2.10). Thus, n = 6k for some odd
integer k. Then by (2.4), we get

14x2 = Vn ≡ V0 = 2(mod 8),

which is impossible. ¤

Theorem 4.9 Let A | P with A > 1 odd. Then Vn = AVmx2 has no
solutions.

Proof. Assume that Vn = AVmx2 for some A | P with A > 1 odd. Since
A | Vn and A | P , n is odd by Lemma 1. Moreover, we get n = mt for some
odd integers m and t by (2.16). Assume that 3 | t. Then t = 3s for some
positive integer s. Thus,

AVmx2 = Vn = Vmt = V3ms = Vms(V 2
ms − 3)

and it follows that

Vms

Vm
(V 2

ms − 3) = Ax2

since Vm | Vms by (2.16). It can be easily seen that (A, V 2
ms − 3) = 1 or 3.

Assume that (A, V 2
ms − 3) = 1. Then it follows that

Vms

AVm
(V 2

ms − 3) = x2.

Clearly, d =
(
Vms/AVm, V 2

ms − 3
)

= 1 or 3. Then it follows that V 2
ms − 3 =

a2 or V 2
ms − 3 = 3a2 for some integer a. The first one is impossible. If

V 2
ms − 3 = 3a2, then 3(Vms/3)2 = 1 + a2, which is impossible. Assume that

(A, V 2
ms − 3) = 3. Then there exist relatively prime integers A1, B1 such
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that A = 3A1 and V 2
ms − 3 = 3B1. And so,

3A1x
2 = Ax2 =

Vms

Vm
(V 2

ms − 3) =
Vms

Vm
3B1,

i.e.,

Vms

A1Vm
B1 = x2

since (A1, B1) = 1. Clearly, d = (Vms/A1Vm, B1) = 1 or 3. Then it follows
that B1 = a2 or 3a2 for some integer a. Since V 2

ms − 3 = 3B1, we get
V 2

ms− 3 = 3a2 or V 2
ms− 3 = 9a2. In a similar way, it is seen that both cases

are impossible. Therefore 3 - t. Now assume that 3 | m. Since t is odd, we
can write t = 4q ± 1 for some q ≥ 0. Thus, Vn = V4qm±m ≡ V±m(mod U2m)
by (2.2), which implies that AVmx2 ≡ Vm(mod UmVm) by (2.17). This
shows that Ax2 ≡ 1(mod Um). Since 3 | m, we get U3 | Um and therefore
8 | Um by (2.15). Then it follows that Ax2 ≡ 1(mod 8). Assume that 3 - m.
Then 3 - n since 3 - t. Therefore Vn ≡ P (mod 8) and Vm ≡ P (mod 8) by
(2.12). Thus, we see that APx2 ≡ P (mod 8), which implies that Ax2 ≡
1(mod 8). Consequently, we get Ax2 ≡ 1(mod 8) in both cases. This shows
that A ≡ 1(mod 8). Assume that t > 1. Then t = 4q ± 1 for some q > 0.
Thus, n = mt = 4qm ±m = 2 · 2ra ±m with a odd and r ≥ 1. Then by
(2.3), we get

AVmx2 ≡ −V±m(mod V2r ),

which implies that AVmx2 ≡ −Vm(mod V2r ). Then it follows that Ax2 ≡
−1(mod V2r ) since (Vm, V2r ) = 1 by (2.19). Thus, (A/V2r ) = (−1/V2r ) =
−1. Since V2r ≡ ±2(mod A) for r ≥ 1, we get

−1 =
(

A

V2r

)
=

(
V2r

A

)
=

(±2
A

)
= 1,

a contradiction. Thus, t = 1 and therefore n = m. But this is impossible
since A > 1. ¤

Theorem 4.10 Let A > 3 be odd and P 2 ≡ 3(mod A). Then the equation
Vn = AVmx2 has a solution only when m = 1 and n = 3.
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Proof. Assume that Vn = AVmx2 and P 2 ≡ 3(mod A) with A > 3 odd.
Since Vm | Vn, we get n = mt for some odd integer t by (2.16). Since A | V3,
by using (2.1), it can be shown that n = 3k1 for some odd positive integer
k1. This shows that m is odd. Let 3 | m. Then U3 | Um and therefore
8 | Um by (2.15). Since t is odd, n = mt = m(4q ± 1) = 4qm±m for some
integer q. Therefore by using (2.2), we get

Vn = V4qm±m = V±m(mod U2m),

which implies that

AVmx2 ≡ Vm(mod UmVm)

by (2.17). It follows that Ax2 ≡ 1(mod Um) and so Ax2 ≡ 1(mod 8) since
8 | Um. Therefore A ≡ 1(mod 8). Let t > 1. Then n = m(4q±1) = 2·2ra±m

with a odd and r ≥ 1. Therefore by using (2.3), we get

AVmx2 = Vn ≡ −V±m(mod V2r ),

which shows that

Ax2 ≡ −1(mod V2r )

since (Vm, V2r ) = 1 by (2.19). Thus,

(
A

V2r

)
=

(−1
V2r

)
= −1

by (2.6). Then by using the fact that V2r ≡ ±1(mod A), when P 2 ≡
3(mod A), we get

−1 =
(

A

V2r

)
=

(
V2r

A

)
=

(±1
A

)
= 1,

a contradiction. Therefore t = 1 and so n = m, which is impossible since
A > 3. Now let 3 - m. Then 3 | t and so t = 3s for some odd integer s.
Thus, n = mt = 3ms. Therefore by using (2.14), we get

AVmx2 = Vn = V3ms = Vms(V 2
ms − 3),
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i.e.,

Vms

Vm
(V 2

ms − 3) = Ax2.

Clearly, (Vms/Vm, V 2
ms − 3) = 1 or 3. Then by using (2.14), it is seen that

V 2
ms − 3 = V2ms − 1 = kx2 or 3kx2 with k | A.

Let ms > 1. Since ms is odd, we get 2ms = 2(4q ± 1) = 2 · 2ra± 2 with a

odd and r ≥ 2. Therefore

wx2 = V2ms − 1 ≡ −V±2 − 1(mod V2r )

by (2.3), which implies that

wx2 ≡ −(P 2 − 1)(mod V2r )

where w = k or 3k with k | A. This shows that

(
w

V2r

)
=

(−1
V2r

)(
P 2 − 1

V2r

)
,

which implies that

(
w

V2r

)
= −1 (4.5)

by (2.6) and (2.9), respectively. Since r ≥ 2, we get (3/V2r ) = 1 by (2.8).
Now we show that (k/V2r ) = 1. Clearly, (k/V2r ) = 1 if k = 1. Let k > 1.
Then V2r ≡ −1(mod k) and thus, we get

(
k

V2r

)
= (−1)(k−1)/2

(
V2r

k

)
= (−1)(k−1)/2

(−1
k

)
= 1.

As a consequence, we have (k/V2r ) = 1 for k | A. This shows that (w/V2r ) =
1, which is impossible by (4.5). Thus, ms = 1 and so m = 1 and n = 3. ¤

Corollary 4 The equation Vn = 11Vmx2 has no solutions.
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Proof. Assume that Vn = 11Vmx2 for some integer x. Then by Theorems
4.9 and 4.10, we get n = 3 and m = 1. Thus, it follows that V3 = 11Px2,
which implies that P 2−3 = 11x2. This is impossible since 11x2 ≡ −2(mod 8)
in this case. ¤

By using Theorems 4.9 and 4.10, we can give the following corollaries.

Corollary 5 The equation Vn = 13Vmx2 has no solutions.

Corollary 6 The equation Vn = 7Vmx2 has no solutions.

Proof. Assume that Vn = 7Vmx2 for some integer x. If 7 | P , then Vn =
7Vmx2 has no solutions by Theorem 4.9. Assume that P 2 ≡ 2 (mod 7).
Then n = 2t for some odd integer t by Lemma 3. Since Vm | Vn, n = ms

for some odd integer s by (2.16). Then it follows that m = 2q for some odd
integer q. Thus, we get Vm ≡ 2, 7 (mod 8) and Vn ≡ 2, 7 (mod 8) by (2.11).
This is impossible since Vn = 7Vmx2. ¤
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