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Generalized Lucas Numbers of the form wz? and wV,,z?

Merve GUNEY DUMAN, Ummiigiilsiim OGUT and Refik KESKIN

(Received December 21, 2015; Revised June 8, 2016)

Abstract. Let P > 3 be an integer. Let (V,) denote generalized Lucas sequence
defined by Vo =2, Vi = P, and Vj,41 = PV,, — V,,_1 for n > 1. In this study, when
P is odd, we solve the equation V,, = wz? for some values of w. Moreover, when P is
odd, we solve the equation V;, = wkz? with k | P and k > 1 for w = 3,11, 13. Lastly,
we solve the equation V;, = wV,,2? for w = 7,11, 13.

Key words: Generalized Lucas sequence, Generalized Fibonacci sequence, congruence,
square terms in Lucas sequences.

1. Introduction

Let P and @ be nonzero integers such that P2 +4@Q > 0. Generalized Fi-
bonacci sequence (U, (P, Q)) and Lucas sequence (V,, (P, Q)) are defined by
UO(PaQ) = OaUl(PvQ) =1 %(PvQ) =2, ‘/i(PvQ) = P, and UTLJrl(P’Q) =
PUn(Pa Q) + QUn—l(P> Q)? Vn+1(Pa Q) = PVH(P7 Q) + QVn—l(Pa Q) for
n > 1. The numbers U,(P,Q) and V,,(P,Q) are called n-th general-
ized Fibonacci and Lucas numbers, respectively. Generalized Fibonacci
and Lucas sequences for negative subscripts are defined as U_,(P,Q) =
U, (P,Q)/(—Q)™ and V_,,(P,Q) = V,(P,Q)/(—Q)™ for n > 1. Since
Up(—P,Q) = (—1)" U, (P,Q) and V,(—P,Q) = (-1)"V,(P,Q), it will be
assumed that P > 1. For P = () = 1, we have classical Fibonacci and Lucas
sequences (Fy,) and (L,). For P = 2 and Q = 1, we have Pell and Pell-
Lucas sequences (P,) and (Q,). For more information about generalized
Fibonacci and Lucas sequences one can consult [7].

The terms in Lucas sequences of the form kz? have been investigated
since 1962. When P is odd and ) = +1, by using elementary argument
many authors solved the equation U, = kz? or V,, = kx? for specific integer
values of k. The reader can consult [13] or [9] for a brief discussion of the
subject. In [5], the authors solved U, = 22, V,, = 22, U, = 222, and
V., = 222 for odd relatively prime integers P and Q. In [8], the same
authors solved U,, = 322 for relatively prime odd integers P and Q. In [14],

2010 Mathematics Subject Classification : 11B37, 11B39.



466 M. Giiney Duman, U. Ogit and R. Keskin

the authors solved V,, = 322 and V,, = 622 for relatively prime odd integers
P and Q. Moreover, in [11], the authors solved U, = 6x2 for relatively
prime odd integers P and Q. In [2], the authors solved V,,(P, —1) = 52% and
Uy, (P, —1) = 522 for odd integer P > 3. In [3], the authors solved U,, = 7?2
and V,, = 722 for odd integer P > 1 with Q = 1. In [1], the author solved
Vi = Vpa? and V,, = 2V,,2? for odd value of P with Q = +1. In [11],
the author solved V,, = V,,x2, V,, = 2V,,22, and V,, = 6V,,2? for relatively
prime odd values of P and Q. In [2], the authors solved V,, = 5V,,z? for
odd value of P with Q = —1.

In this study, we assume that ) = —1. We solve the equation V,, = wx
for some values of w. Moreover, we solve the equation V;, = wkz? with k | P

2

and k > 1 for w = 3,11, 13. Lastly, we solve the equation V,, = wV,,z? for
w="7,11,13.

Throughout this study, (x/%) will denote the Jacobi symbol. Our
method is elementary and used by Cohn, Ribenboim, and McDaniel in [1]
and [8], respectively.

2. Preliminaries

From now on, instead of U, (P, —1) and V,,(P, —1), we sometimes write
U, and V,,, respectively. The following theorem is given in [12].

Theorem 2.1 Let n € NU{0} and m, r € Z. Then

Vomntr = (=1)"Vr(mod Vi) (2.1)
and

Vomntr = Vi(mod Upy,) (2.2)
if m # 0.
From (2.1), it follows that if a is odd, then

Vaorarm = —Vin(mod Var). (2.3)

Since 8 | Us when P is odd, we get

Vogrr = Vi (mod 8). (2.4)
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When P is odd, we have Vor = 7(mod 8) and thus,

(%)~

and

for r > 1. Moreover, we have
1 ifr>1and3tP

(V;)Z —1 ifr=1and 3| P,
1 ifr>2and3|P.

Then it follows from (2.7) that

for r > 2.
When P is odd, we have

P—1\ [(P+1\ [(P*-1 _,
Vor )\ Var |\ Var N

2|V,<2|U, < 3]|n.

for r > 1 and

Moreover, it can be seen that if n is odd, then
Van = 2,7(mod 8).
and if n is odd and 3 { n, then
V, = P(mod38).

The following identities are well known (see [7]).
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(2.5)
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(2.10)

(2.11)

(2.12)
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Viep =V, (2.13)

Van = Vi (V2 = 3) =V, (Va, — 1). (2.14)
Un | Up < m|n. (2.15)

Vin | Vo & m | n and n/m is odd. (2.16)
Usp = U, V. (2.17)

Von = V72 —2. (2.18)

If d = (m,n), then

Va if m/n and n/m odd,
(Vin, Vo) = (2.19)

1 or 2 otherwise.

Now we give the following theorems from [10].

Theorem 2.2 Let P be odd. If V,, = ka? for some k | P with k > 1, then
n=1.

Theorem 2.3 Let P be odd. If V,, = 2kxz? for some k | P with k > 1,
then n = 3.

Lemma 1

n

~[2(=1)"(mod P) if n is even,
0(mod P) if n is odd.

3. Divisibility of V,, by Small Values of k

From now on, we will assume that n and m are positive integers.

Lemma 2 3|V, if and only if 3| P and n is odd.

Proof. If 3 | P and n is odd, then 3 | V,, by Lemma 1. Assume that
3| Vpn. Let 31 P. Then 3 | P?2 — 1 and therefore 3 | Us. Let n = 6q & r
with 0 < r < 3. Then by (2.2), V;, = Vi,(modUs), which implies that
V., = Vi(mod3). It can be seen that 3 { V, for 0 < r < 3. Thus, 31 V,.
Therefore 3 | P and it is seen that n is odd by Lemma 1. g
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Lemma 3 7|V, if and only if 7| P and n is odd or P?> = 2(mod7) and
n = 2t for some odd integer t.

Proof. Let 7| P and n be odd. Then by Lemma 1, we get 7 | V,,. Let
P? = 2(mod7) and n = 2t for some odd integer t. Then 7 | V5. Since
n = 4q + 2, it follows that V,, = £V5(modV3) by (2.1). Thus, we have
7 | V. Now assume that 7 | V,,. If 7| P, then n must be odd by Lemma
1. Let 71 P. Then P? = 1,2,4(mod 7). Let P? = 1(mod7). Then 7 | Us.
We may write n = 6¢ £ r with 0 < r < 3. Thus, V,, = Vsg4r = V;-(mod Us)
by (2.2), which implies that V,, = V;.(mod7). Then we must have 7 | V,
for 0 < r < 3, which is impossible. Let P? = 4(mod7) and n = 14q & r,
0 <r <7 Then 7| U; and thus, V,, = Vigge, = Vi, (modUz), which
implies that V,, = V,.(mod 7). This is impossible since 7t V,. for 0 < r < 7.
Let P? = 2(mod7). Then 7 | Vo. Let n =2q+ 7, 0 <r < 1. If ¢ is even,
then V,, = Vagyr = £V, (mod V) by (2.1). This is impossible since 71 V. for
0 <r < 1. Let ¢ be odd. Then g =2t + 1 and thus, by (2.1), we get

Vi = Vogyr = V2(2t+1)+r = £V, 42(mod V3),
which implies that V,, = £V,.;2(mod7) since 7 | V5. But this is possible
only if r = 0. Thus, n = 2¢ with ¢ odd. U

The ideas behind of the proof of the following lemmas are similar to
that of the lemma above and we omit the proofs here.

Lemma 4 5|V, if and only if 5| P and n is odd.

Lemma 5 11|V, if and only if 11 | P and n is odd or P? = 3(mod 11)
and n = 3t for some odd integer t.

Lemma 6 13|V, if and only if 13 | P and n is odd or P? = 3(mod 13)
and n = 3t for some odd integer t.

4. Main Theorems

Theorem 4.1 If P is odd and 11 | P, then V,, = 1122 has the solution
n =1. If P? = 3(mod 11), then the equation V,, = 1122 has no solutions.

Proof. Assume that V;, = 1122 for some integer . By Lemma 5, 11 | V,, if
and only if 11 | P and n is odd or P? = 3(mod 11) and n = 3t for some odd
integer ¢t. Let 11 | P and n be odd. Then by Theorem 2.2, we get n = 1.
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Now assume that P? = 3(mod 11) and n = 3t for some odd integer t. Let
t=4g+1. Then n =12¢ £+ 3 and so

Vi, = Vis = V3(mod Us)
by (2.2). Now assume that P is odd. Since 8 | Us, it follows that
112? = V3 = P(P? — 3)(mod 8).
Thus, 1122 = —2P(mod 8), which implies that 2 = —6P(mod8). This is
impossible since P is odd. Now assume that P is even. It can be seen that
if n is odd, then V,, = P(mod P? — 4). Using the fact that n is odd, it
follows that 1122 = V,, = P(mod P? —4). Since P is even, we get 4 | P? —4,
which implies that 4 | P. This shows that P? — 1 = 7(mod8). Since

1122 = P(P? — 3)(mod Us), we get 1122 = —2P(mod P? — 1). Then it
follows that (11/(P? — 1)) = (=2P/(P? —1)). Since P? = 3(mod 11), we

get,
11\ [(PP-1\ (2 _,
P2—-1) 11 a 1)
But

1= (le_l) = <P_22_Pl> = (pil)(PQID—l) :_(PZP—J
_ _(ng1> - <_1>< S 1) = (-1)(-1)@ 2(]32@_1)

a contradiction. O
From now on, we will assume that P is odd.

Theorem 4.2 Let V,, = 72 for some integer x. Thenn =1 or 2.

Proof. Assume that V,, = 7z? for some integer x. By Lemma 3, 7 | V,,
if and only if 7| P and n is odd or P? = 2(mod 7) and n = 2t for some
odd integer t. Let 7 | P. Then n = 1 by Theorem 2.2. Assume that
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P? = 2(mod7) and n = 2t for some odd integer t. Let t > 1. Then
t =4g+1 for some ¢ >0 and son =2t =2-2"a + 2 with a odd and r > 2.
Therefore we get 722 = —Vis = —Va(mod Var) by (2.3). This shows that

()= () () - () (02

by (2.6). Let r = 2. Then

()~ () -(59 - ()

Thus, we get

1)) ()~

which is a contradiction. Now let » > 3. Then Var = 2(mod7) and Var =

2(mod V3). Thus,
() --(%)--() -

and
V2 _ V21' _ 3 o _1
Var ) Vo) \VW) 7
But this is impossible by (4.1). Thus, t = 1 and therefore n = 2. O

Theorem 4.3  The equation V,, = 13x? has the solution n = 1 if 13 | P
and has no solutions if P? = 3(mod 13).

Proof. Let V,, = 1322 for some integer x. By Lemma 6, 13 | V,, if and only
if 13 | P and n is odd or P? = 3(mod 13) and n = 3t for some odd integer ¢.
Assume that 13 | P. Then by Theorem 2.2, we get n = 1. Now assume that
P? = 3(mod 13) and n = 3t for some odd integer t. Then n = 3t = 6q + 3
and so by (2.4), we get

132% = V3 = P(P? — 3)(mod8).
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Since P? = 1(mod38), it follows that 2? = —2P(mod8). However, this is
impossible since P is odd. O

Theorem 4.4 If V,, = 3ka? for some k | P with k > 1, thenn = 1.

Proof. Let V,, = 3ka? for some k | P with & > 1. Since 3 | V,,, we get
3 | P and n is odd by Lemma 2. Let n = 6g + r with » € {1,3,5}.
Then V,, = V4, V3, Vs(mod 8) by (2.4). Thus we get 3kz? = P, —2P(mod 8).
Let P = kM. Then 3kMz? = PM,—2PM(mod8). That is, 3Pz? =
PM,—2PM (mod8). This implies that 322 = M, —2M (mod 8) since P is
odd. Thus, we get 22 = 3M,2M (mod8). This shows that M = 3(mod 8)
since M is odd. Let n > 1. Then n = 4¢ = 1 for some ¢ > 0. Thus, we
can write n = 2-2"a £ 1 with a odd and » > 1. Then by (2.3), we get
3kx? = V,, = —Vii(mod Var), which implies that 3kz? = —P(mod Va-).
Since (k, Vor) = 1, we get 3x? = —M (mod Vs ). This shows that

B-@E-
()~ ()-(5)- ()

Since 3 | P, we get (3/V2) = —1 by (2.7). But this is impossible since
(3/V2) = 1. Let r > 2. Then (3/Var) = 1 by (2.8) and Var = 2(mod M).

@)

which is impossible. O

Theorem 4.5 IfV, = 11kz? for some k | P with k > 1, then n = 1.

Proof. Let V,, = 11kx? for some k | P with k& > 1. Since 11 | V,,, n is odd
by Lemma 5. Let P = kM. Similarly, it can be seen that M = 3(mod8).
Since 11 | V,,, it follows that 11 | P and n is odd or P? = 3(mod 11) and
n = 3t with ¢t odd. Let n > 1. Then n = 4¢ + 1 for some ¢ > 0 and so
n=2-2"a+1 with a odd and r > 1. Thus, 11kz? = V,, = —Vi(mod Va-)
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by (2.3). This shows that 112% = — M (mod Va-), which implies that

()= () ) = (%) 13)

Now let r = 1. If 11 | P or P? = 3(mod 11), then it can be seen that
(11/V) = (M/V,). This is impossible by (4.3). Let r > 2. If P? =
3(mod 11), then it can be seen that Vor = —1(mod 11) and Var = 2(mod M).
If 11 | P, then Vor = 2(mod 11) and Vor = 2(mod M). In both cases, it is
seen that (11/Var) = (M/Var), which is impossible by (4.3). Therefore
n=1. (]

Since the proof of the following theorem is similar to those of the above
theorems, we omit it.

Theorem 4.6 If V,, = 13kz? for some k | P with k > 1, then n = 1.

Theorem 4.7 Let P? = 3(mod 13). Let m = 2913925%37%11% > 1 with
aj =0 orl for1 <j<5.IfV, =13ma? for some integer x, then n = 3.

Proof.  Assume that V,, = 13ma? for some integer x. Since P? = 3(mod 13)
and 13 | V,,, we get n = 3t for some odd integer ¢t by Lemma 6. Thus, n
is odd. If 7 | m, then 7 | V,, and so it follows that 7 | P by Lemma 3.
Therefore we get 7 | V; since t is odd. It is clear that 3925% | V; by Lemmas
2 and 4. Let mg = 3%25%37%_ Then it follows that ms | V4. Suppose that
P? = 3(mod 11). Then by (2.14), we get

29 . 11-13 - my - 2% =V, = Vay = Vi(V2 = 3) = Vi (Vay — 1),

which implies that 291 - 11 - 13 - 22 = (V;/m2)(V;? — 3). Since (V;,V? — 3)
= 1 or 3, it follows that Vo; — 1 = wa? for some integers a and w where
w = 223°11°137 with a, b, c,d € {0,1}. Assume now that ¢ > 1 and therefore
2t = 2(4g+ 1) = 2-2"a £ 2 with a odd and r > 2. Thus, it follows
that wa® +1 = Vo = —Va(mod Var) by (2.1). This implies that wa? =
—(P? — 1)(mod Vy-). Therefore

() () ()

Then
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(é) -1 (4.4)

by (2.6) and (2.9). Since Vo = P?2—2 = 1(mod 11), we get Vor = —1(mod 11)

for » > 2. Thus,
Vor ) 1) 1) -

Moreover, since Vo = P2 — 2 = 1(mod 13), we get Vor = —1(mod 13) for

r > 2. Thus,

Vor )\ 13 ) \13) 7
Moreover, we get (2/Var) = (3/Var) = 1 by (2.5) and (2.8), respectively.
Then it follows that (w/Va2r) = 1, which is impossible by (4.4). Now suppose

that 11 | P. Then 11 | V; by Lemma 5. Let my = 3%25*37%411% . Then it
follows that m4 | V; and so

201 .13 - my - 22 =V, = Vy, :Vt(Vt2 —3)=Vi(Var — 1),

which implies that 291 - 13- 2% = (V;/my)(V;? — 3). Since (V;, V2 —3) =1 or
3, it follows that Va; —1 = wa? for some integers a and w where w = 2¢3%13¢
with a,b,c € {0,1}. In a similar way, if ¢ > 1, then a contradiction follows.
So we get t = 1 and therefore n = 3. d

Since the proof of the following theorem is similar to that of the above
theorem, we omit it.

Theorem 4.8 Let P2 = 3(mod 11). Let m = 2%13925937%4139% > 1 with
aj =0 orl for1 <j<5. IfV, = 11lma? for some integer x, then n = 3.

Corollary 1 Let m = 3915%27311%413% > 1 with a;j = 0 or 1 for 1 <
j < 5. If V,, = 2ma?, then n = 3.

Proof. Assume that V,, = 2ma? for some integer z. If m | P, then we
get n = 3 by Theorem 2.3. If ay = 1 and P? = 3(mod 11) or a5 = 1 and
P? = 3(mod 13), then by Theorems 4.8 and 4.7, we get n = 3. O

By using Theorems 4.7, 4.8, and 2.2, we can give the following corollaries.
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Corollary 2 Let m = 3%15%7911%413% > 1 with a; = 0 or 1 for 1 <
j < 5. Suppose that ay # 0 or as # 0. If V,, = ma? for some integer x, then
n=1or3.

Corollary 3 IfV,, = 1422 for some integer , then n = 3.

Proof. Let V,, = 1422 for some integer x. If 7 | P, then n = 3 by Theorem
2.3. Now assume that P? = 2(mod 7) and n = 2t for some odd ¢. Moreover,
since 2 | V,, it follows that 3 | n by (2.10). Thus, n = 6k for some odd
integer k. Then by (2.4), we get

142% = V,, = Vy = 2(mod 8),

which is impossible. U

Theorem 4.9 Let A | P with A > 1 odd. Then V,, = AV,,2? has no

solutions.

Proof. Assume that V,, = AV,,2? for some A | P with A > 1 odd. Since
A |V, and A | P, n is odd by Lemma 1. Moreover, we get n = mt for some
odd integers m and ¢ by (2.16). Assume that 3 | t. Then ¢t = 3s for some
positive integer s. Thus,

AVmIL‘2 =Vh =Vt = Vams = VmS(Van - 3)

and it follows that

Vm S
Vin

(V7?Ls - 3) = A$2

since Vi, | Vins by (2.16). It can be easily seen that (4,V2, —3) =1 or 3.
Assume that (A4, V2, —3) = 1. Then it follows that

r'ms

Vms
AV,

(V'rgLs - 3) = a”.

Clearly, d = (Vins/AVim, V2, — 3) = 1 or 3. Then it follows that V;2, — 3 =

a? or V2. — 3 = 3a? for some integer a. The first one is impossible. If
V2. —3=3a? then 3(V,,s/3)? = 1+ a?, which is impossible. Assume that
(A, V2. —3) = 3. Then there exist relatively prime integers A;, By such

r'ms
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that A =3A4; and V2, — 3 = 3B;. And so,

% v,
3A12% = Az? = 22 (V2. - 3) = -2°3B
1T r Vm( s — 3) TR
i.e.,
v
ms B — 2
Alvm ! v

since (A1, B1) = 1. Clearly, d = (Vis/A1Vin, B1) = 1 or 3. Then it follows
that B; = a? or 3a® for some integer a. Since V2, — 3 = 3B, we get
V2. —3=3a%or V2, —3=9a% In asimilar way, it is seen that both cases
are impossible. Therefore 3 { t. Now assume that 3 | m. Since ¢ is odd, we
can write t = 4¢ £ 1 for some ¢ > 0. Thus, V,, = Vigm+m = Vim(mod Usyy,)
by (2.2), which implies that AV,,2? = V,,(modU,,V,,) by (2.17). This
shows that Az? = 1(mod U,,). Since 3 | m, we get Uz | U, and therefore
8 | Up, by (2.15). Then it follows that Az? = 1(mod 8). Assume that 3 { m.
Then 3 { n since 3 { t. Therefore V;, = P(mod8) and V,,, = P(mod38) by
(2.12). Thus, we see that APz? = P(mod8), which implies that Az? =
1(mod 8). Consequently, we get Ar? = 1(mod 8) in both cases. This shows
that A = 1(mod8). Assume that ¢ > 1. Then t = 4¢q £+ 1 for some ¢ > 0.
Thus, n = mt = 4gm £ m = 2 - 2"a + m with a odd and r > 1. Then by
(2.3), we get

AVyx? = Vi, (mod Var),
which implies that AV,,z? = —V,,(mod Vo+). Then it follows that Az? =

—1(mod Vi) since (Vip, Var) = 1 by (2.19). Thus, (A/Var) = (=1/Var) =
—1. Since Vor = +2(mod A) for r > 1, we get

= ()-(5)- ()

a contradiction. Thus, t = 1 and therefore n = m. But this is impossible
since A > 1. O

Theorem 4.10 Let A > 3 be odd and P? = 3(mod A). Then the equation
V,, = AV,,2? has a solution only when m =1 and n = 3.
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Proof. Assume that V,, = AV,,2? and P? = 3(mod A) with A > 3 odd.
Since Vi, | Vi, we get n = mt for some odd integer ¢ by (2.16). Since A | V3,
by using (2.1), it can be shown that n = 3k; for some odd positive integer
k1. This shows that m is odd. Let 3 | m. Then Us | U,, and therefore
8 | Uy, by (2.15). Since t is odd, n = mt = m(4q £ 1) = 4gm £ m for some
integer q. Therefore by using (2.2), we get

Vi = V4qmim = Vim(m()d U2m)7
which implies that
AV, 2? =V (mod U, Vi)

by (2.17). It follows that Az? = 1(modU,,) and so Az? = 1(mod 8) since
8| Up,. Therefore A = 1(mod 8). Let ¢ > 1. Thenn = m(4g+1l) = 2-2"atm
with @ odd and r > 1. Therefore by using (2.3), we get

AV =V, = Vi (mod Var ),
which shows that
Az? = —1(mod V)

since (Vy,, Vor) = 1 by (2.19). Thus,

(7)-()-—

by (2.6). Then by using the fact that Vor = +1(mod A), when P? =

3(mod A), we get
A Vor +1
2= ()= (5)=(5) =

a contradiction. Therefore ¢ = 1 and so n = m, which is impossible since
A > 3. Now let 34 m. Then 3 | ¢t and so t = 3s for some odd integer s.
Thus, n = mt = 3ms. Therefore by using (2.14), we get

AV x? =V, = Vams = Vins(V2, = 3),

ms
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ie.,

Vm S
Vin

(V2. —3) = Az

Clearly, (Vins/Vin, V.2, — 3) = 1 or 3. Then by using (2.14), it is seen that

V2. —3="Vams — 1 = ka? or 3ka? with k | A.

Let ms > 1. Since ms is odd, we get 2ms = 2(4g £ 1) =2-2"a + 2 with a
odd and r > 2. Therefore

wa? = Vams — 1 = —Vig — 1(mod Var)
by (2.3), which implies that
wz? = —(P? — 1)(mod Var)

where w = k or 3k with k| A. This shows that

()= () (5)
<‘Z> =1 (4.5)

by (2.6) and (2.9), respectively. Since r > 2, we get (3/Var) = 1 by (2.8).
Now we show that (k/Var) = 1. Clearly, (k/Vor) =1if k= 1. Let k > 1.
Then Var = —1(mod k) and thus, we get

() = () < (3

As a consequence, we have (k/Var) = 1 for k | A. This shows that (w/Var) =
1, which is impossible by (4.5). Thus, ms =1 and som=1and n=3. O

which implies that

Corollary 4  The equation V,, = 11V,,2% has no solutions.
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Proof. Assume that V,, = 11V,,2? for some integer . Then by Theorems
4.9 and 4.10, we get n = 3 and m = 1. Thus, it follows that V3 = 11Px?,
which implies that P2—3 = 1122. This is impossible since 112% = —2(mod 8)
in this case. O

By using Theorems 4.9 and 4.10, we can give the following corollaries.
Corollary 5 The equation V,, = 13V, 22 has no solutions.

Corollary 6  The equation V,, = 7V, x? has no solutions.

Proof.  Assume that V,, = 7V,,2? for some integer z. If 7| P, then V,, =
7Vimx? has no solutions by Theorem 4.9. Assume that P? = 2 (mod7).
Then n = 2t for some odd integer ¢t by Lemma 3. Since V,,, | V,,, n = ms
for some odd integer s by (2.16). Then it follows that m = 2¢ for some odd
integer ¢. Thus, we get V,,, = 2,7 (mod8) and V,, = 2,7 (mod8) by (2.11).

This is impossible since V,, = 7V, z2. O
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