CONNECTIONS IN THE MANIFOLD ADMITTING
CONTACT TRANSFORMATIONS

By

Toyomon HOSOKAWA

The theory of connections in the manifold admitting the genera-
lized transformations has been developed by the present author.?
As an application of the theory, it is proposed now to consider some
linear displacements in the general manifold preserving a contact
transformation. ‘,

Consider an n-dimensional manifold X, with coordinates «"
(»=a1, az, ..., @), and a covariant vector field of components p,
osculating at each point of X,,. The new manifold obtained in this
manner is called the general manifold T,. However in this general
manifold T, there is no a priori basis for the comparison of the
covariant vectors at different points. Hence we shall define the
relation between an osculating covariant.vector p, at a given point
P(x3) and px +dp, at any nearly point P’(x2+dxz*), by the following
equations :

(1) dp, = . dx* A=a1, Az, «ee. Qn,

where parameters w,, are arbitrary functions of 2’ as well as .
Consequently we see that if at any point P(x)) of X, we let osculate
a covariant vector p,, then we get an osculating covariant vector at
every point of X, so that our manifold T, is completely determined.
The connection so defined is a generalization of that developed some-

(1) T. HosokaAwA: Connections in the Manifold Admitting Generalized Trans-
formations, Proc. of the Imperial Acad., vol. 8 (1932), p. 384-351.
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what by several authors® as may be seen. The curves defined by
equations (1) are called the base paths.
Let us now consider the transformations of the form

(2) = z="2@"; 1), 'pr='pia"; D)

in the 2n variables ¥ and b;, such that the following equations hold
good

(3) dz''p, = (

Ll +"’~'g”iol2m)’zrov = da*p,

o 0P+

for arbitrary values of the differentials dz* and dp,, followingly for

arbitrary functions w, . | | .
A transformation (2) satisfying this condition is a contact trans-

formation. From (3) are derived the equations

: ’ ' [T [
(4) ’pvg:)‘ %pA’ "pygz\ =0.
‘Then one may see that o necessary and sufficient condition that
a set of functions 'z’ (x; p) may determine a contact transfoMation
(2) for which the 'p\(x;p) are uniquely determined is that the func-
tions 'x” (x; p) be homogeneous of degree zero in p’s, that the Jacobian
of the 'z’ (x; p) with respect to the xz’s be of rank n and that the
identities |
'x® ?'x™  9'x® ¥'x*
9x* 9, B op, ox?

be satisfied.® Also every contact transformation admits a wunique
tnverse contact transformation :®

(5) x* = z*(2"; 'p)), vr = pa(2"; 'p)) .

(1) T.Levi-CIVITA: Nozione di parallelismo in una varieta qualunque e consequente
specificazione geometrica della curvatura iemanniana, Rendiconti di Palermo,
vol. 42 (1917), p. 173-206. L. BERWALD: Untersuchung der Kriimmung allge-
meiner metrischer Rdume auf Grund des in ihnen herrschenden Parallelismus,
Math. Zeit., vol. 26 (1926), p. 40-73. E. BorTOoLLOTI: Differential invariants of
direction and point displacements, Annals of Math., vol. 82 (1931), p. 361-377.

(2) L. P. EiseNHART: Continuous Groups of Transformations, Princeton University

. Press, (1933), p. 242.
(3) L. P. EISENHART : loc. cit., p. 249.
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By differentiation of the. first set of (2) and (6), we have

10V [T : A A
(6) dw=(22 42, Y, do = (24205, Y,

where

d'p, = @, d'z" .

Any set of n quantities e (x; p), which are transformed by the
transformation (2) into n new quantities ’v*("x; ’p) in such a way that

(7) v = uivt,

will be called a contravariant vector; a covariant vector is a set of
n quantities w, which are transformed by (2)

(8) "w, = v w,,
where
o'xy |, o'z dx* oz _
(9 uy = +—"w oY=+ Doy, -
) T et ap, “ e Ape

Let it now be assumed that the following relations are satisfied :

oxY — 9P, -~ , 9w’ __ op,
(10) a,powoxw)w —_ a,p); Wox + Py Wy = W
and '
f1q o - _  'py -, ?a* 3'va
. 11 - A Doy + = .
(11 apa Woy Wy v o Py "’i}l& P
But from (9) is obtained
'x¥ 9x* |, d'x¥ Bx* _ 9x* 3’z /x® ox*  _
\uvvk — a = - T : @) x®
AT ot amt alpe T am ops . apy 9pe !

and on the other hand

, o ax* | 2?2 3p, _ g
- 9x* 9'p, 9P, 9D,
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holds good. Therefore from (10), is obtained
(12) . u vk =&, '.

arnd in like rhanner from (11)
(13) viul =8,

Where the 8’s are’ KRONECKER s deltas.

By means of these new definitions it is to be seen that the ri is
a covariant ve:tor, because from (4) we get
,  d'x¥ ,, Y

3 + D 200 @or = Da

w'py=pr,
which becomes by (2)
"D = uDs

The equations (6) show that the dlﬁ'erentla] dx is a contravariant
Vector
A tensor of the higher order is deﬁned‘ by the following equations :

’

TG RRRRR . R P B ’UE’}. v?i-

deeeids — UBi...
When a quanfity’ is invariant by the transformation '(2), it is called a
scalar. Then from (13) it can be shown that v»*w, is a scalar.

Now let ‘‘metrics’’ be introduced in our manifold. 'The metrics
must be an invariance by means of the transformation (2). We consider
one parameter continuous group-G: of the contact transformations.
An infinitesimal transformation of the group G; is defined by equa-
tions of the form :

3Cs; 4. _ .. 8C

(14) ‘vt =+ 28,  'py=pi—

ot ,
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where

(15) Cc=p3Cwo,
9P,

The function C is called the characteristic function of the contact
transformation, and is an invariant function by means of the contact
transformation (2).

From (14) are derived. .

(16) de* _ 3C dp, _ _ 9C

dt 3D, dt x>’

and by integration of the above equations we get the finite equations
of G1:

'2* ="xNz; D, ¥), 'pr ="pi(x; D, T) .

If equations (16) are transformed by means of a contact trans-
formation (2), we obtain

d'z _ aC d'p, _ _ 9C
dt 'py da 'z’

where C is the transform of the characteristic function of the group

G®. Accordingly we see that the 'apC is a contravariant vector.
A
In particular we put 4 .
(17) . . C = 1/'g"‘*plpp, ,-

where the g**’s are functions of the x’s as well as p’s, and are
homogeneous of zero-th degree in the p’s, and the rank of the matrix
of the ¢g*’s is n. But it is evident that the ¢**’s are components
of a contravariant tensor of the second order. We shall take g** as
the fundamental tensor of the metrics.

(1) L.P. EISENHART : loc. cit., p. 262,
(¢) L.P. EISENHART: loc. cit., p. 2564.



174 Co T. Hosokawa

If the functions g™ be defined by the following equations:

o 1 2202
(18) gML = — ’
2 9p,9p,

~

then by EULER"S theorem we get

g™ 1 93C? :
= D\Dy = 0.
9P, Pr Py 2 9p,\9p,. 2P, PP =

Hence from (16), we have

dac* dpn _ - h ag™ |
19 Y = h Ap . ad £ SRS L Nt AR v s
(19) dt 9" P dt 2 2w P
where h=1=C. . A , \
From (1) and the first selt of (19), _ .
d v
d’:’ = hg"* 0, Dy -

"~

If we define arbitrary functions w. by the following equations:

(20) Wio = —Egvo“a—x;fpu ’
then equations (1) are reduced to the second set of (19);

We shall now define a linear displacement for contravariant and
covariant vectors v* and w.:

| . ( Sv¥ = dv'+ I}, v da* + AL v dp, ,
(21)- : | ‘

dw, = dw,— Iy, w,dx*— A°w,dp, ,

where I'Y, and A}° are the functions of #’s as well as p’s. If the
linear displacement is taken along 1;he base paths satisfying (1), we
get from the above equations
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v = do'+ I, v da* ,

22) . 5
(22) g0 = v + v
ox“ 9D,

*
wop."‘ I—?}Lrvl

and o N
Swy = dWy—Pel‘,uJA,dxu ’

(22) dw, | Bw,

¥*
y.w, = w -1 w)
p Wy Py 204 on v ’

where

% i
'Yy = I+ P -

. In order that F, ' may be the components of a mixed tensor,
Iy, must satisfy the following equation :

- v . v % *
@) e Toutul = wil
(-]

b3
where I}, are functions of x’s as well as p’s and '), of 'z’s as
well as 'p’s.

In the same manner as that of the general linear displacements,®
we can calculate the curvature tensor :

* *
or al o w 3]-'}‘ ara
ax‘: - i).'xzppL + Pﬁ“ F” Pﬁ" PP" + . apT kil

Ryt =

When the p’s are such that C==0 and % = const., we can

normalize C = 1, by replacing p,» by 2! p». Since C is homogeneous
of degree one in the p’s. Hence from (19) we get |

dx?
dt

dp, _ _ 1 3g"

24 v .

= g*p,,

When the rank of the hessian of C with respect to p’s is n—1, the
first set of the above equations can be solved with respect to p’s as

(1) T. HOosOKAWA: On the Various Linear Displacements in the Berwald-Finsler’s
Manifold, Science Reports, Téhoku Imp. University, vol. 19 (1930), p. 37-b1.
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A . N
functions of the #’s and #’s, where &* = —%‘%— . We denote by C the

function resulting from the substitution in C of these expressions
for p». Then we get ‘

1 22C

(25) G = "2— ax;‘axy‘ ’ .

P = Gruit" »

From the second set of (24), we have

& [ 2\ dx* dz
=¥ 4+ = =0 .
26) de . \uw) dt  dt
where { ,fy} are CHRISTOFFEL’S symbol with respect to Hu1. Thus

the paths defined by (24) are the geodesics of BERWALD-FINSLER’s
manifold.® In assumption (20), the parallelism defined by equations
(1) is reduced to-that by (26). Accordingly from the first set of (25),
we have |
{ v
\

} fivosb"dx"’.
‘Hence from (1), we obtain
o = —{ 2’; }@»d;" .
1(501\159(‘11191’1’1’,1}7‘ from the lineaf disp]aéement (22) and (22’) we can

reduce the connections which has already been studied by the
present author.®

(1) M.S. KNEBELMEN: Collineations and Motions in Generalized Space, American
Journal of M .thematics, vol. 61 (1928), p. 5627-564.
(2) T. HosokAwaA: loc. cit., €1930), p. 42.



