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Concerning Cartan-Brauer-Hua theorem, T. Nagahara and H. Tominaga
proved the following [3, Lemma 8.5]:

Let $U$ be a ring with 1, and $B$ a two-sided simple subring of $U$

containing 1. If $A$ is a division subring of $U$ containing 1 such that
$B$ is invariant relative to all inner automorphisms determined by non-
zero elements of $A$ , then either $A\subseteq B$ or $A\subseteq V_{U}(B)$ .

In what follows, by making use of the same method as in the proof
of this fact, we shall present a slight generalization of [3, Lemma 3.5]
(Theorem 1) and an extension of [2, Theorem 7.13.1 (2)] (Theorem 2).
And finally, we shall prove that Theorem 2 is still valid for inner auto-
morphisms provided $A$ is a simple ring (Theorem 3). Throughout the
present note, a ring will mean a ring with the identity element 1, and a
subring one with this identity element.

Our first theorem containing [3, Lemma 3.5] can be stated as follows:
Theorem 1. Let $U$ be a ring, and $A$ and $B$ a subring of $U$ satisfy-

ing minimum condition for right ideals and a two-sided simple sub-
$\gamma ing$ of $U$ respectively. Iffor each $a\in A$ and $b\in B$ there exists an element
$b_{1}\in B$ such that $ab=b_{1}a$ , then either $A\subseteq B$ or $A\subseteq V_{U}(B)$ .

Proof. To be easily seen from the proof of [3, Lemma 3.5], it suffices
to prove that $A=(A_{\cap}B)^{\cup}V_{A}(B)$ . Let $a$ be an arbitrary element of A.
If $a$ and 1 are linearly left independent over $B$ , then for each $b\in B$ , ab
$=b_{1}a$ and $(a+1)b=b_{2}(a+1)$ yield $(b_{1}-b_{2})a+(b-b_{2})=0$ , whence it follows
$b_{1}=b_{2}=b$ . Consequently, we obtain $a\in V_{A}(B)$ . If, on the other hand, $a$

and 1 are linearly dependent, then there holds $d_{1}a=d_{2}$ for some non-zero
$d_{1}\in B$ . In case $d_{2}\neq 0$ , since $B$ is two-sided simple, we obtain $da=1$ for
some $d\in B$ . And so, recalling that $A$ satisfies minimum condition for right
ideals, one will readily see that $a$ is a regular element of $A$ . And then,
$aB=Ba=B$ will yield at once $a\in B$ . In case $d_{2}=0$ too, since $d_{1}(a+1)=d_{1}$

$\neq 0$ , we obtain $a+1\in B$ . Thus, in either case, $a$ is contained in $B$ . We
have proved tnerefore $A=(A_{\cap}B)^{\cup}V_{A}(B)$ .

Combining our method with the one employed in the proof of [2,

1) The author wishes to express his gratitude to Prof. G. Azumaya for his kind guidance.
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Theorem 7.13.1 (2)], we can obtain the following:
Theorem 2 Let $U$ be a ring and $B$ a two-sided simple subring of

U. If $B$ is not of characteristic 2 and $A$ is a subring of $U$ such that
$B$ is invariant relative to all inner derivations determined by elements
of $A$ , then either $A\subseteq B$ or $A\subseteq V_{U}(B)$ .

Proof. Let $a$ be an arbitrary element of $A$ . For any element $b\in B$ ,
we set $[b, a]=ba-ab=b_{1},$ $[[b, a]a]=b_{21}[b, a^{2}]=b_{3}$ where $b_{1},$ $b_{2}$ and $b_{3}$ are
in $B$ . Then, one will easily see that $2b_{1}a=2(ba^{2}-aba)=b_{2}+b_{3}\in B$ . And, if
$a$ and 1 are linearly left independent over $B$ , we obtain $b_{1}=0$ . This means
obviously that $a\in V_{A}(B)$ . On the other hand, if $a$ and 1 are linearly
dependent: $b^{*}a-b^{**}=0$ with non-zero $b^{*}\in B$ , then noting that $B$ is two-
sided simple, it will be easy to see that $a\in A_{\cap}B$ . We have proved there-
fore $A=(A_{\cap}B)^{\cup}V_{A}(B)$ . Now, the rest of the proof is the same with the
latter half of the proof of [3, Lemma 3.5].

Finally, we shall present the following:
Theorem 3. Let $U$ be a ring and $B$ a two-sided simple subring of

U. If $B$ is not of characteristic 2, and $A$ a simple subring of $U$ such
that $B$ is invariant relative to all inner automorphisms determined by
regular elements of $A$ , then either $A\subseteq B$ or $A\subseteq V_{U}(B)$ .

Proof. Let $K$ be the prime field of $A$ (which is evidently contained
in the center of $B$), and let $a$ be an arbitrary $\alpha$-biregular elementa) of $A$

$(0\neq\alpha\in K)$ . If $a$ and 1 are linearly left independent over $B$ , then for an
arbitrary $b\in B,$ $ab=b^{*}a$ and $(a-\alpha)b=b^{**}(a-\alpha)$ yield at once $(b^{*}-b^{**})a$

$.+a(b^{**}-b)=0$ , whence it follows $b^{*}=b^{**}=b$ . Hence we obtain $a\in V_{A}(B)$ .
On the other hand, if $a$ and 1 are linearly dependent, then it will be easy
to see that $a\in B$ . Since each element of $A$ is a sum of biregular elements
by [1], the fact proved above will show that $B$ is invariant relative to
all inner derivations determined by elements of $A$ . Hence, our assertion
is a direct consequence of Theorem 2.
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2) This theorem is essentially due to Dr. H. Tominaga who kindly permitted us to cite
it here. We are indebted to him for his helpful suggestions and advices.

3) Cf. [1].


