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Recently in [2, \S 3],1) the next was obtained: Let $R$ be a simple ring
(with minimum condition) of characteristic $p\neq 0$ , and $\mathfrak{G}$ a DF-group of
order $p^{e}$ . If $S=J(\mathfrak{G}, R)$ , then $[R:S]$ divides $p^{e}$ , and $V_{R}(S)$ coincides
with the composite of the center of $R$ and that of $S$ . More recently, in
[1], M. Moriya has proved the following: Let $R$ be a division ring, $\mathfrak{G}$

an automorphism group2) of order $p^{e}$ ( $p$ a prime), and $S=J(\mathfrak{G}, R)$ . If
the center of $S$ contains no primitive p-th roots of 1, then $[R:S]$ divides
$p^{e}$ , and $V_{R}(S)$ coincides with the composite of the center of $R$ and that
of S. And moreover, $[R:S]$ is equal to $p^{e}$ provided $R$ is not of character-
istic $p$ . The purpose of this note is to extend these facts to simple rings
in such a way that our extension contains also the fact cited at the
beginning.

In what follows, we shall use the following conventions: $R$ is a simple
ring with the center $C$, and $\mathfrak{G}$ a DF-group of order $p^{e}$ where $p$ is a prime
number. We set $S=J(\mathfrak{G}, R)$ , which is a simple ring by [2, Lemma 2].
And by $Z$ and $V$ we shall denote the center of $S$ and the centralizer
$V_{R}(S)$ of $S$ in $R$ respectively. Finally, as to notations and terminologies
used here, we follow [2].

Now, we shall begin our study with the following theorem.
Theorem 1. If $Z$ contains no primitive p-th roots of 1, then $[R:S]$

diviees $p^{e}$ .
Proof. Firstly, in case $e=1$ , (S$ is either outer or inner. If $\mathfrak{G}$ is outer,

then it is well-known that there holds $[R:S]=p$ . Thus, we may, and
shall, assume that $\mathfrak{G}$ is inner, and set $\mathfrak{G}=\{1,v\sim, \cdots, v^{p- 1}\sim\}$ . Then, to be
easily seen, $v$ is contained in $Z(\supseteq C)$ , and $v^{p}=c$ for some $c\in C$. If the
polynomial $X^{p}-c\in C[X]$ is reducible, then it possesses a linear factor, that
is, there exists an element $c_{0}\in C$ such that $c_{0}^{v}=c$ , whence it follows that

1) Numbers in brackets refer to the references cited at the end of this note.
2) One may remark here that in case $R$ is a division ring any automorphism group of

finite order becomes naturally a DF-group.
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$(vc_{0}^{-1})^{p}=1$ . Recalling here $vc_{0}^{-1}\in Z$, we obtain $vc_{0}^{-1}=1$ . But this contra-
dicts $\sim v\neq 1$ . Consequently, we see that $X^{p}-c$ is irreducible in $C[X]$ , and
so $V=C[v]$ yields at once $p=[V:C]=[R:S]$ . Now we proceed with
induction for $e$ , and assume $e>1$ . Take a subgroup $\mathfrak{P}$ of order $P$ which
is contained in the center of $\mathfrak{G}$ , and set $P=J(\mathfrak{P}, R)$ . Then, by [2, Lemma
3], $\mathfrak{P}$ is also a DF-group and $V_{P}(S)$ is a division ring of finite dimension
over $V_{P}(P)$ . Hence, $\mathfrak{G}|P$( $=the$ restriction of $\mathfrak{G}$ to $P$) is a DF-group

whose order is a divisor of $p^{e- 1}$ . And so, by our induction hypothesis,
$[P:S]$ is a divisor of $p^{e-1}$ . Further, noting that $J$ ( $\mathfrak{G}$ I $V_{P}(S),$ $V_{P}(S)$) $=Z$

and the order of $\mathfrak{G}|V_{P}(S)$ is a divisor of $p^{e- 1}$ , we see that $[V_{P}(S):Z]$ is
a divisor of $p^{e- 1}$ again by our induction hypothesis. Accordingly, it fol-
lows that $V_{P}(S)$ , so that $V_{P}(P)$ contains no primitive p-th roots of 1.
Combining this with the fact that $\mathfrak{P}$ is a DF-group of order $p$ , we obtain
$[R:P]=p$ . Hence, $[R:S]=[R:P]\cdot[P:S]$ is a divisor of $p^{e}$ .

Lemma 1. If $Z$ contains no primitive p-th roots of 1, then $S\neq C$

provided $e>0$ .
Proof. If, on the contrary, $S=C$ then $R$ is a division ring necessarily

and $\mathfrak{G}$ is inner. Now, choose a subgroup $\mathfrak{P}=\{1,v\sim, \cdots, \sim v^{p-1}\}$ of order $P$

contained in the center of $\mathfrak{G}$ . Then, for each $\sigma=\tilde{u}\in \mathfrak{G},$ $\sim\sim v\sigma=\sigma v$ implies
$v\sigma=vc_{\sigma}$ with some $c_{\sigma}\in C\subseteq Z$. And $v^{p}=uv^{p}u^{-1}=(v\sigma)^{p}=v^{p}c_{\sigma}^{p}$ yields $c_{\sigma}^{p}=1,$ $i$ . $e$ .
$c_{\sigma}=1$ . This means evidently $v\in S=C$. But this is a contradiction.

Theorem 2. If $Z$ contains no primitive p-th roots of $1,thenV$ is the
conposite $C[Z]$ of $C$ and $Z$.

Proof. Since the order of $\mathfrak{G}|V$ is a divisor of $p^{e}$ and $J(\mathfrak{G}|V, V)=Z$,
[V: $Z$] divides $p^{e}$ by Theorem 1. We see therefore that $V$ contains no
primitive p-th roots of 1. For the subgroup $3=\tilde{V}$ of $\mathfrak{G}$ , the order of
3 $|V$ is a divisor of $p^{e}$ and $J(31V, V)$ coincides with the center $Z_{0}$ of
V. And so, by Lemma 1, 3 $|V=1$ , that is, $V$ is a field. (If $e=0$ , then
$V=C$ evidently.) Finally, suppose $V\supseteq C[Z]$ . Since $V=V(\mathfrak{G})(=the$ sub-
ring generated by all regular elements $v\in R$ with $\sim v\in \mathfrak{G}$), $\mathfrak{G}$ contains an
inner automorphism determined by an element, $v$ not contained in $C[Z]$ .
Then evidently $v^{p^{(f}}=c$ for some $d>0$ and $c\in C$. Since $V$ is Galois and finite
over $C[Z]$ , and so, since the field $V$ is normal and separable over the
subfield $C[Z]$ , there exists an element $u\in V$ different from $v$ such that
$u^{v^{d}}=v^{p^{(}}fi$ . $e$ . $(vu^{-1})^{p^{a}}=1$ . Recalling here $V$ does not contain primitive
p-th roots of 1, we have $vu^{-1}=1,$ $i$ . $e$ . $u=v$ . But this is a contradiction.
We have proved therefore $V=C[Z]$ .
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Now, combining Theorem 2 with [3, Theorem 1. 1] and [3, Theorem
3. 1], we obtain the next at once.

Corollary 1. If $Z$ contains no primitive p-th roots of 1, then each
intermediate ring $T$ of $R/S$ is a simple ring and $T=S[t]$ with some $t$ .

Theorem 3. If $Z$ contains no primitive p-th roots of 1, and $S$ is
not of characteristic $p$, then $[R:S]$ coincides with $p^{e}$ .

Proof. At first, it may be noted that the characteristic of $S$ is dif-
ferent from 2. If $e=1$ , then our assertion has been shown in the proof
of Theorem 1. We shall proceed again by induction for $e$ . Take a sub-
group $\mathfrak{P}$ of order $P$ which is contained in the center of $\mathfrak{G}$ , and set
$P=J(\mathfrak{P}, R)$ . Then, as is cited in the proof of Theorem 1, $\mathfrak{P}$ and $\mathfrak{G}|P$ are
DF-groups of $R$ and $P$ respectively, and $V_{P}(P)$ contains no primitive p-th
roots of 1. Thus, by our induction hypothesis, it follows that $[R:S]$
$=[R:P]\cdot[P:S]=p$ . (order of $\mathfrak{G}|P$). In what follows, we shall prove
that $\mathfrak{G}(P)=$ { $\sigma\in \mathfrak{G}$ ; $x\sigma=x$ for all $x\in P$} coincides with $\mathfrak{P}$ , which enables us
evidently to complete our proof. Since in case $\mathfrak{P}$ is outer there is nothing
to prove, we shall restrict our proof to the case where $\mathfrak{P}$ is inner: $\mathfrak{P}$

$=\{1,v\sim, \cdots, \sim v^{p-1}\}$ . “ Since $R/P$ is evidently inner Galois, each element of
$\mathfrak{G}(P)$ is an inner automarphism. If $\tilde{u}\neq 1$ is in $\mathfrak{G}(P)$ , then $u^{p^{d}}=c^{\prime}$ with
some $d>0$ and $c’\in C$. Recalling that the field $V_{R}(P)=C[v]$ is of dimen-
sion $p$ over $C,$ $u$ possesses a minimal polynomial $f(x)=X^{p}+\cdots+c_{p}\in C[X]$ .
If $\zeta$ is a primitive $p^{(}f$-th root of 1 (contained in a suitable extension field
of $V$), then $\{u\zeta^{i} ; i=0, \cdots, p^{a}-1\}$ exhausts the roots of $X^{p^{d}}-c^{\prime}=0$ . Hence,
noting that $f(X)$ divides $X^{1)}-c^{\prime}a$ in $C[X]$ , we obtain $-c_{p}=u^{p}\zeta^{j}$ with some
$i$. Since, as is noted in the proof of Theorem 2, $V_{R}(P)(\subseteq V)$ contains no
primitive p-th roots of 1, $\zeta^{i}=-c_{p}u^{-p}\in V_{R}(P)$ yields at once $u^{p}=-c_{p}\in C$.
Consequently, by [1, Hilfssatz 4], it will be seen that $u=v^{k}c$ with some
integer $k$ and $c\in C$, which shows that $\tilde{u}=\sim v^{k}\in \mathfrak{P}$ .

As a direct consequence of Theorem 3 and [2, Theorem 4], we obtain
the following:

Corollary 2. If $Z$ contains no primitive p-th roots of 1, and $S$ is
not of characteristic $p$ , then $R/S$ possesses a (S-normal basis element, that
is, there exists an element $r\in R$ such that $R=\sum_{\sigma\in \mathfrak{G}^{\oplus}}(r\sigma)S$.



On a Simple Ring with a Galois Group of Order $p^{e}$ 201

References

[1] M. MORIYA: Zur Galoisschen Theorie der Schiefkorper, Math. J. Okayama Univ.,
9 (1959), 49-62.

[2] T. NAGAHARA, T. ONODERA and H. TOMINAGA: On normal basis theorem and
strictly Galois extensions, Math. J. Okayama Univ., 8 (1958), 133-142.

[3] T. NAGAHARA and H. TOMINAGA: On Galois and locally Galois extensions of simple
rings, Math. J. Okayama Univ., 10 (1961) to appear.

Department of Mathematics,
Hokkaido University

(Received September 19, 1960)

.


