ON A SIMPLE RING WITH A GALOIS GROUP OF ORDER p^e

By

Takao TAKAZAWA and Hisao TOMINAGA

Recently in $[2, \S3]$,¹⁾ the next was obtained: Let R be a simple ring (with minimum condition) of characteristic $p \neq 0$, and \mathfrak{G} a DF-group of order p^e . If $S=J(\mathfrak{G}, R)$, then [R:S] divides p^e , and $V_R(S)$ coincides with the composite of the center of R and that of S. More recently, in [1], M. Moriya has proved the following: Let R be a division ring, \mathfrak{G} an automorphism group²⁾ of order p^e (p a prime), and $S=J(\mathfrak{G}, R)$. If the center of S contains no primitive p-th roots of 1, then [R:S] divides p^e , and $V_R(S)$ coincides with the composite of the center of R and that of S. And moreover, [R:S] is equal to p^e provided R is not of characteristic p. The purpose of this note is to extend these facts to simple rings in such a way that our extension contains also the fact cited at the beginning.

In what follows, we shall use the following conventions: R is a simple ring with the center C, and \mathfrak{G} a DF-group of order p^e where p is a prime number. We set $S=J(\mathfrak{G}, R)$, which is a simple ring by [2, Lemma 2]. And by Z and V we shall denote the center of S and the centralizer $V_R(S)$ of S in R respectively. Finally, as to notations and terminologies used here, we follow [2].

Now, we shall begin our study with the following theorem.

Theorem 1. If Z contains no primitive p-th roots of 1, then [R:S] divises p^e .

Proof. Firstly, in case e=1, (G) is either outer or inner. If (G) is outer, then it is well-known that there holds [R:S]=p. Thus, we may, and shall, assume that (G) is inner, and set $(G)=\{1, \tilde{v}, \dots, \tilde{v}^{p-1}\}$. Then, to be easily seen, v is contained in $Z(\supseteq C)$, and $v^p=c$ for some $c \in C$. If the polynomial $X^p-c \in C[X]$ is reducible, then it possesses a linear factor, that is, there exists an element $c_0 \in C$ such that $c_0^p=c$, whence it follows that

¹⁾ Numbers in brackets refer to the references cited at the end of this note.

²⁾ One may remark here that in case R is a division ring any automorphism group of finite order becomes naturally a DF-group.

 $(vc_0^{-1})^p = 1$. Recalling here $vc_0^{-1} \in Z$, we obtain $vc_0^{-1} = 1$. But this contradicts $\tilde{v} \neq 1$. Consequently, we see that $X^p - c$ is irreducible in C[X], and so V = C[v] yields at once p = [V:C] = [R:S]. Now we proceed with induction for e, and assume e > 1. Take a subgroup \mathfrak{P} of order p which is contained in the center of \mathfrak{G} , and set $P = J(\mathfrak{P}, R)$. Then, by [2, Lemma 3], \mathfrak{P} is also a DF-group and $V_P(S)$ is a division ring of finite dimension over $V_P(P)$. Hence, $\mathfrak{G} \mid P(=$ the restriction of \mathfrak{G} to P) is a DF-group whose order is a divisor of p^{e-1} . And so, by our induction hypothesis, [P:S] is a divisor of p^{e-1} . Further, noting that $J(\mathfrak{G} \mid V_P(S), V_P(S)) = Z$ and the order of $\mathfrak{G} \mid V_P(S)$ is a divisor of $p^{e^{-1}}$, we see that $[V_P(S):Z]$ is a divisor of p^{e-1} again by our induction hypothesis. Accordingly, it follows that $V_P(S)$, so that $V_P(P)$ contains no primitive p-th roots of 1. Combining this with the fact that \mathfrak{P} is a DF-group of order p, we obtain [R:P]=p. Hence, $[R:S]=[R:P]\cdot[P:S]$ is a divisor of p^e .

Lemma 1. If Z contains no primitive p-th roots of 1, then $S \neq C$ provided e > 0.

Proof. If, on the contrary, S=C then R is a division ring necessarily and \mathfrak{G} is inner. Now, choose a subgroup $\mathfrak{P}=\{1, \tilde{v}, \dots, \tilde{v}^{p-1}\}$ of order pcontained in the center of \mathfrak{G} . Then, for each $\sigma=\tilde{u}\in\mathfrak{G}$, $\tilde{v}\sigma=\sigma\tilde{v}$ implies $v\sigma=vc_{\sigma}$ with some $c_{\sigma}\in C\subseteq Z$. And $v^{p}=uv^{p}u^{-1}=(v\sigma)^{p}=v^{p}c_{\sigma}^{p}$ yields $c_{\sigma}^{p}=1$, i. e. $c_{\sigma}=1$. This means evidently $v\in S=C$. But this is a contradiction.

Theorem 2. If Z contains no primitive p-th roots of 1, then V is the conposite C[Z] of C and Z.

Proof. Since the order of $(\mathfrak{G} \mid V)$ is a divisor of p^e and $J(\mathfrak{G} \mid V, V) = Z$, [V:Z] divides p^e by Theorem 1. We see therefore that V contains no primitive p-th roots of 1. For the subgroup $\mathfrak{F} = \tilde{V}$ of \mathfrak{G} , the order of $\mathfrak{F} \mid V$ is a divisor of p^e and $J(\mathfrak{F} \mid V, V)$ coincides with the center Z_0 of V. And so, by Lemma 1, $\mathfrak{F} \mid V=1$, that is, V is a field. (If e=0, then V=C evidently.) Finally, suppose $V \supseteq C[Z]$. Since $V=V(\mathfrak{G})$ (=the subring generated by all regular elements $v \in R$ with $\tilde{v} \in \mathfrak{G}$), \mathfrak{G} contains an inner automorphism determined by an element v not contained in C[Z]. Then evidently $v^{p^d}=c$ for some d>0 and $c \in C$. Since V is Galois and finite over C[Z], and so, since the field V is normal and separable over the subfield C[Z], there exists an element $u \in V$ different from v such that $u^{p^d} = v^{p^d}$, i. e. $(vu^{-1})^{p^d} = 1$. Recalling here V does not contain primitive p-th roots of 1, we have $vu^{-1}=1$, i. e. u=v. But this is a contradiction. We have proved therefore V=C[Z]. Now, combining Theorem 2 with [3, Theorem 1.1] and [3, Theorem 3.1], we obtain the next at once.

Corollary 1. If Z contains no primitive p-th roots of 1, then each intermediate ring T of R/S is a simple ring and T=S[t] with some t. Theorem 3. If Z contains no primitive p-th roots of 1, and S is not of characteristic p, then [R:S] coincides with p^e .

Proof. At first, it may be noted that the characteristic of S is different from 2. If e=1, then our assertion has been shown in the proof of Theorem 1. We shall proceed again by induction for e. Take a subgroup \mathfrak{P} of order p which is contained in the center of \mathfrak{G} , and set $P=J(\mathfrak{P}, R)$. Then, as is cited in the proof of Theorem 1, \mathfrak{P} and $\mathfrak{G} | P$ are DF-groups of R and P respectively, and $V_P(P)$ contains no primitive p-th roots of 1. Thus, by our induction hypothesis, it follows that $\lceil R:S \rceil$ $= [R:P] \cdot [P:S] = p \cdot (\text{order of } \emptyset | P)$. In what follows, we shall prove that $\mathfrak{G}(P) = \{\sigma \in \mathfrak{G} ; x\sigma = x \text{ for all } x \in P\}$ coincides with \mathfrak{P} , which enables us evidently to complete our proof. Since in case \mathfrak{P} is outer there is nothing to prove, we shall restrict our proof to the case where $\mathfrak P$ is inner: $\mathfrak P$ ={1, $\tilde{v}, \dots, \tilde{v}^{p-1}$ }. Since R/P is evidently inner Galois, each element of $\mathfrak{G}(P)$ is an inner automarphism. If $\widetilde{u} \neq 1$ is in $\mathfrak{G}(P)$, then $u^{p^d} = c'$ with some d>0 and $c' \in C$. Recalling that the field $V_R(P) = C[v]$ is of dimension p over C, u possesses a minimal polynomial $f(x) = X^p + \cdots + c_p \in C[X]$. If ζ is a primitive p^{d} -th root of 1 (contained in a suitable extension field of V), then $\{u\zeta^i; i=0, \dots, p^d-1\}$ exhausts the roots of $X^{p^d}-c'=0$. Hence, noting that f(X) divides $X^{p^d} - c'$ in C[X], we obtain $-c_p = u^p \zeta^j$ with some j. Since, as is noted in the proof of Theorem 2, $V_R(P)(\subseteq V)$ contains no primitive p-th roots of 1, $\zeta^i = -c_p u^{-p} \in V_R(P)$ yields at once $u^p = -c_p \in C$. Consequently, by [1, Hilfssatz 4], it will be seen that $u = v^k c$ with some integer k and $c \in C$, which shows that $\tilde{u} = \tilde{v}^k \in \mathfrak{P}$.

As a direct consequence of Theorem 3 and [2, Theorem 4], we obtain the following:

Corollary 2. If Z contains no primitive p-th roots of 1, and S is not of characteristic p, then R/S possesses a (G-normal basis element, that is, there exists an element $r \in R$ such that $R = \sum_{\sigma \in G} (r\sigma)S$.

References

- [1] M. MORIYA: Zur Galoisschen Theorie der Schiefkörper, Math. J. Okayama Univ., 9 (1959), 49-62.
- [2] T. NAGAHARA, T. ONODERA and H. TOMINAGA: On normal basis theorem and strictly Galois extensions, Math. J. Okayama Univ., 8 (1958), 133-142.
- [3] T. NAGAHARA and H. TOMINAGA: On Galois and locally Galois extensions of simple rings, Math. J. Okayama Univ., 10 (1961) to appear.

Department of Mathematics, Hokkaido University

×.

(Received September 19, 1960)