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It is a well-known theorem of E. Artin that if $F$ is an algebraically

closed (commutative) field of characteristic $0$ then any automorphism of
$F$ of finite order is of order at most 2. Recently, in [1], H. Lenz drew
out the essence of Artin’s proof [1, Satz 3], and obtained several results
concerned with automorphism groups of finite order. In the present note,

we shall prove an extension of [1, Satz 3] to division rings and that of
[1, Satz 5], whose proof is notably easy.

Let $K$ be a division ring with the center $Z$, and $\mathfrak{G}$ an automorphism

group of $K$. Then, $\mathfrak{G}$ induces an automorphism group $\overline{\mathfrak{G}}$ of the group
$K^{*}/Z^{*}$ , where $K^{*}$ is the multiplicative group consisting of all non-zero

elements of $K$. Particularly, if $\overline{\mathfrak{G}}$ coincides with the identity group then
$\mathfrak{G}$ will be called an M-group. In case $K$ is commutative, the notion of
M-group is trivial of course. Now let $p$ be a prime number, and $k$ an
element of $K$. If there exists a division subring $K^{\prime}$ of $K$ such that $k^{p}$

$\in K^{\prime}$ and $k\not\in K^{\prime}$ , then $k$ will be called a p-th root of $K$. We consider here
the following property of $K$ :

(P) For each p-th root $k$ of $K$, the equation $x^{p}-k=0$ has a solution
in $K$.

At first, we shall prove the following fundamental lemma.

Lemma 1. Let $K$ be strictly Galois’ with respect.to an M-group $\mathfrak{P}$

$=\{\sigma^{i}\}$ of order $p$ , and possess the property (P). If $Z$ contains a primi-

tive $p^{2}$-th root $\eta$ of 1, then $\eta$ is not contained in $L=J(\mathfrak{P}, K)(=the$ fix-
subring of $\mathfrak{P}$).

Proof. Evidently, $\zeta=\eta^{p}$ is a primitive p-th root of 1, and $[\Phi(\zeta):\Phi]$

$<p$ , where $\Phi$ is the prime subfield of $K$. If $\zeta\sigma\neq\zeta$ , then $\Phi(\zeta)$ being $\mathfrak{P}-$

normal, we have $[\Phi(\zeta):\Phi]\geq p$ . We see therefore $\zeta$ is contained in $L$ .
Accordingly, by [2, Corollary 2], there exists a non-zero element $x\in K$

such that $ x\sigma=x\zeta$ . As $x^{p}\in L$ and $K=L[x]$ consequently, the property (P)

1) Cf. [3].
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secures the existence of $y\in K$ with $y^{p}=x$ . Recalling here $\mathfrak{P}$ is an M-
group, we have $y\sigma=yz$ for some $z\in Z.$ $(y\sigma)^{v}=y^{p}\sigma=x\zeta=(y\eta)^{p}$ yields there-
fore $\{(y\sigma)y^{-1}\eta^{-1}\}^{p}=(z\eta^{-1})^{p}=1$ , whence we have $y\sigma=y\eta\zeta^{\lambda}$ where $0\leq\lambda\leq p-1$ .
If $\eta\in L$ , then $y\sigma^{p}=y\eta^{p}\zeta^{p\lambda}=y\zeta\neq y$ . But this contradicts $\sigma^{p}=1$ .

The following lemma will be almost evident from the proof of [3,
Lemma 5].

Lemma 2. Let $K$ be strictly Galois with respect to $\mathfrak{G}$ . Then, for an
arbitrary subgroup $\mathfrak{H}$ of $\mathfrak{G},$ $K$ is strictly Galois with respect to $\mathfrak{H}$ .

Now we can extend [1, Satz 3] to division rings.
Theorem 1. Let $K$ be a division ring of characteristic $0$ which is

strictly Galois with respect to an M-group $\mathfrak{G}$ of order $n$ . If $K$ and $Z$

possess the $prope\gamma ty(P)$ , and $Z$ contains a primitive $2p$-th root of 1, then
$p$ does not divide $n$ if $p>2,4$ does not divide $n$ if $p=2$ .

Proof. (I) $p=2$ . If 4 diveds $n$ , then $\mathfrak{G}$ contains a subgroup $\mathfrak{H}$ of
order 4, and $K$ is strictly Galois with respect to $\mathfrak{H}$ (Lemma 2). Let $\mathfrak{P}_{1}$ be a
subgroup of $\mathfrak{H}$ of order 2, and set $L_{1}=J(\mathfrak{P}_{1}, K)$ . Then, $K=L_{1}[i]$ by Lemma
1, where $i$ is an element of $Z$ with $i^{2}=-1$ . ( $i$ is a primitive $4(=2p=p^{2})$-th
root of 1.) And so, $i\not\in L=J(\mathfrak{H}, K)$ . If we set $L_{2}=L[i]$ , then $[L_{2} : L]=2$

and $\mathfrak{H}(L_{2})\neq 1^{2)}$ For, if not, every $\sigma$ in $\mathfrak{H}$ different from 1 moves $i$ into
$-i$ . But this is impossible. This proves that $K/L_{2}$ is strictiy Galois
with ressect to $\mathfrak{H}(L_{2})$ of order 2. Hence, again by Lemma 1, $K=L_{2}[i]$
$=L_{2}$ . This contradiction shows that $4+n$ .

(II) $p>2$ . If $P$ divides $n$ , then $\mathfrak{G}$ contains a subgroup $\mathfrak{P}=\{\sigma^{i}\}$ of
order $p$ , and $K$ is strictly Galois with respect to $\mathfrak{P}$ Since $Z$ possesses
the property (P), it contains primitive $p^{J_{-}}th$ roots of 1 for all $j$. Since
$E_{p’\infty}$ , the subfield (of $Z$) generated by all the $p^{J_{-}}th$ roots of 1 $(j=1,2$,

$)$ , is $\mathfrak{P}$-normal, Lemma 1 shows that $\sigma$ induces an automorphism of
$E_{p’\infty}$ which leaves invariant every primitive $p$-th root of 1 and moves
really primitive $p^{2}$-th roots of 1. But this contradicts [1, Satz 1].

Let $L$ be a division subring of $K$. If, for every $k\in K$, there exists
a finite number of division subrings $K_{1},$

$\cdots,$ $K_{m}$ such that $ L(k)=K_{1}\supseteq\cdots$

$\supseteq K_{m}=L$ and $[K_{i} : K_{i+1}]_{l}\leq n$ (fixed) for $i=1,$ $\cdots,$ $m-1$ , then we say that
$K/L$ is n-accessible. Further if, for every intermediate divisi6n subring
$L^{\prime}$ of $K/L,$ $K/L^{\prime}$ is n-accessible, then $K/L$ will be said to be completely
n-accessible. To be easily seen, in case $K$ is commutative, the notion of
n-accessibility coincides with that of complete n-accessibility. Now, let
$K/L$ be completely n-accessible and strictIy Galois with respect to $\mathfrak{G}$ of

2) $\mathfrak{H}(L_{2})=$ { $\sigma\in \mathfrak{H}|x\sigma=x$ for all $x\in L_{2}$}.
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prime order $p$, where $\mathfrak{G}$ is an automorphism group of $K$ which leaves
invariant every element of $L$ . Then, $[K:L^{\prime}]=p$ where $L^{\prime}=J(\mathfrak{G}, K)$ , whence
$K=L^{\prime}[k]$ for some $k$ . On the other hand, there exists a finite number
of division subrings $K_{1},$ $\cdots,$ $K_{m}$ such that $K=K_{1}\supseteq\cdots\supseteq K_{m}=L^{\prime}$ and
$[K_{i} : K_{i+1}]_{l}=n_{i}\leq n$ . And so, $p=[K:L^{\prime}]=\prod_{i=1}^{m-1}n_{i}$ . Thus, we have proved the

following which contains [1, Satz 5].

Theorem 2. Let $K$ be a division ring, and completely n-accessible
over a division subring L. If $K$ is strictly Galois with respect to $\mathfrak{G}$ of
prime order $p$ and $J(\mathfrak{G}, K)\supseteq L$ , then $p\leq n$ .
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