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It is a well-known theorem of E. Artin that if F' is an algebraically
closed (commutative) field of characteristic 0 then any automorphism of
F of finite order is of order at most 2. Recently, in [1], H. Lenz drew
out the essence of Artin’s proof [1, Satz 3], and obtained several results
concerned with automorphism groups of finite order. In the present note,
we shall prove an extension of [1, Satz 3] to division rings and that of
[1, Satz 5], whose proof is notably easy.

Let K be a division ring with the center Z, and & an automorphism

group of K. Then, & induces an automorphism group ® of the group
K*/Z*, where K* is the multiplicative group consisting of all non-zero

elements of K. Particularly, if & coincides with the identity group then
& will be called an M-group. In case K is commutative, the notion of
M-group is trivial of course. Now let » be a prime number, and k an
element of K. If there exists a division subring K’ of K such that k?
¢K’ and k¢ K', then k will be called a p-th root of K. We consider here
the following property of K:

(P) For each p-th root k of K, the equation x*—k=0 has a solution

At first, we shall prove the following fundamental lemma.

Lemma 1.  Let K be strictly Galois® with respect to an M—group B
={c'} of order p, and possess the property (P). If Z contains a prima-
tive p*-th root 7 of 1, them 7 is not contained in L=J(P, K) (=the fix-
subring of P). ‘ |

Proof. Evidently, {=7? is a primitive p-th root of 1, and [&({): 2]
<p, where ¢ is the prime subfield of K. If {o=F(, then ?(0) being P-
normal, we have [@(0): @]>p. We see therefore { is contained in L.
Accordingly, by [2, Corollary 2], there exists a non-zero element xe K
such that wo=x¢. As zPeL and K=L[x] consequently, the property (P)

1) Cf. [3].
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secures the existence of yec¢K with y?=u. Recalling here P is an M-
group, we have yo=yz for some 2¢Z. (yo)’=yPo=at= (yn)® Yyields there-
fore {(yo)y 'y '}?=(27"")?=1, whence we have yo= ynC* where 0<21<p—1.
If neL, then yo?=yyp"{"*=y{y. But this contradicts ¢?=1.

The followmg lemma will be almost evident from the proof of [3,
Lemma 5]7.

’ Lemma 2. Let K be strictly Galois with respect to &. Then, for an
arbitrary subgroup  of &, K is strictly Galois with respect to 9.

Now we can extend [1, Satz 8] to division rings.

Theorem 1. Let K be a division ring of characteristic 0 which is
strictly Galois with respect to an M-group & of order m. If K and Z
possess the property (P), and Z contains a primitive 2p-th root of 1, then
p does not divide n if p>2,4 does mot divide n if p=2.

Proof. (1) p=2. If 4 diveds 7n, then & contains a subgroup £ of
~order 4, and K is strictly Galois with respect to 9 (Lemma 2). Let L3, be a
subgroup of  of order 2, and set L,=J(P,, K). Then, K =L,[?] by Lemma
1, where ¢ is an element of Z with i*=—1. (¢ is a primitive 4(=2p=17p?-th
root of 1.) And so, ¢ L=J(9, K). If we set L,=L[¢], then [L,: L]=2
and $(L,)=*1. For, if not, every ¢ in 9 different from 1 moves i into
—4. But this is impossible. This proves that K/L, is strictiy Galois
with ressect to 9(L,) of order 2. Hence, again by Lemma 1, K=L,1]
=L,. This contradiction shows that 4+n.

(II) »>2. If p divides =, then & contains a subgroup PL={c¢’} of
order p, and K is strictly Galois with respect to P. Since Z possesses
the property (P), it contains primitive p’-th roots of 1 for all j. Since
E, ., the subfield (of Z) generated by all the p’-th roots of 1 (7=1, 2,

-+), is P-normal, Lemma 1 shows that ¢ induces an automorphism of
E,, . which leaves invariant every primitive p-th root of 1 and moves
really primitive p*th roots of 1. But this contradicts [1, Satz 1].

Let L be a division subring of K. If, for every ke K, there exists
a finite number of division subrings K, ---, K, such that Lk)=K,D --
2K,=Land [K,: K, ],<n (fixed) for i=1, ---,m—1, then we say that
- K/L is m-accessible. Further if, for every intermediate divisién subring
L’ of K/L, K/L' is m-accessible, then K/L will be said to be completely
n-accessible. To be easily seen, in case K is commutative, the notion of
n-accessibility coincides with that of complete n-accessibility. Now, let
K/L be completely m-accessible and strictly Galois with respect to & of

2) 9(L)={o€9|xo=2x for all xL,}.
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prime order jo, where & is an automorphism group of K which leaves
invariant every element of L. Then, [K : L']=p where L'=J(®, K), whence
K=L'Tk] for some k. On the other hand, there exists a finite number
of division subrings K,, ---,K, such that K=K,D .--- 2DK,=L" and

[K;:K,,;],=n,<n. And so, p=[K:L'] :mﬁlni. Thus, we have proved the
following which contains [1, Satz 5].

Theorem 2. Let K be a division ring, and completely n-accessible
over a division subring L. If K 1is strictly Galois with respect to & of
prime order p and J(®, K)2DL, then p<n.
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