## A NOTE ON STRICTLY GALOIS EXTENSION OF PRIMARY RINGS

By

## Takesi ONODERA and Hisao TOMINAGA

Let  $R\ni 1$  be a primary ring with minimum condition (for one-sided ideals). One of the present authors proved in  $[1]^{1}$  that if R is strictly Galois with respect to  $\mathfrak G$  then R possesses a  $\mathfrak G$ -normal basis element. The purpose of this note is to present a slight generalization of this fact.

In what follows, R be always a primary ring with minimum condition which is strictly Galois with respect to (an F-group)  $\mathfrak G$  of order n,  $N \ni 1$  a subring of R with minimum condition such that  $N\mathfrak G = N$  and R possesses a linearly independent right N-basis consisting of t elements. Further, we set t = nq + r, where  $0 \le r < n$ . Under this situation, our theorem can be stated as follows:

**Theorem.** There exist q elements  $x_1, \dots, x_q \in R$  and a  ${}^{(g)}N_r$ -submodule M of R such that

(1) M is  $@N_r$ -homomorphic to  $@N_r$  and possesses a linearly independent right N-basis consisting of r elements,

(2) 
$$R = \sum_{i=1}^{q} \sum_{\sigma \in \mathbb{R}^{q}} (x_{i}\sigma) N \oplus M.$$

Proof. As is shown in [1],  $\operatorname{Hom}_{S_l}(R,R) = \mathfrak{G}R_r = \sum_{\sigma \in \mathfrak{G}} \sigma R_r$ , where  $S = J(\mathfrak{G},R)$ . Since  $[R:S]_l = n$ , and so, since R is S-left regular, R is  $\operatorname{Hom}_{S_l}(R,R)$ -right regular too. In fact,  $R^{(n)}$  is  $\mathfrak{G}R_r$ -isomorphic to  $\mathfrak{G}R_r$ , where  $R^{(n)}$  means the direct sum of n-copies of R as  $\mathfrak{G}R_r$ -module. Accordingly,  $R^{(n)}$  is  $\mathfrak{G}N_r$ -isomorphic to  $\mathfrak{G}R_r$  of course. Now let  $R = u_1N \oplus \cdots \oplus u_lN$ . Then, we have  $\mathfrak{G}R_r = R_r\mathfrak{G} = \sum_{i=1}^t u_{ir}N_r\mathfrak{G} = \sum_{i=1}^t u_{ir}\mathfrak{G}N_r$ . Hence,  $\mathfrak{G}R_r$  is  $\mathfrak{G}N_r$ -isomorphic to  $(\mathfrak{G}N_r)^{(l)}$ , and so we have eventually that  $R^{(n)}$  is  $\mathfrak{G}N_r$ -isomorphic to  $(\mathfrak{G}N_r)^{(l)}$ . Here let  $\mathfrak{p}_1, \cdots, \mathfrak{p}_s$  be all the non-isomorphic directly indecomposable direct summands of the  $\mathfrak{G}N_r$ -module R (or  $\mathfrak{G}N_r$  itself). And, in the Remak decompositions of  $\mathfrak{G}N_r$ -modules R and  $\mathfrak{G}N_r$ , the re-

<sup>1)</sup> As to notations and terminologies used in this note, we follow [1]. And we will use freely the results cited in [1].

<sup>2)</sup> N does not necessarily contain the subring  $S=J(\mathfrak{G},R)$ .

spective numbers of directly indecomposible components which are isomorphic to  $\mathfrak{p}_i$  will be denoted by  $n_i$  and  $m_i$ . Then, our isomorphism mentioned above yields at once  $n_i n = m_i t = m_i (nq+r)$ , whence we have  $m_i r = nk_i$  with some non-negative integer  $k_i < m_i$ . Consequently, it follows that  $n_i = m_i q + k_i (i = 1, \dots, s)$ . This proves clearly the existence of a  $\mathfrak{G}N_r$ -isomorphism  $\varphi$  of R onto  $(\mathfrak{G}N_r)^{(q)} \oplus T$ , where  $T = \sum_{i=1}^s \oplus \mathfrak{p}_i^{(k_i)}$ . Recalling here  $m_i > k_i$ , we see that T is  $\mathfrak{G}N_r$ -homomorphic to  $\mathfrak{G}N_r$ . Now, let  $y_i = (0, \dots, 0, 1, \dots, 0) \in (\mathfrak{G}N_r)^{(q)}$ . Then, one will easily verify that  $x_i = \varphi^{-1}\{y_i\}$   $(i = 1, \dots, q)$  and  $M = \varphi^{-1}\{T\}$  are desired ones.

Our theorem may be considered as a generalization of [1, Theorem 1]. Moreover, in case R is a division ring we obtain the following which secures the existence of the so-called semi-normal basis.

Corollary. Let R be a devision ring which is strictly Galois with respect to  $\mathfrak G$  of order n, and N a division subring of R with  $N\mathfrak G=N$  and  $[R:N]_r=t$ . If t=nq+r  $(0\leq r< n)$  then there exist some  $x_0,x_1,\cdots,x_q\in R$  such that  $R=\sum_{i=1}^q\bigoplus_{\sigma\in\mathfrak G}(x_i\sigma)N\oplus\sum_{\tau}(x_0\tau)N$ , where  $\tau$  runs over a suitable subset of  $\mathfrak G$  consisting of r elements.

## References

[1] H. TOMINAGA: A note on Galois theory of primary rings, Math. J. Okayama Univ., 8 (1958), 117-124.

Departments of Mathematics, Hokkaido Gakugei University Hokkoido University

(Received September 16, 1960)