RATIONAL APPROXIMATIONS TO
ALGEBRAIC FUNCTIONS

By
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1. Introduction. There is a classical theorem due to J. Liouville on
the approximability of algebraic numbers by rational numbers. Liouville’s
result states that if « is an algebraic number of degree n=>2 then

2f=a

for all rational integers », ¢(¢>0), where A is a positive constant
depending only on «. This theorem has been improved successively by
A. Thue, C. L. Siegel, F. J. Dyson, and K. F. Roth. It is proved by
Roth [5]* that if « is an algebraic number. of degree =2 then for
each x>2 the inequality

(1) la—£;<lr

has only finitely many solutions in integers p, g (¢>0). This is best
possible in the sense that for every irrational number «, whether algebraic
or not, there are infinitely many integers p, q (¢>0) satisfying (1) with
£=2.

- It is well known that the theorem of Liouville for algebraic numbers
has an analogue in algebraic function fields and, as was shown by K. Mahler
[2], the analogue of Liouville’s theorem for algebraic functions cannot
be improved, in general, if the field of constants is of positive character-
istiec. On the other hand, the present author [6] has pointed out that it
is possible to obtain an analogue of the theorem of Roth in algebraic
function fields with the constant field of characteristic O The result is
known to be the best possible of its kind.

The purpose of the present paper is to give a full acecount of general
theorems on the approximation to algebraic functions by rational func-
tions, with an arbitrary field of constants. A particular case of some of

*) Numbers in brackets refer to the references at the end of this paper.
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our results presented here has been treated by Mahler [2] and by the
writer [6] as a supplement to Mahler’s paper [2].

2. The valuations. Let K be an arbitrary field of characteristic
%, y being 0 or a prime number. Let ¢ be an indeterminate and let K[¢]
denote the ring of all polynomials in ¢ with coefficients in K and K{(t)
the field of all rational functions in ¢ with coefficients in K.

If £=£(¢t) is an element of K(¢), there exist polynomials p=pn(f), ¢=
g(t):0 in K[t¢] such that £=p/q. We define

deg é=deg p—degq.

We shall be concerned in the following with (non-trivial) valuations
on K(t) that are trivial on K. Thus there are two kinds of such valua-
tions, namely :

The valuation | |. For a=ea(t) in K(t) we define | a | by putting
0 - if a=0,
I a [: { deg a 3 ;
ctes if a0,
where ¢>1 is a constant fixed throughout i:his_paper.
A valuation | |. . Let r be a fixed primary irreducible polynomial

in K[t]. For a=a(t) in K[t] we define | a|. by putting
0 if a=0,
I o Ir: { —vdegr ] ’ -
_ ¢~ if a0,
where v=ord, «, i.e. 77> « contains the factor r in neither numerator nor
denominator. ' '

These valuations are so-called normal valuations on K(¢) and there
holds the product formula : ‘

(@l Tl al=lal,

where the produét is taken over all primary irreducible polynomials 7z in

K[t], and where | |, is the trivial valuation on K(¢), i.e. for a=a(?) in
K(t) - |
0 if a=0,
| a|o= { .
1 if a==0.

In particular, if a=a(t)==0 is a polynomial of K[t], then we have
(2) la|-|al.=1
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for any valuation | |, on K(t), or more generally,
lal ' lal, =1
for any valuations | ],j (1<j=<s), mutually inequivalent on K(t) and
finite in number. ' '
Now, let K<t™!> denote the completion of K(¢) under the valuation
| | and K<{z> denote the completion of K(r) under the valuation -

Thus K<t*) is the field of all formal power series of the type

Me

at’ (a;eK),

0

<,
Il

where [ 'is a certain non-negative integer, and K<{z) is the field of all
elements of the form ‘ o

M

az"  (a,eK[t], dega;<degr),

0

<,
1l

I being a non-negative integer.

3. Main results. The following theorem is an analogue of Liouville’s
theorem on rational approximations to real algebraic numbers :

Theorem 1. Let K be an arbitrary field. .

(i) Let a=a(t) be an element of K{t™') algebraic of deg'ree.{ng2
over K(t). Then there is a constant A, >0 such that ‘ '

(3) - | \a__}i’z_A_i_
| g |~ laI”

for all pairs of polymomials: p=p(t), ¢q=q@#)x0 in K[t]. If K 18 of

characteristic x>0, the inequality (3) cannot be improved wn general.
(ii) Let a=a(t) be an element of K{r) algebraic of degree n=2 over

K(t). Then there is a constant A,>0 such that

A

for all pairs of polynomials p=p(t), g=q() in K[l] with |p, q|>0,
where

|p, ¢|=max (|»], [a]).

If K is of characteristic x>0, the inequality (4) cannot be improved in
general. ' ~ ‘ '
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The part (i) of this theorem is proved by Mahler [2].

If the constant field K is of characterlstlc 0, then Theorem 1 can be
improved to the form:

Theorem 2. Let K be a field of charactemstw 0. ‘

(1) Let a=a(t)=-0 be any element of K{t ') algebraic over K(t).
Then for each x>2, the inequality

(5) ]a—£)<

lq|*

18 satisfied by only a finite number of pairs of polynomzals p=p(t), g=
q(®)30 in K[t] with (p, q)=1.

(ii) Let a=a(t)30 be any element of K{r) algebraic over K(t). Then
Jor each r£>2, the inequality
1
o, q]
18 satisfied by only a ﬁnzte number of pairs of polynomials p=7p(t), q=
q(t) in K[t] with (p, 9)=1.

We observe that Theorem 2 is the best poss1b1e of its kind, as so is
Roth’s theorem on rational approximations to algebraic numbers. In fact
we shall prove: |

Theorem 3. Let K be an arbitrary field of characteristic 0.

(i) Let a=a(t) be any element of K{t™'>, not a rational function.
Then there exist infinitely many pairs of polynomials p=p(t), ¢q=q(t)=:0
wn K[t] with (p, 9)=1 satisfying the inequality
o

lq|?
(ii) Let g=a(t) be any element of K(z-), not a 'ratwnal Sunction.

Then there exist infinitely many pairs of polynomials p=p(t), a=q(t)
wn K[t] with (p, 9)=1 satisfying the inequality

-1
|p—qa|. <— .
D, q

In §4 we prove Theorem 1, (ii). We shall give a proof for Theorem
2 in §85~8, and a proof for Theorem 8 in §9. While our proof of
Theorem 2 follows, in the main, lines analogous to Roth’s [5], there are
essential differences in details. In §10 we note some further results allied
to Theorem 2. Several applications of these theorems will be given in
§11.

(6) . Ip~qal<

‘a_
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4. Proof of Theorem 1, (ii). If a=a(f) is an element of K(z)
algebraic of degree n=2 over K(t), it satisfies an irreducible equation
Sf(x)=0, where ‘

f@)=ax"+ax* '+ +a,,

the coefficients @,==0, a,---,a, being polynomials in K[¢]. Following
Mahler, we consider the polynomial

g(x)z%]l (apa’ +aa? 14 —l—aj)x"‘l"j.
j=o o

Tilen J@)/(x—a)=(f(x)—f(a))/ (xf a)=g(x) identically in x, and so

S(x)

T )

Put
¢;=max (1, |al.).

Let p= jo(t), g=q(t)%0 be any elements of K[t]. If

: ‘ »

q

then we have, on account of (2),

>cl§l a'r,

1 1
Ip_qalz-:'plrz g w7

|p| ™ |pq]

since | p, ¢|=max (1, |p|). If
‘“B récli
q
then
q"‘lg<£> =c,
q T

Now, the expression
qQ"f <§> =aep"+a;p" g+ - - +a, 9"

lies in K[t] ‘and does not vanish since f(x) is an irreducible polynomial of
“degree n=2 with coefficients in K[¢]. Hence, by (2),
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o (2) = =l : "
q ! qnf<£>l 2 pyq
q
where
02:max(| a’Oly ]allr°'°’lan |)'
Therefore |
q"f(%) B
| p—qa|. = =

= il Dy g |t

T

o(7)
q

Azzmin<1, 1 > .

cr ey

Thus it suffices to put

This proves the first part of Theorem 1, (ii).
To prove the second part of Theorem 1, (ii), let x>0 be the character-
istic of K and consider the element ' ‘

_ a=t+7t*+7¥4 ...
of K{(r). We have
a=r+(c+ri4-: V=c+a*,
and so a is-a root of the algebraic equatioh |
| x*—x+7r=0,

Since 7z is an irreducible polynomial in K[t], it follows that « is of exact
degree y over K(t). Put

=4+ +77 ¢, =1 (j=1,2,--).
Then
| 5, 9, | =7 dexe
and
| p;— 90| =] TR I:"—C_zjdegt":rpjr 91,

completing the proof of our assertion.

5., Some lemmas. In what follows we shall suppose throughout that
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the ground field K is of characteristic 0.
Consider polynomials of the type

P(xl’ I xm): 2 C(jl; .. .’jm)x-{l .o .wg;m

0=j, =r

Qs fi=m)
in m indeterminates x, (1=<pg=<m) with coefficients C(Jy, - - -, Jn) in K[t].
We define
H(P)=max | C(j, + -+, dn) |
and write
m o'
Pov o= 50 )T

for any non-negative integers i, (l1=p=m). We shall say that P has the
index I at (a, -+, a,) with respect to (s;, - --,S,), where a;, -+, a, are
any elements algebraic over K(f) and s;, ---, s, are positive integers, if
I is the least value of

-
,LF‘
F2=1 |

SF‘
for which
Pil' . im(al, .. '? am)AZO .

Clearly such i, ---, i, exist except when P vanishes identically.
Now let »,, -+, 7, be positive integers, B=1. We consider the set

Mm:Mm(B; T, ** ) rm)

of polynomials P(x,, - - -, x,) satisfying the conditions :
(a) P has coefficients in K[t¢] and is not identically zero;
(b) P is of degree at most r, in x, Asp<m);

(¢) H(P)=B. :

Let p,=0:(t), - *» Pn="2n(), 6= (%), - * *, 4n=0qx(t) be any polynomials
of K[t] such that q,=0, (p,, ¢,)=1 (1=p=m). Let I(P) denote the index
of P at (9./q:, "+, Pul/dn) With respect to (ry, ---, 7). We define

Im(B;hlr "'1hm;7'1’ --‘,qﬁm):supI(P),

the supremum being taken over all P in M, and all (pi/q,, ---, D/ D)

with |@y|=hy - | @w|=bn (D, |=hy -+, | P, @u|=hy), where h,=1
A=p=m).
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Lemma 1. We have

log B

L(B;hy;r)< .
r.logh,

Let P(x;) be a polynomial in M, and let p,, 9,0 be any elements of
K[t] with |q,|=h; (|, 9. |=h). If I is the index of P at (pi/q,) with
respect to (), then we have

P(x;)= (g%, — p,)"Q(x,) ,

where @ is a polynomial in z, with coefficients in K[¢] s1nce (pl, q,)=1.
It follows that

H(P)ZI ply QI IIrl;h’{rl ’

whence the required result.
After the manner of Roth’s method [5], we can prove, using gener-
alized Wronskians defined over K(t), the following inductive lemma :
Lemma 2. Let 2=<uy<m and let »,, - - -, r, be positive integers such
that '

)6 2=i=p),
where 0<d<1. Then
I(B;hy -+ b7y, -, 7,)<2 max (@+0F +5t),
where the maximum is taken over integers [ satisfying
1slsr+4,
and where
 O=LB )AL (B ke, e by Uy e Uy |
Lem’ma 3. Let m be a positive integer and let ¢ satisfy
| 0<o<1.
Let 7, ---, 7, be positive integers satisfying
| PiafT,;>071 (2=j=m).
- Let Ay, - -+, h, be positive numbers satisfying
r; log h; =7, log h, 2=<j<m).
Then
L, (hi* 5 by ooy by 7y, - oo, 1) <7,
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where
p=n(m, 8)="T"6*".

For m=1 the result follows at once from Lemma 1. Suppose that
p#=2 1is an integer and that the present lemma holds for m=pg—1. We
have, by Lemma 1 again,

LR b, lr,) <6
and, using the induction hypothesis,
(R 5 hy - by s Uy, -0 U, ) <e—1, 9)
Hence
O <o+7n(r—1,8)<2p(e—1, ) .

It now follows from Lemma 2 that |

L(hitshy v oy by s 7oy e ey 1,)

=2(29(r—1, 9)+2y(r—1, 9 +o%)

<n(¢, 9) .
This completes the induction.
Lemma 4. For any positive integers »,, - - -, r,, and a real number 1>0
the number of sets of integers %, ---, %, such that

m

2—""—<—;—(m—z), 0=i,<r, (1=p=m)

=1r,
is at most
@Em)* A +ry)- - A+7,) .

This is a slightly sharpened form for the corresponding lemma of
Roth [5, Lemma 8], a very simple proof of which is given by J. W. S.
Cassels [1]. '

Lemma 5. (i) Let a=a(t) be an element of K{t ') satisfying the
equation

(7)  f@=a@"Fa@m i+ 4a,=0  (a,0),
where a,, a,, - - -, @, are polynomials of K[t]. Then
|a |=H(S) .

(ii) Let a=a(t) be an element of K{r) satisfying the equation (7).
Then
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|a|.=H(S) .
More generally, we have, if a;=a,(t)cK{zp, f(a)=0 (1=5=<59),

Hmax(l | ;|- ) H(f).

where 7, (1=j<s) are distinct primary irreducible polynomials in K[¢].

We may suppose that a==0 since otherwise there is nothmg to prove.
From the relation

aa=—(a;+aa *+---+a,a ")
we find that ’ ’
' a()l l (44 Iémax (| a, l! M) Ian D_S.H(f) ’
if |a|>1. Hence, for |a|>1, '
lal= f“fl) <H()).
0

This inequality is obviously true also for |a|<1
Similarly we find that, if |«|.>1,

Iaol |al max(lailu "’larilr)ély

whence

L —la,|<H(),

| a0l

and this inequality also holds if |a|.<1

|al.=

6. Construction of approximatioti polynomials. Let a=a(t)3-0 be an
integral algebraic function of degree n over K(t) i.e. one which satisfies
an algebraic equation :

Sf(x)=0,
where
J(@®)=ax"+a,x" 4. -+a, (a,=1)
is an irreducible polynomial with coeﬁiclents in K[t].

Put
‘ cs‘:H(f) .
Let p,=0,(1), ) Pn=>0n(t), ¢,=a:(t), -+ *, ¢,,=0qn(t) be any elements of
K[t] such that q#%:or (pm q#),:]- (1§}u‘§m) and I q, lzhn ) Iqm I:h,m
(P q: |=hy | Ppy @ |=hn), where h,=>1 (1=p=<m). Suppose that the

numbers m, d, by, + -+, by, 7y, - - -, T, satisfy the following conditions:
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(8) 0<do<1,
(9) 2n(m, 8)+(1+ 20)n(2m)t <m ,
(10) | 7T >0 2=j=m),
(11) log h,>d"2(log ¢c+mlogec,),
(12) r;log h,=>r;log h, (2=<j=<m).
We set
1= (1+20)n2m)? ,
1
==(m—2),
5 (m—2)
B,=h,

Lemma 6. If the conditions (8)‘, (9), (10), (11) and (12) are satisfied,
then there exists a polynomial '

Q(xly c Y xm)
in M¥=M,(B,; 7y, -+, T, such that
(a) the index of Q at (a,a, ++ -, a) with respect to (ry, +++,7r,) is at
least y—7n;
(b) QDi/a1 ) PulTw)TFO0; :
(e) for any non-negative integers 4, - -+, %,, we have

K2 C AR a) |[<Bi? if acK{(t7),
Qi . . ip(a, -+, @) =Bt if acK(7).
To prove this lemma, consider a general polynomial
Py, +++ Tp)= Z C(dys +++y Jm)lt ==+ witm

0=j,=
CISpSm)

in M#%*, Then each of the coefficients C(jy, *++*»Jm), as a polynomial in ¢,
possesses exactly

1 [logB
log ¢
distinct terms. Hence the total number N of coefficients, whose values
being in K, in the polynomials C(jy, - - -, J,) (0=J,=7, 1=<p=<m) is equal
to

@+r) - Wr)(1+ lfgg’i D-

Nexf, the number of derivatives
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Pi1~ . im(xly "';xm)!
where A '
(13) 3| <y, 0=i=m, A=p=m),
.=

©

does not exceed, by Lemma 4, the bound

em)t i@ +r) --- 1+7,).
For each set of integers 1, ---, 7, satisfying (13) we form the polynomial
P, ..., (®---x) in the single indeterminate 2 and then devide this

polynomial by f(x), obtaining the remainder‘
. n—1
R, -1 ;0)=>Cal.
j=o -

The coefficients C, af’e linear combinations of the C(7y, + -+, J,) with coef-
ficients in K[¢]. It is easy to see that the C, are, as polynomials in K[¢],
of degree at most '

log ¢7"1B, <(1+43) log B, .
log ¢ log ¢
It follows that the total number of such coefficients of the C; in R(z,, ---,
i, ;%) for all sets of integers i, ---, 7, satisfying (18) does not exceed

@em) - t1+r) --- (1 -l-"'m)n(l-{—25)@ ’
| o - loge

which is less than N by the definition of A, since
log B, <1+ log‘Bl:',.
v log ¢ logc ’
Thus we conclude that .there exists a polynomial P in M%* such that
P, ..., (a -+, 0)=0 |

. 3!
for all sets of integers 1, - - -, ¢,, satisfying (13) : in other words, the index
of P at (a,---,a) with respect to (7y, ---,7,) is at least 7. The poly-
nomial P being a member of M}, there exists, by Lemma 3, a derivative

Q(xli tt 0y xm)Zle' . jm(wll tty xm)
with
$h I <y
r=1 7,

such that | |
| QD:/4y, * + *, Pu/2n)FO0 .
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The index of @ at (e, ---, @) with respect to (r,, ---,7,) is at least y—.
Thus the polynomial @ satisfies the conditions (a) and (b) of Lemma 6.
To verify that @ satisfies the condition (c) as well is immediate. Proof
of Lemma 6 is now complete.

7. Proof of Theorem 2, (i). First we prove the following
Lemma 7. Let a=a(t) be an arbitrary element of K<{t'> and let
=p,t), ¢,=q,(t)7x0 (¢=1, 2) be any polynomials in K[¢] such that p/q,
:\\:pzlqz, |g.|=|q.]. Then for each x£>2,
e

1

o

2

‘a— <|g.|7™* implies Ia— =g |™".
If not, we would have

gi |70 B Pe |
q,

——%)_<a“%§>1<l a |,

which is impossible since £>2.

Now, let a=a(t)=r0 be an element of K{t ') algebraic of degree =
over K(t). Suppose that Theorem 2, (i) is false, so that for some £>2,
the inequality (5) has infinitely many solutions p=p(t), ¢=q(t)=0 in K[t]
with (p,¢)=1. Denote by E the set of all such solutions (p,q) of (5).
It follows from Lemma 7 that |q| is not bounded when (p, q9) runs through
the elements of £, and so we may suppose that « is an integral algebraic
function. For, if not, there is a (non-zero) polynomial a=a(t) in K[t]
such that aa is an integral algebraic function, and for arbitrary >0
and for all (p,q) in E with sufficiently large |q|

0<Iaa——‘zﬁ(<l@l-IQI"‘<lql“+‘,

where ¢ can be chosen so small that x—e>2.
We take an integer m so large that m>n(2m)* and

2m
m—mn(2m)*

<k,

which is possible since £>2. Let 0 be a sufficiently small positive number
satisfying the conditions (8) and (9), and the inequality |

2m(1+0)+25(1+3) _
m—(1+20n(2m)*—2yp 7’

which is equivalent to
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(14) m(1+39)+5(1+9) _
=7
We now choose a solution (p1, ;) from E with |q, I—-h so large as

to satisfy (11). We then choose further solutions (p,,q,) (2=j=<m) from
E such that |q; I—h (2=<j=<m), where -

log & ; > 2

log h,, 0
Let 7, be any integer such that
r> log .,
dlogh,

and define r, (2=j<m) by

7 logh <M log k, 1.
ogh, = logh, T

Then the condition (12) is satisfied. Also, for 2=j=<m,

&loghj<1+ log & <1+ log h,,

= <1+49,
r, log k, r,logh, r, log h, +

whence

i1 loghy (1+5) 1> 571
7, log h;_,

and the condition (10) is satisfied. Hence there exists a ~polynomial
Q(x,, + -+, x,) in M¥ with the properties listed in Lemma 6. '
On one hand, we have

I Q(Q1/Q1’ tt pm/‘]m)lgh;’& «oo pm >h1—mr1(1+6) .
On the other hand, we find that

7‘

’Q(p1/q” Tty pm/qm) Z= Eonil .. z‘m(a’ -, a)e

(Dr/@s—a)'s « + - (PulQm—)'m,
whence

I Q(pl/qu * %y pm/Qm) |<B1+5 max (h’zl t him)—x"

where the maximum is taken over all integers <, ---, ¢, satisfying the
inequalities g ‘

m

> e Zy—y, 0=i,=r7, A=p=m).

e=l T,

Thus
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max (hit - - - b, m)""=max {hir"™1 - . (hn’;m/”l)"m/rm}"ﬂ
§max (hil/rl DRI hi.m/rm)—‘rl':
ghl*"l(r—ﬂ)t ’

and so

| QD1+ + Pufn) | SR+

Combining these estimates for Q(»:/qy, < -+, Pu/qn), we obtain

h;rfm(l%—é)é hi(1+3)r1—r1(r—p): ,
or |

< M(1+0)+3(1+9)

== 4

=7

which contradicts (14). This completes the proof of Theorem 2, (i).

8. Proof of Theorem 2, (ii). We require the following '

Lemma 8. Let a=a(t) be an arbitrary element of K<{zr) and let
p,=p,(t), ¢,=q,(t) (i=1, 2) be any polynomials in K[¢] such that p:9.— p.q;
20, | Py, ¢:|=| Pz q:]- Then for each £>2,

| p,—qua |.<| D1, @1 |*  implies |p;—qeax |-=|Ds @2 17"
If not, we would have ’ ‘

| D1, @, |72 D1 €a— D2 @4 o= (P1— @10)@e— (P2 — Q2) €1 |- <| D1, 41 |75,
which is impossible since £>2. ‘

Now, let a=a(t)3=0 be any element of K{z) algebraic of degree n over
K(t). Suppose that Theorem 2, (ii) is false, so that for some £>2, the
inequality (6) has infinitely many solutions p= p(t), g=q(t) in K[t] with
(p,9)=1. Denote by M the set of all such solutions (p, q) of (6). It
follows from Lemma 8 that |, ¢| is not bounded when (p, 9) runs through
the elements of M, and so we may suppose again that a is an integral
algebraic function. For, if not, there is a (non-zero) polynomial a=a(t)
in K[t] such that aa is an integral algebraic funection, and for arbitrary
>0 and for all (p,q) in M with sufficiently large |p,q|

- O<|ap—q(@a)|.<|al.|p | =|a["|ap, g7 <|ap, ¢ |7,
‘where ¢ can be chosen so small that r—e>2.

The rest of the proof of Theorem 2, (ii) is quite similar to that of
(i). We take m and & to satisfy the conditions (8) and (9) and the in-

equality (14). We then choose solutions (», q,), ***y Pms @) from M with
| p,,q,|=h; 1=j=<m) and define r,, -+, 7, as in §7. The conditions for
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Lemma 6 are all satisfied, and so there exists a polynomial Q(x,, - - -, x,)
with the properties stated there. We have on one hand

lqit -« o @umQ(D4/qy, «* *y PplQm) | =B hi™ -« hy'm
>h1—6r1-—r1m(1+5) ,
and on the other hand
' q,l‘l tct q"ler(pl/QIf tt Tty pm/Qm) ltéBg max (hil e hf;tbm)_x
<RhIrimmGe-ns
as In §87. Thus we find that

i m(1+6)<h5 Ty =Ty (r— v)r

which again contradicts (14), completlng the proof of Theorem 2, (11)

9. Proof of Theorem 3. Let K be an arbitrary field of character-
istic 0. ‘ '
First we prove the part (ii). Let

=gciri‘z (c;eK[t], deg c,<deg )

be any element of K<{z), not belonging to X(t). We may suppose without
loss of generality that [=0. We wish to show that, given non-negative
integers d,, d,, there exist polynomlals p=p(t), g=q(t)=0 in K[t] with
| », ¢|>0 such that

p=la,r7 (a,6K[t],dega,<deg7),

9= 3b,7* (b K[t], deg b, <deg ),

and a—p/q, as an element of K(z), does not contain the first d,+d,+1
terms in it. This follows from the fact that every linear homogeneous
equations with coefficients in K with unknowns more than the equations
in number has always a non-trivial solution in K. For instance, if ¢ is
a linear polynomlal in K[t], then the coefficients ¢, a;, b, lie in K and
we must solve the equations

(15) , C aj=b00j+blcj—1+ -« +b,c (O§J§d1) ’
(16) o O:bock+d1+blck+d1—l+ tet +bd20k+d1—d2 A=k=d,),

where we put c¢,=0 -for ©<0. The system (16), consisting of d, linear
homogeneous equations in d.,-+1 unknowns, has a non-trivial solution
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by, by, - - ¢, bd2 in K. We then determine a,, a,, - - -, Qq, by the relations (15).

The general case where r is not necessarily linear can be treated by a
similar but somewhat more complicated arguments. This proves Theorem
3, (ii).

To prove the part (i), let

a=Slet (c;e K)
=0

be any element of K{t'), not belonging to K(t). Again, there is no loss
in generality in supposing that {=0. For a prescribed non-negative integer
d, put

p=Slat | (a,cK),

i=o
d
g= > b,t" : (b,eK).
Ig=0
We see that
a
p_Z
a .
. q SV, t*
0

Hence, we can determine, just as in the above, the coefficients a,, a,, - - -,
Qg, b0, b,, - -+, b; of p,q in such a way that ¢=0, and «—p/q, as an element
of K{t '), does not contain the first 2d+1 terms in it.

Theorem 8 is thus completely proved.

10. Further results. Let K be an arbitrary field of characteristic 0.
In this section we wish to note some partial refinements of Theorem 2.

The following theorem is an analogue of a result of D. Ridout [4].

Theorem 4. Let a=a(t)=-0 be any element of Kt ') algebraic over
K(t). Let P,=P,t),---,P,=P,(), Qi=Q,®), -+, Q,=Q,(t) be a finite set
of distinct irreducible polynomials in K[t]. Let p, v, C be real numbers
satisfying ' '

0=p¢<1, 0=v<1, C=>0.

Let p=np(t), q#q(t) be restricted to polynomiais wn K[t] of the form
p:p*Pi'l, t Y P,gm ’ q:q*QIJfl’ Sty Q'rl;'" ’

where a,, +--,a,, b, -+, b, are mon-negative integers and p*=p*(t) are
polynomials tn K[t] such that
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| 0<|p*|<C|pl|*, 0<|g*|<Clq]|".
Then if t>p-+v, there exists a natural number N depending only on
a, tt,v,C, P, ---,P,, Q- --,Q,, such that
1
lal
has mo solution p,q in. K[t] with (p,q)=1 and

=i

max (deg p, deg q)> N .

We can prove this theorem in almost the same way as in the proof
of Theorem 2, (i), on the basis of a slightly modified form of Lemma 6.

As to the mixed approximation to algebralc functions by rational
functions, we obtain:

Theorem 5. Suppose that the equation _
ax"+a,x" 4. 4+a,=0 (apa,=0),
where a,=a,(t)eK[t] (0=<i=<n), has a root a=a(t) in KI{t'>, a 7root
a,=at) in K{z;), -+, a root a,=ayt) in K{z,), 7, +++, 7, being distinct
primary irreducible polynomials in K[t]. Then, if £>2, there exists a
natural number N depending only on ag a,, «-+, a,, 74, ** -7, &, Such that
the tmequality

min . 1 min (1, | p—qa; | )< p, ¢ |
has mo solution p=p(t), ¢=q(t)=x0 tn K[t] with (p,q)=1 and
max (deg p, deg q¢)>N..
This is a partial generalization of Theorem 2 and its proof can be

carried out in a similar manner, making use of Lemmas 5 and 6.

11. . Applications. Again, let K denote a field of characteristic 0.
As an easy apphcatlon of Theorem 2 we may mentlon the following
, Theorem 6. Let F(x, y) be a bzna'ry Sform of deg’ree 'n>3 without
multiple factors, whose coefficients belong to K[t]. Let G(x,y) be any
polynomial of total degree <mn—2 with coefficients in K[t] which has no
common factor with F'(x,y). Then there exists an integer N>0 depending
only on F and G, such that the equation :

F(z, y)=G(z, v)
has mo solution x=ux(t), y=y(t) in K[t] with (x,y)=1 and
' max (deg z, deg'y) >N .
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To prove this, we apply Theorem 2, (i), taking acecount of an extended
valuation of | | on K(t) to an appropriate finite algebraic extension over
K(t). ;

The following theorem is an immediate consequence of Theorem 5:

Theorem 7. Let F(x,y) be a binary form of degree m=3, without
multiple factors, whose coefficients belong to K[t]. Let ¢,,---,7, be distinct
primary irreducible polynomials in K[t] and let H(p,q) denote the high-

est power-product of t,, + - -, , which divides F(p,q), where p=p(t), 4=q(?)
are polynomials in K[t]. Then, if £>2, there exists an integer N=>0
depending only on F, 7., -+, 7, and. & such that the tnequality
| F(p, q) ) n—
=2 w2l <|py ql *
H(p, 9)

has mo solution jo: o), q=q(t) in K[t] with (p,q)=1 and
max (deg p, deg q)>N.
Now, let a=a(t) be an element of K{¢ ') and write

a= > ct'"",
) =0
where | is a non-negative integer. We put
{a)= S et
t=I+1

Then, as an easy consequence of Theorem 4, we obtain

Theorem 8. Let a=a(t)2-0 be any element of K{t ') algebraic over
K(t). Let A=A(t), B=B(t) be polynomials in K[t] having mo factor in
common, such that |A|>|B|>1, and let ¢ be an arbitrarily small posi-
tive number. Then the inequality

()
B
18 satisfied by at most a finite number of positive integers s.

This is an analogue for rational functions of a theorem of Mahler
[3]. | To prove Theorem 8, apply Theorem 4 with

p=1—5, v=0, C=|al|’+1,

<e "

x=1—5—|—;s(log A ' >ptv,

where d=Ilog | B|/log|Al, so that 0<é<1. Here P,---,P,and Q,, ---,Q,
are distincet irreducible factors of B and A, respectively, and
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e () (§)) e

Note that | p*|>0 for all sufficiently large s.
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