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1. Introduction. There is a classical theorem due to J. Liouville on
the approximability of algebraic numbers by rational numbers. Liouville’s
result states that if $\alpha$ is an algebraic number of degree $n\geqq 2$ then

$|\alpha-\frac{p}{q}|\geqq\frac{A}{q^{n}}$

for all rational integers $p$, $q(q>0)$ , where $A$ is a positive constant
depending only on $\alpha$ . This theorem has been improved successively by
A. Thue, C. L. Siegel, F. J. Dyson, and K. F. Roth. It is proved by
Roth $[5]^{*)}$ that if $\alpha$ is an algebraic number of degree $n\geqq 2$ then for
each $\kappa>2$ the inequality

(1) $|\alpha-\frac{p}{q}|<\frac{1}{q^{\kappa}}$

has only finitely many solutions in integers $p,$ $q(q>0)$ . This is best
possible in the sense that for every irrational number $\alpha$ , whether algebraic
or not, there are infinitely many integers $p,$ $q(q>0)$ satisfying (1) with
$\kappa=2$ .

It is well known that the theorem of Liouville for algebraic numbers
has an analogue in algebraic function fields and, as was shown by K. Mahler
[2], the analogue of Liouville’s theorem for algebraic functions cannot
be improved, in general, if the field of constants is of positive character-
istic. On the other hand, the present author [6] has pointed out that it
is possible to obtain an analogue of the theorem of Roth in algebraic
function fields with the constant field of characteristic $0$ . The result is
known to be the best possible of its kind.

The purpose of the present paper is to give a full account of general
theorems on the approximation to algebraic functions by rational func-
tions, with an arbitrary field of constants. A particular case of some of

$*)$ Numbers in brackets refer to the references at the end of this paper.
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our results presented here has been treated by Mahler [2] and by the
writer [6] as a supplement to Mahler’s paper [2].

2. The valuations. Let $K$ be an arbitrary field of characteristic
$\chi,$ $\chi$ being $0$ or a prime number. Let $t$ be an indeterminate and let $K[t]$

denote the ring of all polynomials in $t$ with coefficients in $K$ and $K(t)$

the field of all rational functions in $t$ with coefficients in $K$.
If $\xi=\xi(t)$ is an element of $K(t)$ , there exist polynomials $p=p(t),$ $q=$

$q(t)\neq 0$ in $K[t]$ such that $\xi=p/q$ . We define

deg $\xi\equiv\deg p-$ deg $q$ .
We shall be concerned in the following with (non-trivial) valuations

on $K(t)$ that are trivial on $K$. Thus there are two kinds of such valua-
tions, namely:

The valuation $|$ $|$ . For $\alpha=\alpha(t)$ in $K(t)$ we define 1 $\alpha|$ by putting

$|\alpha|=\left\{\begin{array}{ll}0 & if \alpha=0,\\c^{\deg\alpha} & \end{array}\right.$

if $\alpha\neq 0$ ,

where $c>1$ is a constant fixed throughout this paper.
A valuation $|$ $|$ . Let $\tau$ be a fixed primary irreducible polynomial

in $K[t]$ . For $\alpha=\alpha(t)$ in $K[t]$ we define $|\alpha|_{f}$ by putting

$\ovalbox{\tt\small REJECT}_{\alpha}1t=\left\{\begin{array}{ll}0 & if \alpha=0,\\c^{-v\deg} . & \end{array}\right.$

if $\alpha\neq 0$ ,

where $p=ord.\alpha$ , i.e. $\tau^{-\nu}\alpha$ contains the factor $\tau$ in neither numerator nor
denominator.

These valuations are so-called normal valuations on $K(t)$ and there
holds the product formula:

$|\alpha|\coprod_{\tau}|\alpha|_{\tau}=|\alpha|_{0}$ ,

where the product is taken over all primary irreducible polynomials $\tau$ in
$K[t]$ , and where $|$ $|_{0}$ is the trivial valuation on $K(t)$ , i.e. for $\alpha=\alpha(t)$ in
$K(t)$

$|\alpha|_{0}=\left\{\begin{array}{ll}0 & if \alpha=0,\\1 & if \alpha\neq 0.\end{array}\right.$

In particular, if $a=a(t)\neq 0$ is a polynomial of $K[t]$ , then we have

(2) $|a|\cdot|a|_{t}\geqq 1$
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for any valuation $|$ $|$ . on $K(t)$ , or more generally,
$t$

$|a|\backslash t|a|_{\tau_{j}}\geqq 1j=1$

for any valuations $|$

$|_{\tau_{J}}(1\leqq j\leqq s)$ , mutually inequivalent on $K(t)$ and
finite in number.

Now, let $ K\langle t^{-1}\rangle$ denote the completion of $K(t)$ under the valuation
$|$ $|$ and $ K\langle\tau\rangle$ denote the completion of $K(\tau)$ under the valuation $|$ $|.$ .
Thus $ K\langle t^{-1}\rangle$ is the field of all formal power series of the type

$\sum_{j=0}^{\infty}a_{j}t^{l- j}$ $(a_{j}\in K)$ ,

where $l$ is a certain non-negative integer, and $ K\langle\tau\rangle$ is the field of all
elements of the form

$\sum_{j=0}^{\infty}a_{j}\tau^{j- l}$ ($a_{j}\in K[t]$ , deg $a_{j}<\deg_{T}$),

$l$ being a non-negative integer.

3. Main results. The following theorem is an analogue of Liouville’s
theorem on rational approximations to real algebraic numbers:

Theorem 1. Let $K$ be an arbitrary field.
(i) Let $\alpha=\alpha(t)$ be an element of $ K\langle t^{-1}\rangle$ algebraic of degree $n\geqq 2$

over $K(t)$ . Then there is a constant $A_{1}>0$ such that

(3) $|\alpha-\frac{p}{q}|\geqq\frac{A_{1}}{|q|^{n}}$

for all pairs of polynomials $p=p(t),$ $q=q(t)\neq 0$ in $K[t]$ . If $K$ is of
characteristic $\chi>0$ , the inequality (3) cannot be improved in general.

(ii) Let $\alpha=\alpha(t)$ be an element of $ K\langle\tau\rangle$ algebraic of degree $n\geqq 2$ over
$K(t)$ . Then there is a constant $A_{2}>0$ such that

(4) $|p-q\alpha|_{\tau}\geqq\frac{A_{2}}{|p,q|^{n}}$

for all pairs of polynomials $p=p(t),$ $q=q(t)$ in $K[t]$ with $|p,$ $q|>0$ ,

where
$|p,$ $q|=\max(|p|, |q|)$ .

If $K$ is of characteristic $\chi>0$ , the inequality (4) cannot be improved in
general.
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The part (i) of this theorem is proved by Mahler [2].
If the constant field $K$ is of characteristic $0$ , then Theorem 1 can be

improved to the form:
Theorem 2. Let $K$ be a field of characteristic $0$ .
(i) Let $\alpha=\alpha(t)\neq 0$ be any element of $ K\langle t^{-1}\rangle$ algebraic over $K(t)$ .

Then for each $\kappa>2$ , the inequality

(6) $|\alpha-\frac{p}{q}|<\frac{1}{|q|^{\kappa}}$

is satisfied by only a finite number of pairs of polynomials $p=p(t),$ $q=$

$q(t)\neq 0$ in $K[t]$ with $(p, q)=1$ .
(ii) Let $\alpha=\alpha(t)\neq 0$ be any element of $ K\langle\tau\rangle$ algebraic over $K(t)$ . Then

for each $\kappa>2$ , the inequality

(6) $|p-q\alpha|_{f}<\frac{1}{|p,q|^{\iota}}$

is satisfied by only a finite number of pairs of polynomials $p=p(t)_{f}q=$
$q(t)$ in $K[t]$ with $(p, q)=1$ .

We observe that Theorem 2 is the best possible of its kind, as so is
Roth’s theorem on rational approximations to algebraic numbers. In fact
we shall prove:

Theorem 3. Let $K$ be an arbitrary field of characteristic $0$ .
(i) Let $\alpha=\alpha(t)$ be any element of $ K\langle t^{-1}\rangle$ , not a rational function.

Then there exist infinitely many pairs of polynomials $p=p(t),$ $q=q(t)\neq 0$

in $K[t]$ with $(p, q)=1$ satisfying the inequality

$|\alpha-\frac{p}{q}|<\frac{1}{|q|^{2}}$ .

(ii) Let $q=\alpha(t)$ be any element of $ K\langle\tau\rangle$ , not a rational function.
Then there exist infinitely many pairs of polynomials $p=p(t),$ $q=q(t)$

in $K[t]$ with $(p, q)=1$ satisfying the inequality

$|p-q\alpha|_{f}<\frac{1}{|p,q|^{2}}$ .
In \S 4 we prove Theorem 1, (ii). We shall give a proof for Theorem

2 in \S \S 5\sim 8, and a proof for Theorem 3 in \S 9. While our proof of
Theorem 2 follows, in the main, lines analogous to Roth’s [5], there are
essential differences in details. In \S 10 we note some further results allied
to Theorem 2. Several applications of these theorems will be given in
\S 11.
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4. Proof of Theorem 1, (ii). If $\alpha=\alpha(t)$ is an element of $ K\langle\tau\rangle$

algebraic of degree $n\geqq 2$ over $K(t)$ , it satisfies an irreducible equation
$f(x)=0$ , where

$f(x)=a_{0}x^{n}+a_{1}x^{n- 1}+\cdots+a_{n}$ ,

the coefficients $a_{0}\neq 0,$ $a_{1},\cdots,$ $a_{n}$ being polynomials in $K[t]$ . Following
Mahler, we consider the polynomial

$g(x)=\sum_{j=0}^{n-1}(a_{0}\alpha^{j}+a_{1}\alpha^{j- 1}+\cdots+a_{j})x^{n- 1- J}$ .

Then $f(x)/(x-\alpha)=(f(x)-f(\alpha))/(x-\alpha)=g(x)$ identically in $x$ , and so

$x-\alpha=\frac{f(x)}{g(x)}$ .

Put
$c_{1}=\max(1, |\alpha|_{\tau})$ .

Let $p=p(t),$ $q=q(t)\neq 0$ be any elements of $K[t]$ . If

$|\frac{p}{q}|_{\tau}>c_{1}\geqq|\alpha|_{\tau}$ ,

then we have, on account of (2),

$|p-q\alpha|_{\tau}=|p|_{\tau}\geqq\frac{1}{|p|}\geqq\frac{1}{|p,q|^{n}}$ ,

since $|p,$ $q|\geqq\max(1, |p|)$ . If

$|\frac{p}{q}|\tau\leqq c_{1}$ ,

then

$|q^{n- 1}g(\frac{p}{q})|_{\tau}\leqq c_{1}^{n-1}$ ,

Now, the expression

$q^{n}f(\frac{p}{q})=a_{0}p^{n}+a_{1}p^{n- 1}q+\cdots+a_{n}q^{n}$

lies in $K[t]$ and does not vanish since $f(x)$ is an irreducible polynomial of
degree $n\geqq 2$ with coefficients in $K[t]$ . Hence, by (2),
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$|q^{n}f(\frac{p}{q})|_{t}\geqq\frac{1}{|q^{n}f(\frac{p}{q})|}\geqq\frac{1}{c_{2}|p,q|^{n}}$

,

where
$c_{2}=\max(|a_{0}|, \}a_{1}|,\cdots, |a_{n}|)$ .

Therefore

$|p-q\alpha|_{\tau}=\frac{|q^{n}f(\frac{p}{q})|_{\tau}}{|q^{n- 1}g(\frac{p}{q})|_{t}}\geqq\frac{1}{c_{1}^{n-1}c_{2}|p,q|^{n}}$ .

Thus it suffices to put

$A_{2}=\min(1,$ $\frac{1}{c_{1}^{n-1}c_{2}})$ .

This proves the first part of Theorem 1, (ii).
To prove the second part of Theorem 1, (ii), let $\chi>0$ be the character-

istic of $K$ and consider the element
$\alpha=\tau+\tau^{\chi}+\tau^{\chi 2}+\cdots$

of $ K\langle\tau\rangle$ . We have
$\alpha=\tau+(\tau+\tau^{\chi}+\cdots)^{\chi}=\tau+\alpha^{\chi}$ ,

and so $\alpha$ is a root of the algebraic equation

$x^{\chi}-x+\tau=0$ .
Since $\tau$ is an irreducible polynomial in $K[t]$ , it follows that $\alpha$ is of exact
degree $\chi$ over $K(t)$ . Put

$p_{j}=\tau+\tau^{\chi}+\cdots+\tau^{x^{j-1}},$ $q_{j}=1$ $(j=1,2, \cdots)$ .
Then

$|p_{j},$ $q_{j}|=c^{\chi^{j-1}\deg\tau}$

and
$|p_{j}-q_{j}\alpha|_{f}=|\tau^{x^{j}}+\cdots|=c^{-\chi^{j_{(}}1e^{\sigma}r}=|p_{j},$ $q_{j}|^{-\chi}$ ,

completing the proof of our assertion.

5. Some lemmas. In what follows we shall suppose throughout that
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the ground field $K$ is of characteristic $0$ .
Consider polynomials of the type

$P(x_{1}, \cdots, x_{m})=\sum_{0\leqq j_{\mu}\leqq r_{\mu}}C(j_{1}, \cdots, j_{m})x_{1}^{j_{1}}\cdots x_{m}^{j_{m}}$

in $m$ indeterminates $x_{\mu}(1\leqq\mu\leqq m)$ with coefficients $C(i_{1}, \cdots, j_{m})$ in $K[t]$ .
We define

$H(P)=\max|C(j_{1}, \cdots, j_{m})|$

and write

$P_{i_{1}\cdots i_{m}}=(\prod_{\mu=1}^{m}\frac{1}{i_{\mu}!}\frac{\partial^{i_{\mu}}}{\partial x_{x^{\mu}}^{i}})P$

for any non-negative integers $i_{\mu}(1\leqq\mu\leqq m)$ . We shall say that $P$ has the
index $I$ at $(\alpha_{1}, \cdots, \alpha_{m})$ with respect to $(s_{1}, \cdots, s_{m})$ , where $\alpha_{1},$ $\cdots,$ $\alpha_{m}$ are
any elements algebraic over $K(t)$ and $s_{I},$ $\cdots,$ $s_{m}$ are positive integers, if
$I$ is the least value of

$\sum_{\mu=1}^{m}\frac{i_{\mu}}{s_{\mu}}$

for which
$P_{i_{1}}\ldots i_{m}(\alpha_{1}, \cdots’\alpha_{m})\neq 0$ .

Clearly such $i_{1},$
$\cdots,$

$i_{m}$ exist except when $P$ vanishes identically.

Now let $r_{1},$ $\cdots,$ $r_{m}$ be positive integers, $B\geqq 1$ . We consider the set

$M_{m}=M_{m}(B;r_{1}, \cdots\prime r_{m})$

of polynomials $P(x_{1}, \cdots, x_{m})$ satisfying the conditions:
(a) $P$ has coefficients in $K[t]$ and is not identically zero;
(b) $P$ is of degree at most $r_{\mu}$ in $x_{\mu}(1\leqq\mu\leqq m)$ ;
(c) $H(P)\leqq B$ .
Let $p_{1}=p_{1}(t),$ $\cdots,$

$p_{m}=p_{m}(t),$ $q_{1}=q_{1}(t),$ $\cdots,$
$q_{m}=q_{m}(t)$ be any polynomials

of $K[t]$ such that $q_{\mu}\neq 0,$ $(p_{\mu}, q_{\mu})=1(1\leqq\mu\leqq m)$ . Let $I(P)$ denote the index
of $P$ at $(p_{1}/q_{1}, \cdots, p_{m}/q_{m})$ with respect to $(r_{1}, \cdots, r_{m})$ . We define

$I_{m}(B;h_{1}, \cdots, h_{m} ; r_{1}, \cdots, r_{m})=\sup I(P)$ ,

the supremum being taken over all $P$ in $M_{m}$ and all $(p_{1}/q_{1}, \cdots, p_{m}/p_{m})$

with $|q_{1}|=h_{1},$ $\cdots,$
$|q_{m}|=h_{m}(|p_{1}, q_{1}|=h_{1}, \cdots, |p_{m}, q_{m}|=h_{m})$ , where $h_{\mu}\geqq 1$

$(1\leqq\mu\leqq m)$ .
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Lemma 1. We have

$I_{1}(B;h_{1} ; r_{1})\leqq\frac{\log B}{r_{1}\log h_{1}}$ .

Let $P(x_{1})$ be a polynomial in $M_{1}$ and let $p_{1},$ $q_{1}\neq 0$ be any elements of
$K[t]$ with $|q_{1}|=h_{1}(|p_{1}, q_{1}|=h_{1})$ . If $I$ is the index of $P$ at $(p_{1}/q_{1})$ with
respect to $(r_{1})$ , then we have

$P(x_{1})=(q_{1}x_{1}-p_{1})^{Ir_{1}}Q(x_{1})$ ,

where $Q$ is a polynomial in $x_{1}$ with coefficients in $K[t]$ since $(p_{I}, q_{1})=1$ .
It follows that

$H(P)\geqq|p_{1},$ $q_{1}|^{Ir_{1}}\geqq h_{1}^{Ir_{1}}$ ,

whence the required result.
After the manner of Roth’s method [5], we can prove, using gener-

alized Wronskians defined over $K(t)$ , the following inductive lemma:
Lemma 2. Let $2\leqq\mu\leqq m$ and let $\gamma_{1}$

$.,$ $r_{\mu}$ be positive integers such
that

$r_{j-1}/r_{j}>\delta^{-1}$ $(2\leqq j\leqq\mu)$ ,
where $0<\delta<1$ . Then

$I_{\mu}(B;h_{1}, \cdots, h_{\mu} ; r_{1}, \cdots, r_{\mu})\leqq 2$ max $(\Phi+\Phi^{3}+\delta^{*})$ ,

where the maximum is taken over integers $l$ satisfying
$1\leqq l\leqq r_{\mu}+1$ ,

and where
$\Phi=I_{1}(B^{\iota} ; h_{\mu} ; lr_{\mu})+I_{\mu-1}(B^{l} ; h_{1}, \cdots, h_{\mu-1} ; lr_{1}, \cdots, lr_{\mu-1})$ .

Lemma 3. Let $m$ be a positive integer and let $\delta$ satisfy
$0<\delta<1$ .

Let $\gamma_{1}\cdots,$ $r_{m}$ be positive integers satisfying

$r_{j-1}/r_{j}>\delta^{-1}$ $(2\leqq j\leqq m)$ .
Let $h_{1},$

$\cdots,$ $h_{m}$ be positive numbers satisfying

$r_{j}$ log $h_{j}\geqq\gamma_{1}$ log $h_{1}$ $(2\leqq j\leqq m)$ .
Then

$ I_{m}(h_{1}^{\delta r_{1}} ; h_{1}, \cdots, h_{m} ; r_{1}, \cdots, r_{m})<\eta$ ,
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where
$\eta=\eta(m, \delta)=7^{m}\delta^{2^{-m}}$ .

For $m=1$ the result follows at once from Lemma 1. Suppose that
$\mu\geqq 2$ is an integer and that the present lemma holds for $m=\mu-1$ . We
have, by Lemma 1 again,

$ I_{1}(h_{1}^{\delta lr_{1}} ; h_{\mu} : lr_{\mu})<\delta$

and, using the induction hypothesis,
$I_{\mu-1}(h_{1}^{\delta lr_{1}} ; h_{1}\cdots, h_{\mu-1} ; lr_{1}, \cdot , ., lr_{\mu-1})<\eta(\mu-1, \delta)$ .

Hence
$\Phi<\delta+\eta(\mu-1, \delta)<2\eta(\mu-1, \delta)$ .

It now follows from Lemma 2 that
$I_{\mu}(h_{1}^{\delta r_{1}} ; h_{1}, \cdots, h_{\mu} ; \gamma_{1}\cdots, r_{\mu})$

$\leqq 2(2\eta(\mu-1, \delta)+2^{\xi}\eta(\mu-1, \delta)^{g}+\delta^{\doteqdot})$

$\leqq 2(\frac{2}{7}+\frac{2*}{7^{\S}}+\frac{1}{7^{2}})\cdot\eta(\mu, \delta)$

$<\eta(\mu, \delta)$ .
This completes the induction.

Lemma 4. For any positive integers $\gamma_{1}\cdots,$ $\gamma_{m}$ and a real number $\lambda>0$

the number of sets of integers $i_{1},$
$\cdots,$

$i_{m}$ such that

$\sum_{\mu=1}^{m}\frac{i_{\mu}}{r_{\mu}}\leqq\frac{1}{2}(m-\lambda),$ $0\leqq i_{\mu}\leqq r_{\mu}(1\leqq\mu\leqq m)$

is at most
$(2m)^{*}\lambda^{-1}(1+r_{1})\cdots(1+r_{m})$ .

This is a slightly sharpened form for the corresponding lemma of
Roth [5, Lemma 8], a very simple proof of which is given by J. W. S.
Cassels [1].

Lemma 5. (i) Let $\alpha=\alpha(t)$ be an element of $ K\langle t^{-1}\rangle$ satisfying the
equation
(7) $f(x)=a_{0}x^{n}+\alpha_{1}x^{n- 1}+\cdots+a_{n}=0$ $(a_{0}\neq 0)$ ,

where $a_{0},$ $a_{1},$ $\cdots,$ $a_{n}$ are polynomials of $K[t]$ . Then
$|\alpha|\leqq H(f)$ .

(ii) Let $\alpha=\alpha(t)$ be an element of $ K\langle\tau\rangle$ satisfying the equation (7).
Then
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$|\alpha|_{\tau}\leqq H(f)$ .
More generally, we have, i.f $\alpha_{j}=\alpha_{j}(t)\in K\langle\tau_{j}\rangle,$ $f(\alpha_{j})=0(1\leqq j\leqq s)$ ,

$\prod_{j=1}^{\delta}$ max $(1, |\alpha_{j}|_{\tau_{J}})\leqq H(f)$ .
where $\tau_{j}(1\leqq j\leqq s)$ are distinct primary irreducible polynomials in $K[t]$ .

We may suppose that $\alpha\neq 0$ since otherwise there is nothing to prove.
From the relation

$a_{0}\alpha=-(a_{1}+a_{2}\alpha^{-1}+\cdot . . +a_{n}\alpha^{-n+1})$

we find that
$|a_{0}||\alpha|\leqq\max(|a_{1}|, \cdots, |a_{n}|)\leqq H(f)$ ,

if a $|>1$ . Hence, for 1 a $|>1$ ,

$|\alpha|\leqq\frac{H(f)}{|a_{0}|}\leqq H(f)$ .
This inequality is obviously true also for a $|\leqq 1$ .

Similarly we find that, if a $|_{\tau}>1$ ,

$|a_{0}|_{f}|\alpha|_{f}\leqq\max(|a_{1}|_{\tau}, \cdots, |a_{n}|_{f})\leqq 1$ ,

whence

$|\alpha|_{\tau}\leqq\frac{1}{|a_{0}|_{\tau}}\leqq|a_{0}|\leqq H(f)$ ,

and this inequality also holds if $|\alpha|_{f}\leqq 1$ .

6. Construction of approximation polynomials. Let $\alpha=\alpha(t)\neq 0$ be an
integral algebraic function of degree $n$ over $K(t)$ , i.e. one which satisfies
an algebraic equation $t$

$f(x)=0$ ,
where

$f(x)=a_{0}x^{n}+a_{1}x^{n- 1}+\cdots+a_{n}$ $(a_{0}=1)$

is an irreducible polynomial with coefficients in $K[t]$ .
Put

$c_{8}=H(f)$ .
Let $p_{1}=p_{1}(t),$ $\cdots,$ $p_{m}=p_{m}(t),$ $q_{1}=q_{1}(t),$ $\cdots,$ $q_{m}=q_{m}(t)$ be any elements of

$K[t]$ such that $q_{\mu}\neq 0,$ $(p_{\mu}, q_{\mu})=1(1\leqq\mu\leqq m)$ and $|q_{1}|=h_{1},$ $\cdots,$ $|q_{m}|=h_{m}$

$(|p_{1}, q_{1}|=h_{1},\cdots, |p_{m}, q_{m}|=h_{m})$ , where $h_{\mu}\geqq 1(1\leqq\mu\leqq m)$ . Suppose that the
numbers $m,$ $\delta,$ $h_{1},$ $\cdots,$ $h_{m},$ $r_{1},$ $\cdots,$ $r_{m}$ satisfy the following conditions:
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(8) $0<\delta<1$ ,

(9) $2\eta(m, \delta)+(1+2\delta)n(2m)^{\doteqdot}<m$ ,

(10) $\gamma_{j- 1}/r_{j}>\delta^{-1}$ $(2\leqq j\leqq m)$ ,

(11) log $h_{1}>\delta^{-2}$($\log c+m$ log $c_{3}$),

(12) $r_{j}$ log $h_{j}\geqq r_{1}$ log $h_{1}$ $(2\leqq j\leqq m)$ .
We set

$\lambda=(1+2\delta)n(2m)^{*}$ ,

$\gamma=\frac{1}{2}(m-\lambda)$ ,

$B_{1}=h_{1}^{\delta r_{1}}$ .
Lemma 6. If the conditions (8), (9), (10), (11) and (12) are satisfied,

then there exists a polynomial
$Q(x_{1}, \cdots, x_{m})$

in $M_{m}^{*}=M_{m}(B_{1} ; r_{1}, \cdots, r_{m})$ such that
(a) the index of $Q$ at $(\alpha, \alpha, \cdots, \alpha)$ with respect to $(r_{1}, \cdots, r_{m})$ is at

least $\gamma-\eta$ ;
(b) $Q(p_{1}/q_{1}, \cdots, p_{m}/q_{m})\neq 0$ ;
(c) for any non-negative integers $i_{1},$

$\cdots,$
$i_{m}$ we have

$|Q_{i_{1}\cdots i_{m}}(\alpha, \cdots, \alpha)|\leqq B_{1}^{1+\delta}$ if $\alpha\in K\langle t^{-1}\rangle$ ,

$|Q_{i_{1}\cdots i_{m}}(\alpha, \cdots, \alpha)|_{f}\leqq B_{1}^{\delta}$ if $\alpha\in K\langle\tau\rangle$ .
To prove this lemma, consider a general polynomial

$P(x_{1}, \cdots, x_{m})=$
$\sum_{0\leqq i_{\mu}\leqq r_{\mu},(1\leqq\mu\leqq m)}C(j_{1}, \cdots, j_{m})\dot{\theta}_{1}^{1}\cdots x_{m}^{j_{m}}$

in $M_{m}^{*}$ . Then each of the coefficients $C(j_{1}, \cdots, j_{m})$ , as a polynomial in $t$ ,

possesses exactly

$1+[\frac{\log B_{1}}{\log c}]$

distinct terms. Hence the total number $N$ of coefficients, whose values
being in $K$, in the polynomials $C(j_{1}, \cdots, j_{m})(0\leqq i_{\mu}\leqq\gamma_{\mu}1\leqq\mu\leqq m)$ is equal

to

$(1+\gamma_{1})\cdots(1+r_{m})(1+[\frac{\log B_{1}}{\log c}])$ .

Next, the number of derivatives
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$P_{i_{1}\cdots t_{m}}(x_{1}, \cdots, x_{m})$ ,

where

(13) $\sum_{\mu=1}^{m}\frac{i_{\mu}}{r_{\mu}}\leqq\gamma$ , $0\leqq i_{\mu}\leqq r_{\mu}$ $(1\leqq\mu\leqq m)$ , .

does not exceed, by Lemma 4, the bound
$(2m)^{*}\lambda^{-1}(1+r_{1})\cdots(1+r_{m})$ .

For each set of integers $i_{1},$
$\cdots,$

$i_{m}$ satisfying (13) we form the polynomial
$P_{i_{1}\cdots t_{m}}(x\cdots x)$ in the single indeterminate $x$ and then devide this
polynomial by $f(x)$ , obtaining the remainder

$R(i_{1}, \cdots, i_{m} ; x)=\sum_{j=0}^{n-1}C_{j}x^{j}$ .
The coefficients $C_{j}$ are linear combinations of the $C(j_{1}, \cdots, j_{m})$ with coef-
ficients in $K[t]$ . It is easy to see that the $C_{j}$ are, as polynomials in $K[t]$ ,
of degree at most

$\frac{\log c_{3}^{mr_{1}}B_{I}}{\log c}<(1+\delta)\frac{\log B_{1}}{\log c}$ .
It follows that the total number of such coefficients of the $C_{j}$ in $R(i_{1},$ $\cdots$ ,
$i_{m}$ ; x) for all sets of integers $i_{1},$

$\cdots,$
$i_{m}$ satisfying (13) does not exceed

$(2m)^{f}\lambda^{-1}(1+r_{1})\cdots(1+r_{m})n(1+2\delta)\frac{\log B_{I}}{\log c}$ ,

which is less than $N$ by the definition of $\lambda$ , since

$\frac{\log B_{1}}{\log c}<1+[\frac{\log B_{1}}{\log c}]$ .

Thus we conclude that there exists a polynomial $P$ in $M_{m}^{*}$ such that
$P_{i_{1}\cdots i_{m}}(\alpha;\cdots, \alpha)=0$

for all sets of integers $i_{1},$
$\cdots,$

$i_{m}$ satisfying (13): in other words, the index
of $P$ at $(\alpha, \cdots, \alpha)$ with respect to $(r_{1}, \cdots, \gamma_{m})$ is at least $\gamma$ . The poly-
nomial $P$ being a member of $M_{m}^{*}$ , there exists, by Lemma 3, a derivative

$Q(x_{1}, \cdots, x_{m})=P_{J_{1}\cdots J_{m}}(x_{1}, \cdots, x_{m})$

with
$\sum_{\mu=1}^{m}\frac{j_{\mu}}{\gamma_{\mu}}<\eta$

such that
$Q(p_{1}/q_{1}, \cdots, p_{m}/q_{m})\neq 0$ .
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The index of $Q$ at $(\alpha, \cdots, \alpha)$ with respect to $(r_{1}, \cdots\gamma_{m})$ is at least $\gamma-\eta$ .
Thus the polynomial $Q$ satisfies the conditions (a) and (b) of Lemma 6.
To verify that $Q$ satisfies the condition (c) as well is immediate. Proof
of Lemma 6 is now complete.

7.. Proof of Theorem 2, (i). First we prove the following
Lemma 7. Let $\alpha=\alpha(t)$ be an arbitrary element of $ K\langle t^{-1}\rangle$ and let

$p_{i}=p_{i}(t),$ $q_{i}=q_{i}(t)\neq 0(i=1,2)$ be any polynomials in $K[t]$ such that $p_{1}/q_{1}$

$\neq p_{2}/q_{2},$ $|q_{1}|=|q_{2}|$ . Then for each $\kappa>2$ ,

$|\alpha-\frac{p_{1}}{q_{1}}|<|q_{1}|^{-\kappa}$ implies $|\alpha-\frac{p_{2}}{q_{2}}|\geqq|q_{2}|^{-\iota}$

If not, we would have

$|qi|^{-2}\leqq|\frac{p_{1}}{q_{1}}-\frac{p_{2}}{q_{2}}|=|(\alpha-\frac{p_{1}}{q_{1}})-(\alpha-\frac{p_{2}}{q_{2}})|<|q_{1}|^{-\kappa}$ ,

which is impossible since $\kappa>2$ .
Now, let $\alpha=\alpha(t)\neq 0$ be an element of $ K\langle t^{-1}\rangle$ algebraic of degree $n$

over $K(t)$ . Suppose that Theorem 2, (i) is false, so that for some $\kappa>2$ ,
the inequality (5) has infinitely many solutions $p=p(t),$ $q=q(t)\neq 0$ in $K[t]$

with $(p, q)=1$ . Denote by $E$ the set of all such solutions $(p, q)$ of (5).
It follows from Lemma 7 that $|q|$ is not bounded when $(p, q)$ runs through
the elements of $E$, and so we may suppose that $\alpha$ is an integral algebraic
function. For, if not, there is a (non-zero) polynomial $a=a(t)$ in $K[t]$

such that $ a\alpha$ is an integral algebraic function, and for arbitrary $\epsilon>0$

and for all $(p, q)$ in $E$ with sufficiently large $|q|$

$0<|a\alpha-\frac{ap}{q}|<|a|\cdot|q|^{-\kappa}<|q|^{-\kappa+\epsilon}$ ,

where $\epsilon$ can be chosen so small that $\kappa-\epsilon>2$.
We take an integer $m$ so large that $m>n(2m)^{*}$ and

$\frac{2m}{m-n(2m)^{g}}<\kappa$ ,

which is possible since $\kappa>2$ . Let $\delta$ be a sufficiently small positive number
satisfying the conditions (8) and (9), and the inequality

$\frac{2m(1+\delta)+2\delta(1+\delta)}{m-(1+2\delta)n(2m)^{g}-2\eta}<\kappa$ ,

which is equivalent to
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(14) $\frac{m(1+\delta)+\delta(1+\delta)}{\gamma-\eta}<\kappa$ .

We now choose a solution $(p_{1}, q_{1})$ from $E$ with 1 $q_{1}|=h_{1}$ so large as
to satisfy (11). We then choose further solutions $(p_{j}, q_{j})(2\leqq j\leqq m)$ from
$E$ such that $|q_{j}|=h_{j}(2\leqq j\leqq m)$ , where

$\frac{\log h_{j}}{\log h_{j- 1}}>\frac{2}{\delta}$
$(2\leqq j\leqq m)$ .

Let $r_{1}$ be any integer such that

$\gamma_{1}>\frac{\log h_{m}}{\delta\log h_{1}}$

and define $\gamma_{j}(2\leqq j\leqq m)$ by

$\frac{r_{1}\log h_{1}}{\log h_{f}}\leqq\gamma_{j}<\frac{r_{1}\log h_{1}}{\log h_{j}}+1$ .

Then the condition (12) is satisfied. Also, for $2\leqq j\leqq m$ ,

$\frac{r_{j}\log h_{j}}{r_{1}\log h_{1}}<1+\frac{\log h_{j}}{r_{1}\log h_{1}}\leqq 1+\frac{\log h_{m}}{r_{1}\log h_{1}}<1+\delta$ ,

whence

$\frac{r_{j- 1}}{r_{j}}>\frac{\log h_{j}}{\log h_{j- 1}}(1+\delta)^{-1}>\delta^{-1}$

and the condition (10) is satisfied. Hence there exists a polynomial
$Q(x_{1}, \cdots, x_{m})$ in $M_{m}^{*}$ with the properties listed in Lemma 6.

On one hand, we have
$|Q(q_{1}/q_{1}, \cdots, p_{m}/q_{m})|\geqq h_{1}^{-r_{1}}\cdots h_{m}^{-r_{m}}>h_{1}^{-mr_{1}(1+\delta)}$ .

On the other hand, we find that

$Q(p_{1}/q_{1}, \cdots, p_{m}/q_{m})=\sum_{i_{1}=0}^{r_{1}}\cdots\sum_{i_{m}=0}^{r_{m}}Q_{i_{1}\cdots i_{m}}(\alpha, \cdots, \alpha)$ .

$(p_{1}/q_{1}-\alpha)^{i_{1}}\cdots(p_{m}/q_{m}-\alpha)^{t_{m}}$ ,

whence
$|Q(p_{1}/q_{1}, \cdots, p_{m}/q_{m})|\leqq B_{1}^{1+\delta}$ max $(h_{1^{1}}^{i}\cdots h_{m^{m}}^{i})^{-}‘‘,$

where the maximum is taken over all integers $i_{1},$
$\cdots,$

$i_{m}$ satisfying the
inequalities

$\sum_{\mu=1}^{m}\frac{i_{\mu}}{r_{\mu}}\geqq\gamma-\eta$ , $0\leqq i_{\mu}\leqq\gamma_{\mu}$ $(1\leqq\mu\leqq m)$ .

Thus
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$\max$ $(h_{1}^{i_{1}}$ . . . $h_{m}^{l_{m}})^{-\kappa}=\max\{h_{1^{11}}^{ir}$ . . . $(h_{m}^{r_{m}/r_{1}})^{i_{m}/r_{m}}\}^{-r_{1}\kappa}$

$\leqq\max(h_{1^{11}}^{i/r}$ . . . $h_{1}^{i_{m}/r_{m}})^{-r_{1}\kappa}$

$\leqq h_{1}^{-r_{1}(\gamma-\eta)\kappa}$ ,

and so
$|Q(p_{1}/q_{1}, \cdots, p_{m}/q_{m})|\leqq h_{1}^{\delta(1+\delta)r_{1}-r_{1}(\gamma-\eta)\kappa}$

Combining these estimates for $Q(p_{1}/q_{1}, \cdots, p_{m}/q_{m})$ , we obtain
$h_{1}^{-r_{1}m(1+\delta)}\leqq h_{1}^{\delta(1+\delta)r_{1}-r_{1}(\gamma-\eta)\kappa}$ ,

or
$\kappa\leqq\frac{m(1+\delta)+\delta(1+\delta)}{\gamma-\eta}$ ,

which contradicts (14). This completes the proof of Theorem 2, (i).

8. Proof of Theorem 2, (ii). We require the following

Lemma 8. Let $\alpha=\alpha(t)$ be an arbitrary element of $ K\langle\tau\rangle$ and let
$p_{i}=p_{i}(t),$ $q_{i}=q_{i}(t)(i=1,2)$ be any polynomials in $K[t]$ such that $p_{1}q_{2}-p_{2}q_{1}$

$\neq 0,$ $|p_{1},$ $q_{1}|=|p_{2},$ $q_{2}|$ . Then for each $\kappa>2$ ,

$|p_{1}-q_{1}\alpha|_{\tau}<|p_{1},$ $q_{1}|^{-\kappa}$ implies $|p_{2}-q_{2}\alpha|_{\tau}\geqq|p_{2},$ $q_{2}|^{-}‘‘$

If not, we would have
$|p_{1},$ $q_{1}|^{-2}\leqq|p_{1}q_{2}-p_{2}q_{1}|_{\tau}=|(p_{1}-q_{1}\alpha)q_{2}-(p_{2}-q_{2}\alpha)q_{1}|_{\tau}<|p_{1},$ $q_{1}|^{-\iota}$ ,

which is impossible since $\kappa>2$ .
Now, let $\alpha=\alpha(t)\neq 0$ be any element of $ K\langle\tau\rangle$ algebraic of degree $n$ over

$K(t)$ . Suppose that Theorem 2, (ii) is false, so that for some $\kappa>2$ , the
inequality (6) has infinitely many solutions $p=p(t),$ $q=q(t)$ in $K[t]$ with
$(p, q)=1$ . Denote by $M$ the set of all such solutions $(p, q)$ of (6). It
follows from Lemma 8 that $|p,$ $q|$ is not bounded when $(p, q)$ runs through

the elements of $M$, and so we may suppose again that $\alpha$ is an integral

algebraic function. For, if not, there is a (non-zero) polynomial $a=a(t)$

in $K[t]$ such that $ a\alpha$ is an integral algebraic function, and for arbitrary
$\epsilon>0$ and for all $(p, q)$ in $M$ with sufficiently large $|p,$ $q|$

$0<|ap-q(a\alpha)|_{\tau}<|a|_{\tau}|p,$ $q|^{-\kappa}\leqq|a|^{\iota}|ap,$ $q|^{-\iota}<|ap,$ $q|^{-\kappa+*}$ ,

where 6 can be chosen so small that $\kappa-e>2$ .
The rest of the proof of Theorem 2, (ii) is quite similar to that of

(i). We take $m$ and $\delta$ to satisfy the conditions (8) and (9) and the in-
equality (14). We then choose solutions $(p_{1}, q_{1}),$ $\cdots,$ $(p_{m}, q_{m})$ from $M$ with
$|p_{j},$ $q_{j}|=h_{j}(1\leqq j\leqq m)$ and define $\gamma_{1},$ $\cdots,$ $r_{m}$ as in \S 7. The conditions for
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Lemma 6 are all satisfied, and so there exists a polynomial $Q(x_{1}, \cdots, x_{m})$

with the properties stated there. We have on one hand
$|q_{1}^{r_{1}}\cdots q_{m^{m}}^{\prime}Q(p_{1}/q_{1}, \cdots’, p_{m}/q_{m})|_{e}\geqq B_{1}^{-1}h_{1}^{-r_{1}}\cdots h_{m}^{-r_{m}}$

$>h_{1}^{-\delta r_{1}-r_{1}m(1+\delta)}$ ,
and on the other hand

$|q_{1^{1}}^{r}\cdots q_{m^{m}}^{f}Q(p_{1}/q_{1}, \cdots, p_{m}/q_{m})|_{f}\leqq B_{1}^{\delta}$ max $(h_{1^{1}}^{i}\cdots h_{m^{m}}^{i})^{-\kappa}$

$\leqq h_{1}^{\delta^{2}r_{1}-r_{1}(\gamma-\eta)\kappa}$ ,
as in $\S_{*}7$ . Thus we find that

$h_{1’}^{-\delta r_{1}-r_{1}m(1+\delta)}\leqq h_{1}^{\delta^{2}r_{1}-r_{1}(\gamma-\eta)\kappa}$ ,
which again contradicts (14), completing the proof of Theorem 2, (ii).

9. Proof of Theorem 3. Let $K$ be an arbitrary field of character-
istic $0$ .

First we prove the part (ii). Let

$\alpha=\sum_{i=0}^{\infty}c_{i}\tau^{i-\iota}$ ($c_{j}\in K[t]$ , deg $ c_{i}<\deg\tau$)

be any element of $ K\langle\tau\rangle$ , not belonging to $K(t)$ . We may suppose without
loss of generality that $l=0$ . We wish to show that, given non-negative
integers $d_{1},$ $d_{2}$ , there exist polynomials $p=p(t),$ $q=q(t)\neq 0$ in $K[t]$ with
$|p,$ $q|>0$ such that

$p=\sum_{j=0}^{a_{1}}a_{J^{T^{j}}}$ ( $a_{j}\in K[t]$ , deg $ a_{j}<\deg\tau$),

$q=\sum_{k=0}^{d_{2}}b_{k}\tau^{k}$ ($b_{k}\in K[t]$ , deg $ b_{k}<\deg\tau$),

and $\alpha-p/q$ , as an element of $ K\langle\tau\rangle$ , does not contain the first $d_{1}+d_{2}+1$

terms in it. This follows from the fact that every linear homogeneous
equations with coefficients in $K$ with unknowns more than the equations
in number has always a non-trivial solution in $K$. For instance, if $\tau$ is
a linear polynomial in $K[t]$ , then the coefficients $c_{i},$ $a_{j},$

$b_{k}$ lie in $K$ and
we must solve the equations

(15) $a_{j}=b_{0}c_{j}+b_{1}c_{j- 1}+\cdots+b{}_{j}C_{0}$ $(0\leqq j\leqq d_{1})$ ,
(16) $0=b_{0}c_{k+a_{1}}+b_{1}c_{k+d_{1}- 1}+\cdots+b_{a_{2}}c_{k+a_{1}- a_{2}}$ $(1\leqq k\leqq d_{2})$ ,

where we put $c_{i}=0$ for $i<0$ . The system (16), consisting of $d_{2}$ linear
homogeneous equations in $d_{2}+1$ unknowns, has a non-trivial solution
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$b_{0},$ $b_{1},$
$\cdots,$ $b_{a_{2}}$ in $K$. We then determine $a_{0},$ $a_{1},$ $\cdots,$ $a_{a_{1}}$ by the relations (15).

The general case where $\tau$ is not necessarily linear can be treated by a
similar but somewhat more complicated arguments. This proves Theorem
3, (ii).

To prove the part (i), let

$\alpha=\sum_{l=0}^{\infty}c_{i}t^{l- i}$ $(c_{i}\in K)$

be any element of $ K\langle t^{-1}\rangle$ , not belonging to $K(t)$ . Again, there is no loss
in generality in supposing that $l=0$ . For a prescribed non-negative integer
$d$ , put

$p=\sum_{j=0}^{d}a_{j}t^{j}$ $(a_{j}\in K)$ ,

$q=\sum_{k=0}^{d}b_{k}t^{k}$ $(b_{k}\in K)$ .

We see that

$\frac{p}{q}=\frac{\sum_{0}^{a}.a_{j}t^{-j}}{\sum_{0}^{d}b_{k}t^{-k}}$ .

Hence, we can determine, just as in the above, the coefficients $a_{0},$ $a_{1},$ $\cdots$ ,
$a_{d},$ $b_{0},$ $b_{1},$

$\cdots,$
$b_{a}$ of $p,$ $q$ in such a way that $q\neq 0$ , and $\alpha-p/q$ , as an element

of $ K\langle t^{-1}\rangle$ , does not contain the first $2d+1$ terms in it.
Theorem 3 is thus completely proved.

10. Further results. Let $K$ be an arbitrary field of characteristic $0$ .
In this section we wish to note some partial refinements of Theorem 2.

The following theorem is an analogue of a result of D. Ridout [4].

Theorem 4. Let $a=a(t)\neq 0$ be any element of $ K\langle t^{-1}\rangle$ algebraic over
$K(t)$ . Let $P_{1}=P_{1}(t),$ $\cdots,$ $P_{m}=P_{m}(t),$ $Q_{1}=Q_{1}(t),$ $\cdots,$ $Q_{n}=Q_{n}(t)$ be a finite set
of distinct irreducible polynomials in $K[t]$ . Let $\mu,$ $\nu,$

$C$ be real numbers
satisfying

$0\leqq\mu\leqq 1$ , $0\leqq v\leqq 1$ , $C>0$ .
Let $p=p(t),$ $q=q(t)$ be restricted to polynomials in $K[t]$ of the form

$p=p^{\star}P_{1}^{a_{1}},$
$\cdots,$

$P_{m^{m}}^{a},$ $q=q^{*}Q_{1^{1}}^{b},$
$\cdots,$

$Q_{n^{n}}^{b}$ ,

where $a_{1},$ $\cdots,$ $a_{m},$ $b_{1},$
$\cdots,$

$b_{n}$ are non-negative integers and $p^{*}=p^{\star}(t)$ are
Polynomials in $K[t]$ such that
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$0<|p^{*}|<C|p|^{\mu}$ , $0<|q^{*}|<C|q|^{\nu}$

Then if $\kappa>\mu+\nu$ , there exists a natural number $N$ depending only on
$\alpha,$ $\mu,$ $\nu,$ $C,$ $P_{1},$

$\cdots,$ $P_{m},$ $Q_{1},$
$\cdots,$

$Q_{n}$ , such that

$|\alpha-\frac{p}{q}|<\frac{1}{|q|^{\kappa}}$

has no solution $p,$ $q$ in $K[t]$ with $(p, q)=1$ and

max ($\deg p$ , deg $q$) $>N$ .
We can prove this theorem in almost the same way as in the proof

of Theorem 2, (i), on the basis of a slightly modified form of Lemma 6.
As to the mixed approximation to algebraic functions by rational

functions, we obtain:
Theorem 5. Suppose that the equation

$a_{0}x^{n}+a_{1}x^{n- 1}+\cdots+a_{n}=0$ $(a_{0}a_{n}\neq 0)$ ,
where $a_{i}=a_{i}(t)\in K[t]$ $(0\leqq i\leqq n)$ , has a root $\alpha=\alpha(t)$ in $ K\langle t^{-1}\rangle$ , a root
$\alpha_{1}=\alpha_{1}(t)$ in $K\langle\tau_{1}\rangle,$ $\cdots$ , a root $\alpha_{s}=\alpha_{s}(t)$ in $K\langle\tau_{s}\rangle,$

$\tau_{1},$ $\cdots,$ $\tau_{s}$ being distinct
primary irreducible polynomials in $K[t]$ . Then, if $\kappa>2$ , there exists a
natural number $N$ depending only on $a_{0},$ $a_{1},$ $\cdots,$ $a_{n},$ $\tau_{1},$ $\cdots,$ $\tau_{s},$

$\kappa$ , such that
the inequality

min $(1,$ $|\alpha-\frac{p}{q}|)\prod_{j=1}^{s}$ min $(1, |p-q\alpha_{j}|_{e_{j}})<|p,$ $q|^{-\kappa}$

has no solution $p=p(t),$ $q=q(t)\neq 0$ in $K[t]$ with $(p, q)=1$ and
max ($\deg p$ , deg $q$) $>N$ .

This is a partial generalization of Theorem 2 and its proof can be
carried out in a similar manner, making use of Lemmas 5 and 6.

11. Applications. Again, let $K$ denote a field of characteristic $0$ .
As an easy application of Theorem 2 we may $m\underline{en}tion$ the following
Theorem 6. Let $F(x, y)$ be a binary form of degree $n\geqq 3$ , without

multiple factors, whose coefficients belong to $K[t]$ . Let $G(x, y)$ be any
polynomial of total degree $<n-2$ with coefficients in $K[t]$ which has no
common factor with $F(x, y)$ . Then there exists an integer $N>0$ depending
only on $F$ and $G$ , such that the equation

$F(x, y)=G(x, y)$

has no solution $x=x(t),$ $y=y(t)$ in $K[t]$ with $(x, y)=1$ and
max ($\deg x$ , deg $y$) $>N$ .
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To prove this, we apply Theorem 2, (i), taking account of an extended
valuation of $|$ $|$ on $K(t)$ to an appropriate finite algebraic extension over
$K(t)$ .

The following theorem is an immediate consequence of Theorem 5:

Theorem 7. Let $F(x, y)$ be a binary form of degree $n\geqq 3$ , without
multiple factors, whose coefficients belong to $K[t]$ . Let $\tau_{1},$ $\cdots,\tau_{s}$ be distinct
primary irreducible polynomials in $K[t]$ and let $H(p, q)$ denote the high-

est power-product of $\tau_{1},$ $\cdots,$ $\tau_{s}$ which divides $F(p, q)$ , where $p=p(t),$ $q=q(t)$

are polynomials in $K[t]$ . Then, if $\kappa>2$ , there exists an integer $N>0$

depending only on $F,$ $\tau_{1},$ $\cdots,$ $\tau_{s}$ and. $\kappa$ such that the inequality

$|\frac{F(p,q)}{H(p,q)}|<|p,$ $q|^{n-\kappa}$

has no solution $p=p(t),$ $q=q(t)$ in $K[t]$ with $(p, q)=1$ and
max ($\deg p$ , deg $q$) $>N$ .

Now, let $\alpha=\alpha(t)$ be an element of $ K\langle t^{-1}\rangle$ and write

$\alpha=\sum_{i=0}^{\infty}c_{r}t^{\iota- i}$ ,

where $l$ is a non-negative integer. We put

$\{\alpha\}=\sum_{i=l+1}^{\infty}c_{i}t^{l-i}$

Then, as an easy consequence of Theorem 4, we obtain
Theorem 8. Let $\alpha=\alpha(t)\neq 0$ be any element of $ K\langle t^{-1}\rangle$ algebraic over

$K(t)$ . Let $A=A(t),$ $B=B(t)$ be polynomials in $K[t]$ having no factor in
common, such that $|A|>|B|>1$ , and let $\epsilon$ be an arbitrarily small posi-
tive number. Then the inequality

$|\{\alpha\cdot(\frac{A}{B})^{s}\}|<e^{-\epsilon s}$

is satisfied by at most a finite number of positive integers $s$ .
This is an analogue for rational functions of a theorem of Mahler

[3]. To prove Theorem 8, apply Theorem 4 with
$\mu=1-\delta$ , $\nu=0$ , $C=|$ a $|^{\delta}+1$ ,

$\kappa=1-\delta+\frac{1}{2}\epsilon(\log|A|)^{-1}>\mu+\nu$ ,

where $\delta=\log|B|/\log|A|$ , so that $0<\delta<1$ . Here $P_{1},$ $\cdots,$
$P_{m}$ and $Q_{1},$

$\cdots,$
$Q_{n}$

are distinct irreducible factors of $B$ and $A$ , respectively, and

2
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$p^{*}=\alpha\cdot(\frac{A}{B})^{s}-\{\alpha\cdot(\frac{A}{B})^{s}\}$ , $q^{\star}=1$ .
Note that $|p^{*}|>0$ for all sufficiently large $s$ .
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