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It is well known that, in any alternative ring A, the Smiley radical
SR(A) is contained in every modular maximal right ideal M. E. Kleinfeld
has shown that every primitive alternative, non-associative ring is a
Cayley-Dickson algebra.

Now we introduce the notion of s-modularity as follows: a right
ideal I of an alternative ring A is called *-modular if there exist two
elements a, u€ A such that |

(1) | x+ax+(a,x, u)el

for all xc¢ A, where (a, x, u) denotes the associator ax-u—a-xu of a,z,u,
and in this case we call a a left s-modulo unit of I. Clearly, modularity
implies *x-modularity. ‘

In this note, we shall show that the above results are also true if we
replacz modular ideals by *-modular ideals.

If a ring A is assumed to be alternative, then (a, b, ¢) becomes a skeW-
symmetric function of its three variables.

The Smiley radical SR(A) of an alternative ring A is defined as the
totality of elements ze A for which each element of (2), is rlght quasi-
regular.

In the next lemma we develop an 1mportant property of x-modular
right ideals. ‘

Lemma 1. Let I* be a x-modular right ideal of an alternative mng
A, and suppose that a left x-modulo unit a of I* is right quasi-regular.
Then I*=A. ’ - |

Proof. Let b be a right quasi-inverse of a:

(2) ‘ | a-+b+ab=0. |

Since a is a left x-modulo wunit of I* and since (a,a,u)=0, we have
a+a*eI* by putting x=a in (1), while (a+a?)b—(a, b, u)=ab-+a*h—(a, a, )
—(a, b, w)=ab+a*b—(a, a-+b, u) = ab+a’b+(a, ab,w)cI* by (2). Hence it
\follows that (a, b, w)el*, On the other hand, if we put x=b in (1), we
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have b+ab+(a,b, u)cI*, whence b+abel*. Thus ael*, which implies
together with (1) that every xz€A is in I'*, that is, I*=A. '

As any modular maximal right ideal is a member of a set of x-
modular maximal right ideals, the intersection of all the modular maximal
right ideals is contained in the intersection of modular maximal right
right ideals. |

Now, we show a connection between the 1ntersect10n of all the x-
modular maximal right ideals and the radical SR(A) in an alternative
ring A.

Theorem 1. Let A be an alternative ring. Then the sz’ley radical
SR(A).is contained in the intersection of all the x-modular maximal right
ideals M*:

SR(A) = NM*.

Proof. Let zcA be an element not contained in the intersection
(NIM*. Then there exists a *-modular maximal right ideal M* does not
contain z. And we have A=M*+4(z2),. Let a,u be elements such that
r+ax+(a, x,u)e M* for all xcA, and let m* and 2’ be elements-of M*
and (2), respectively such that a=m*+2. Then x42x+ (2, w)y=2x
+(a—m*)x+(a—m*, x, u)-x+am+(a x, u)—m*x-+(m*, x,u) e M* for all
xcA. Thus 2" is also a left *-modulo unit of M*. But, since M*A,
2" is not right quasi-regular by Lemma 1, and so # is ‘not in SR(A4).
This proves our theorem.

Next we refer to the structure of x-primitive alternative ring.

An alternative ring is defined to be x-primitive in case it contains
a *-modular maximal right ideal whose quotient is zero.

Lemma 2. The quotient (I*:A)={xcA; Ax = I*} of a *-modular
right ideal I* ts an tdeal of A.

P'roof The x*-modularity of I* assures the ex1stence of a,ucA with
the property that x+ax+(a,z, u)el* for every xcA. Since axcI* for
xe(l[*: A), we have x+(a,x,u)=x+a-ux—au-xecI*. And further wux
+a-uxr-+(a, ux, u)el*. Combining this with uxel*, we obtain a-uxeIl*
and eventually xelI*. Hence, for any yecA, A-xy and A-'yac are both in
I*. _ A .

By the light of this lemma, it is clear that A is *-primitive if and
only if A has a *-modular maximal right ideal which contains no nonzero
two-sided ideals. '

" An alternative ring is called simple if it has no nonzero proper two-
sided ideals and is not a nil ring.
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The following lemma is due to E. Klemfeld [1]

Lemma 3. A szmple alternatwe ring 1s either a Cayley-Dickson
algebra or associative. :

Most results in primitive alternatlve rings which were stated in [2]
are als6' true in our *-prlmltlve case under a slight modification of the
modularity.

We obtain the following:

Theorem 2. Every x-primitive, alternative, non-associative ring A
18 ‘a Cayley-Dickson algebra. '

Proof. We may prove, with the help of the proof in primitive case
[2], that every *-modular maximal right ideal M* of A is zero. And
so, it is enough only to show that A is a simple alternative ring. For
any left *-modulo unit @ of M*, a+4a*=0 and then a"==+a for every
integer n>1. It shows that a is not nilpotent, and hence A 1is simple
by Lemma 3. Therefore, A is a Cayley-Dickson algebra.
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