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\S 1. Let $A$ be an algebra over a commutative ring $K$, and $A^{e}$ the enveloping
algebra of $A:A^{e}=A\otimes_{R^{\prime}}A^{*},$ $A^{*}$ being the opposite algebra of $A$ . In this paper,
we shall mostly assume that $A$ satisfies the condition that $A^{e}$ is projective as
a left $A^{*}$-module (or equivalently, as a right A-module), which was first con-
sidered by Azumaya [1]. The class of such algebras contains that of algebras
which are projective as K-modules. Cartan and Eilenberg proved in [2] that
the cohomology groups $H^{n}(A, M)$ of a K-algebra $A$ with coefficients in a two-
sided A-module $M$ coincide with those defined by Hochschild [4] in the case
when $A$ is K-projective. Recently Azumaya showed in [1] the validity of the
same fact under the weaker condition of the $A^{*}$-projectivity of $A^{e}$ . We shall
show in \S 2 that the Azumaya theorem can also be proved in the similar way
as in Cartan and Eilenberg [2, IX, \S 6]. In \S 3 and \S 4, we shall give some
results concerning projective dimensions of algebras and concerning supplemented
algebras respectively, also under the condition of $A^{*}$-projectivity of $A^{e}$ . Finally,
we shall obtain in \S 5 a characterization of the Dedekind ring.

Throughout in this paper, we assume that a ring $A$ considered has an
identity element and all A-modules are unital, and we use always the notation
$\otimes instead$ , of $\otimes_{If}$ .

\S 2. Let $A$ be an associative algebra over a commutative ring $K$, and $A^{e}$

the enveloping algebra of $A:A^{e}=A\otimes A^{*}$ , where $A^{*}$ is the opposite algebra
of $A$ .

For each integer $n\geqq-1$ , let $S_{n}(A)$ denote the $(n+2)$-fold tensor product
over $K$ of $A$ with itself. Thus $S_{-1}(A)=A,$ $S_{n+1}(A)=A\otimes S_{n}(A)$ . We convert
$S_{n}(A)$ into a left $A^{e}$-module by setting $(b\otimes c^{*})(a_{0}\otimes a_{1}\otimes\cdots\otimes a_{n}\otimes a_{n+1})=(ba_{0})\otimes$

$a_{1}\otimes\cdots\otimes a_{n}\otimes(a_{n+}{}_{1}C)$ .

Lemma 1. If the enveloping algebra $A^{e}$ of $A$ is projective as a left
$A^{*}$-module, then, for $n\geqq 0,$ $S_{n}(A)$ is projective as a left $A^{e}$-module.

Proof. We shall prove this by induction on $n$ . For $n=0$ , this is evident
since $S_{0}(A)=A\otimes A$ is isomorphic with $A^{e}=A\otimes A^{*}$ as a left $A^{e}$-module. Sup-
pose now that we already know that $S_{n-1}(A)$ is $A^{e}$-projective. The left $A^{e}-$

module $S_{n-1}(A)$ may be considered as a left $A^{*}$-module by setting
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$a^{*}s_{n}1=(1\otimes a^{*})s_{\iota-1}$, for $a^{*}\in A^{*},$ $s_{n-1}\in S_{n-1}(A)$ ,

and from our assumptions that $A^{e}$ is $A^{*}$-projective and $S_{n- 1}(A)$ is $A^{e}$-projective,
$S_{n-1}(A)$ is $A^{*}$-projective by [2, II, 6.2]. Now, in the situation $(A,S_{n-1}(A))$

we convert $A\otimes S_{n-1}(A)$ into a left $A^{e}$-module by setting
$(b\otimes c^{*})(a\otimes s_{n-1})=ba\otimes c^{*}s_{n-1}$ for $a,$ $b,$ $c\in A,$ $s_{n-I}\in S_{n-1}(A)$ .

Thus $A\otimes S_{n-1}(A)$ is isomorphic with $S_{n}(A)$ as a left $A^{e}$-module, and so is $A^{e}-$

projective by [2, IX, 2.5]. Hence $S(A)=\sum_{n\geqq 0}S_{n}(A)$ is, under the same differ-
entiations and an augmentation as in [2, IX, \S 6], an $A^{e}$-projective resolution
of $A$ , and, by proceeding in the same way as in [2, IX, \S 6], we have the
following Azumaya theorem:

Theorem 2. Let $A$ be an algebra over a commutative ring K. If the
enveloping algebra $A^{e}$ of $A$ is projective as a left $A^{*}$-module, then the
cohomology groups $H^{n}(A, M)$ of $A$ with coefficients in a two-sided A-module
$M$ coincide with those defined by Hochschild [4].

\S 3. Let $A$ be a K-algebra, $L$ a commutative K-algebra, and $\varphi:A\rightarrow L\otimes A$

a ring homomorphism defined by $\varphi a=1\otimes a$ . Then $\varphi$ induces a homomorphism
$\varphi^{e}$ of $A^{e}=A\otimes A^{*}$ into $(L\otimes A)^{e}(\approx L\otimes A^{e})$ such that the diagram

is commutative, where $\rho$ is the augmentation given by $\rho(a\otimes b^{*})=ab$ .
For each two-sided $L\otimes A$-module $M$ (which using $\varphi$ may also be regarded

as a two-sided A-module) we have the homomorphisms
$F_{n}^{\varphi}$ : $H_{n}(A, M)\rightarrow H_{n}(L\otimes A, M)$ ,

$F_{\Phi}^{n}$ : $H^{n}(L\otimes A,M)-H^{n}(A, M)$ .

Suppose now that $A^{e}$ is $A^{*}$-projective. We shall verify conditions (i)
and (ii) of the mapping theorem of [2, VIII, 3.1] which in this case become:

(i) $(L\otimes A^{e})\otimes_{A}eA\rightarrow L\otimes A$ is an isomorphism:
(ii) Tor$A^{e}n(L\otimes A^{e}, A)=0$ for $n>0$ .

Condition (i) follows directly from the associativity of the tensor product.
To verify (ii) we consider an $A^{e}$-projective resolution $X$ of $A$ . Then
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$Tor_{n}^{A^{e}}(L\otimes A^{e}, A)=H_{n}((L\otimes A^{e})\otimes_{A^{e}}X)$

$\approx H_{n}(L\otimes X)$

$\approx H_{n}(L\otimes A^{*}\otimes_{A^{\aleph}}X)$ .
Since $A^{e}$ is $A^{*}$-projective, it follows from [2, II, 6.2] that $X$ is also an $A^{*}-$

projective resolution of $A$ . Thus
$H_{n}(L\otimes A^{*}\otimes_{A^{K}}X)=Tor_{n}^{A^{\prime}}(L\otimes A^{*}, A)$

which is equal to $0$ for $n>0$ because $A$ is $A^{*}$-projective.
Therefore by the mapping theorem of [2, VIII, 3.1] we have the following:
Theorem 3. Let $A$ be a K-algebra such that its enveloping algebra $A^{e}$

is $A^{:\backslash }’$,-projective, and let $L$ be a commutative K-algebra. Then for each two-
sided $L\otimes A$-module $M$ we have the isomorphisms

$F_{n}$ : $H_{n}(A, M)\approx H_{n}(L\otimes A, M)$ ,
$F^{n}$ : $H^{n}(L\otimes A, M)\approx H^{n}(A, M)$ .

Further, if $X$ is an $A^{e}$-projective resolution of $A$ , then $L\otimes X$ is an $(L\otimes A)^{e}-$

projective resolution of $L\otimes A$ .
Theorem 3 is a generalization of [2, IX, 5.1], and implies the following

which is a generalization of [2, IX, 7.1].

Theorem 4. Let $A$ be a K-algebra such that its enveloping algebra
$A^{e}$ is $A^{*}$-projective, and let $L$ be a commutative K-algebra. Then

dim $(L\otimes A)\leqq\dim A$ ,

$w$ . dim $(L\otimes A)\leqq w$ . dim $A$ .

If further the natural mapping $K\rightarrow L$ is a monomorphism of $K$ onto
a direct factor of $L$ (as a K-module) then

dim $(L\otimes A)=\dim A$ ,

w.dim $(L\otimes A)=w$ . dim $A$ .

Proof. The first inequalities follow directly from Theorem 3. To prove
the second part, consider a K-homomorphism $\sigma:L\rightarrow K$ such that the composi-
tion $K\rightarrow L\rightarrow K$ is the identity. Let $M$ be any two-sided A-module. Then
$L\otimes M$ may be regarded as a two-sided $L\otimes A$-module, and by Theorem 3

$H^{n}(L\otimes A, L\otimes M)\approx H^{n}(A, L\otimes M)$ .

Since the composition of the homomorphisms

$H^{n}(A, M)-H^{n}(A, L\otimes M)-H^{n}(A, M)$

is the identity, it follows that the relation $H^{n}(L\otimes A, L\otimes M)=0$ implies
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$H^{n}(A, M)=0$ . Thus dim $A\leqq\dim(L\otimes A)$ .
By the similar method, we have also $w$ . dim $A\leqq w$ . dim $(L\otimes A)$ .
We shall give a generalization of [2, IX, 7.4] as follows:
Theorem 5. Let $A$ be a K-algebra such that the enveloping algebra

$A^{e}$ of $A$ is projective as a left $A^{*}$-module, and $B$ a K-algebra. Then

dim $(A\otimes B)\leqq\dim A+\dim B$ .

If further $K$ is a field and $A$ and $B$ are finitely K-generated, then

dim $(A\otimes B)=\dim A+\dim B$ .

Proof. Let $X$ be an $A^{e}$-projective resolution of $A$ , of dimension $\leqq p$ , and
let $Y$ be a $B^{e}$-projective resolution of $B$, of dimension $\leqq q$ . Then, by [2, IX,
2.5], $X\otimes Y$ is an $A^{e}\otimes B^{e}$-projective left complex over $A\otimes B$ . Since the tensor
product is right exact, it follows from [2, II, 4.3] that the sequence

$X_{1}\otimes Y_{0}+X_{0}\otimes Y_{1}\rightarrow X_{c}\otimes Y_{0}\rightarrow A\otimes B-0$

is exact, and moreover,

$H_{n}(X\otimes Y)\approx H_{n}((X\otimes_{A}A)\otimes Y)$

$\approx H_{n}(X\otimes_{A}(A\otimes Y))$ .

Since $X$ is a left $A^{*}$-projective resolution of $A$ by [2, II, 6.2], that is, $X$ is
a right A-projective resolution of $A$ ,

$H_{n}(X\otimes_{A}(A\otimes Y))=Tor_{n}^{A}(A, A\otimes Y)=0$ for $n>0$ .
Thus $(X\otimes Y)$ is acyclic and consequently $X\otimes Y$ is an $A^{e}\otimes B^{e}$-projective resolu-
tion of $A\otimes B$ . Since $A^{e}\otimes B^{e}\approx(A\otimes B)^{e}$ and since $X\otimes Y$ has dimension $\leqq p+q$ ,
the first inequality follows.

The second equality follows by the same method as in [2, IX, 7.4].
Corresponding to [2, IX, 2.8 and 2. $8a$], we shall give the following two

theorems the former of which is due to Azumaya [1, Proposition 1].

Theorem 6. Let $A,$ $B$ and $C$ be K-algebras. In the situation $(_{A}M_{B}$ ,
$BN_{C,A}P)$ assume that $A\otimes B^{*}$ is $B^{*}$-projective, and that $M$ is B-projective,
and that $N$ is C-projective. Then there is an isomorphism

$Ext_{A\otimes}^{n}B*(M, Hom_{C}(N, P))\approx Ext_{A\otimes C^{\aleph}}^{n}(M\otimes_{B}N, P)$ .

Theorem 7. Let $A,$ $B$ and $C$ be K-algebras. In the situation $(_{B}M_{A}$ ,
$AN_{c,c}P_{B})$ assume that $A\otimes B^{*}$ is A-projective, and that $M$ is A-projective,
and that $N$ is C-projective. Then there is an isomorphism

$Tor_{n}^{B^{l}\otimes C}(M\otimes_{A}N, P)\approx Tor_{n}^{\Lambda\otimes b^{*}}(M, N\otimes {}_{C}P)$ .
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Proof Let $X$ be an $A\otimes B^{*}$-projective resolution of $M$. Since $N$ is C-
projective, it follows from [2, IX, 2.3] that $X\otimes_{A}N$ is $B^{*}\otimes C$-projective. Since
$A\otimes B^{*}$ is A-projective, $X$ is A-projective by [2, II, 6.2]. Thus $X$ is an A-
projective resolution of $M$, and hence

$H_{n}(X\otimes_{A}N)=Tor_{n}^{4}(M, N)=0$ for $n>0$

by $our_{e}$ assumption that $M$ is A-projective. It follows from this with the right
exactness of the tensor product that $X\otimes_{A}N$ is a $B^{*}\otimes C$-projective resolution
of $M\otimes_{A}N$. So we have by [2, IX, 2.1]

$Tor_{n}^{B\#\mathfrak{g}C}(M\otimes_{A}N, P)=H_{n}((X\otimes_{A}N)\otimes_{B}{}_{r\otimes C}P)$

$\approx H_{n}(X\otimes_{A\otimes B^{k}}(N\otimes_{C}P))$

$=Tor_{n}^{A\mathfrak{g}_{B}*}(M, N\otimes_{C}P)$ .

Now we shall give a generalization of [2, IX, 7.5] as follows:

Theorem 8. For any K-algebra $A$

dim $A\leqq g1$ . dim $A^{e}$ ,

$w$ . dim $A\leqq w$ . gl. dim $A^{e}$

If further $A$ is semi-simple, then

dim $A=g1$ . dim $A^{e}$ ,

$w$ . dim $A=w$ . gl. dim $A^{e}$

Proof. The first part of this theorem follows directly from the definitions
of the global dimension and the weak global dimension. To prove the first
equality of the second part we use Theorem 6 with $A=B=C$ and $M=A$ .
By the assumption that $A$ is semi-simple, the opposite algebra $A^{*}$ is also
semi-simple, it follows by $[2, I, 4.2]$ that $A\otimes A^{*}(=A^{e})$ is $A^{*}$-projective and
that $N$ is A-projective. Thus we obtain an $isomorphism\backslash $

$H^{n}(A,Hom_{A}(N, P))\approx Ext_{A^{e}}^{n}(N, P)$

for any two-sided A-modules $N$ and $P$ where $Hom_{A}(N, P)$ is the group of
right A-homomorphisms $N\rightarrow P$. This implies gl. dim $A^{e}\leqq\dim A$ , and hence
we have dim $A=g1$ . dim $A^{e}$ .

Next, to prove the second equality of the second part we use Theorem 7
with $A=B=C$ and $M=A$ . By the assumption that $A$ is semi-simple, the
enveloping algebra $A\otimes A^{*}(=A^{e})$ is A-projective and $N$ is also A-projective by
$[2, I, 4.2]$ . Thus we obtain an isomorphism

$Tor_{n}^{A^{e}}(N, P)\approx H_{n}(A, N\otimes {}_{A}P)$
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for any two-sided A-modules $N$ and $P$. This implies $w$ . gl. dim $A^{e}\leqq w$ . dim $A$ ,
and hence $w$ . dim $A=w$ . gl. dim $A^{e}$ .

\S 4. A K-algebra $A$ together with a K-algebra homomorphism $\epsilon:A\rightarrow K$

is called a supplemented algebra. Using this augmentation map $\epsilon:A\rightarrow K$ we
may convert any right (or left) A-module $M$ into a two-sided A-module $\epsilon M$

(or $M_{\epsilon}$ ) by setting $ax=(\epsilon a)x$ (or $xa=x(\epsilon a)$ ) for $a\in A$ and $x\in M$. We consider
the diagram

$A^{e}A\underline{P}$

$\varphi\downarrow$
$\downarrow\epsilon$

$AK\overline{\epsilon}$

where $\varphi(a\otimes b^{*})=a(\epsilon b)$ . Since $\epsilon\varphi(a\otimes b^{*})=\epsilon(ab)=\epsilon\rho(a\otimes b^{*})$ , this diagram is
commutative. Thus we find homomorphisms

$F^{\varphi}$ : $H_{n}(A, \epsilon M)=Tor_{n}^{A^{e}}(6M, A)-Tor_{n}^{A}(M, K)$ ,
$F_{\varphi}$ : $Ext_{A}^{n}(K, N)-Ext_{A^{e}}^{n}(A, N_{\epsilon})=H^{n}(A, N_{\epsilon})$

for right A-module $M$ and a left A-module $N$.
We shall give a generalization of $[2, X, 2.1]$ as follows:

Theorem 9. Let $A$ be a supplemented K-algebra such that the enve-
loping algebra $A^{e}af$ $A$ is $A^{*}$-projective. Then $F^{\varphi}$ and $F_{\varphi}$ are isomorphisms,
and for each $A^{e}$-projective resolution $X$ of $A$ , the complex $X\otimes_{A}K$ is an A-
projective resolution of $K=A\otimes_{A}K$ as a left A-module.

Proof. It suffices to verify conditions (i) and (ii) of the mapping theorem
of [2, VIII, 3.1]. Applying $[2, X, 2.2]$ , we find that the condition (i) holds.
To prove the condition (ii), let $X$ be an $A^{e}$-projective resolution of $A$ . Then

$Tor_{n}^{A^{e}}(\epsilon A, A)=H_{n}(\epsilon A\otimes_{A^{e}}X)\approx H_{n}(X\otimes_{A}K)$

again by applying [2, X, 2.2]. Since $A^{e}$ is $A^{*}$-projective, it follows from
[2, II, 6.2] $X$ is left $A^{*}$-projective, that is, $X$ is projective as a right A-module.
Therefore

$H_{n}(X\otimes_{A}K)=Tor_{n}^{A}(A, K)=0$ for $n>0$ .
This proves the condition (ii) of the mapping theorem and thus completes the
proof of Theorem 9.

Let $A$ be a K-algebra and $\eta:K\rightarrow A$ the natural map given by $\eta k=k1$ .
A right A-moduie $M$ is said to be weakly projective if the kemel of the map
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$g:M\otimes A\rightarrow M$ given by $x\otimes a\rightarrow xa$ is a direct summand of $M\otimes A$ regarded
as a right A-module using the right operators of $A$ on $A$ .

Similarly a left A-module $N$ is said to be weakly injective if the image
of the homomorphism $h:N\rightarrow Hom_{R^{-}}(A, N)$ which to each $x\in N$ assigns the
homomorphism $a\rightarrow ax$ is a direct summand of $Hom_{K}(A, N)$ regarded as a left
A-module using the right operators of $A$ on $A$ .

Now we shall give a generalization of $[2, X, 8.3]$ as follows:
Theorem 10. Let $A$ be a supplemented K-algebn such that the enve-

loping algebra $A^{e}$ of $A$ is $A^{*}$-projective. Then
$H_{n}(A,\epsilon M)=0=H^{n}(A, N_{*})$ for $n>0$

for any weakly projective right A-module $M$ and any weakly injective left
A-module $N$

Proof. To prove the first equality, we note that following Theorem 9,

$H_{n}(A, 6M)=Tor_{n}^{A^{e}}(M, A)\approx Tpr_{n}^{\Lambda}(M, K)$ .

Since $M$ is weakly projective, there is an A-homomorphism $M\rightarrow M\otimes A$ such
that the composition

$M_{-}M\otimes A-M$

is the identity, and therefore the composition

$Tor_{n}^{A}(M, K)-Tor_{n}^{A}(M\otimes A, K)-Tor_{n}^{A}(M, K)$

is also the identity by [2, II, 1.1]. Thus it suffices to show that $Tor_{n}^{A}(M\otimes A, K)$

$=0$ for $n>0$ .
Let $X$ be an $A^{e}$-projective resolution of $A$ . Then since $X\otimes_{A}K$ is an A-

projective resolution of $K$ by Theorem 9,

$Tor_{n}^{A}(M\otimes A, K\}=H_{n}((M\otimes A)\otimes_{A}(X\otimes_{A}K))$

$\approx H_{n}(M\otimes(X\otimes_{A}K))$

$\approx H_{n}(M\otimes(K\otimes_{A\#}X))$

$\approx H_{n}(M\otimes_{A\#}X)$ .

Since $A^{e}$ is $A^{*}$-projective, $X$ is a left $A^{*}$-projective resolution of $A$ by [2, II,
6.2]. Consequently

$H_{n}(M\otimes_{A^{K}}X)=Tor_{n}^{A}$
“ $(M, A)=0$ for $n>0$ .

To prove the second equality, we note that following Theorem 9,

$H^{n}(A, N_{\epsilon})=Ext_{A^{c}}^{n}(A, N_{\epsilon})\approx Ext_{A}^{n}(K, N)$ .
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Since $N$ is weakly injective, there is an A-horhomorphism $Hom_{X}(A,, N)\rightarrow N$

such that the composition

$N\rightarrow Hom_{K}(A, N)-N$

is the identity, and so the composition

$Ext_{A}^{n}(K, N)-Ext_{A}^{n}(K, Hom_{X}(A, N))\rightarrow Ext_{A}^{n}(K, N)$

is the identity by [2, II, 1. 1]. Thus it suffices to show that $Ext_{A}^{n}(K, Hom_{X}(A, N))$

$=0$ for $n>0$ .
Applying [2, II, 5.2], we have

$Ext_{A}^{n}$ ($K$, Hom $B^{\prime}(A,$ $N)$ ) $=H^{n}(Hom_{A}(X\otimes_{A}K, Hom_{A}\cdot(A, N)))$

$\approx H^{n}(Hom_{B^{\prime}}(A\otimes_{A}(X\otimes_{A}K), N))$

$\approx H^{n}(Hom_{X}(X\otimes_{A}K, N))$ ,

and further by [2, II, 5.2’],

$H^{n}(Hom_{K}(X\otimes_{A}K, N))\approx H^{n}(Hom_{A}(X, Hom_{K}(K, N)))$

$\approx H^{n}(Hom_{A}(X, N))$

$=Ext_{A}^{n}(A, N)$

because $X$ is a right A-projective resolution of $A$ , and this is equal to $0$ for
$n>0$ .

\S 5. An integral domain $A$ which is hereditary is called Dedekind ring.

Lemma 11. Let $A$ be a Noetherian integral domain and $M$ finitely
generated A-module. If $Ext_{A}^{1}(M, N)$ is divisible for all A-module $N$, then
$M$ is projective.

Proof. For any injective A-module $Q$ , by [2, VI, 5.3], we obtain an
isomorphism

Tor$nA(Hom_{A}(N, Q),$ $M$) $\approx Hom_{A}(Ext_{A}^{n}(M,N),$ $Q$).

Since $Ext_{A}^{1}(M, N)$ is divisible, and since Hom$A(Ext_{A}^{1}(M, N),$ $Q$) is torsion-free
by [2, VII, 1.4], $Tor_{1}^{A}(Hom_{A}(1V, Q),$ $M$ ) is torsion-free. On the other hand, by
[3, Theorem 1], $Tor_{1}^{A}(Hom_{A}(N, Q),$ $M$ ) is a torsion module. Thus $Tor_{1}^{A}$

$(Hom_{A}(N, Q),$ $M$ ) $=0$ , and hence $Hom_{A}(Ext_{A}^{1}(M, N),$ $Q$) $=0$ . As $Q$ is an arbi-
trary injective module, this implies $Ext_{A}^{1}(M, N)=0$ . As this holds for every
A-module $N,$ $M$ is projective.

Finally, we shall give a characterization of the Dedekind ring as follows:

Theorem 12. A Noetherian integral domain $A$ is a Dedekind ring if
and only if for any finitely generated torsion-free A-module $M,$ $Ext_{A}^{1}(M, N)$
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is divisible for all A-module $N$

Proof. The necessity of the condition follows from [2, VII, 5.3]. The
sufficiency follows from Lemma 11 and [2, VII, 4.1].

Corollary 13. A Noetherian integnl domain $A$ is a Dedekind ring
$\iota\beta$ and only $\iota\beta$ for any ideal $M$ of $A,$ $Ext_{A}^{1}(M, N)$ is divisible for all A-
module $N$.
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