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Abstract. In an n-dimensional complex hyperbolic space CHn(c) of constant holo-

morphic sectional curvature c(< 0), the horosphere HS, which is defined by HS =

limr→∞ G(r), is one of nice examples in the class of real hypersurfaces. Here, G(r) is

a geodesic sphere of radius r (0 < r < ∞) in CHn(c). The second author ([14]) gave

a geometric characterization of HS. In this paper, motivated by this result, we study

real hypersurfaces M2n−1 isometrically immersed into an n-dimensional complex pro-

jective space CP n(c) of constant holomorphic sectional curvature c(> 0).

Key words: geodesic spheres, homogeneous real hypersurfaces of types (A2) and type

B, complex projective spaces, contact form, exterior derivative, geodesics, extrinsic

geodesics, circles, characteristic vector fields.

1. Introduction

We denote by M̃n(c) a complex n-dimensional complete and simply con-
nected Kähler manifold of constant holomorphic sectional curvature c(6= 0),
namely it is holomorphically isometric to either CPn(c) or CHn(c) accord-
ing as c is positive or negative, which is called an n-dimensional nonflat
complex space form of constant holomorphic sectional curvature c.

We consider a real hypersurface M2n−1 (with Riemannian metric g) in
a nonflat complex space form M̃n(c), n ≥ 2 through an isometric immer-
sion. In the theory of real hypersurfaces in M̃n(c), Hopf hypersurfaces all of
whose principal curvatures are constant are fundamental examples (for the
definition of Hopf hypersurfaces see Section 2). They are homogeneous in
the ambient space M̃n(c), namely they are orbits of some subgroups of the
full isometry group I(M̃n(c)) of M̃n(c).

The horosphere HS is a typical example of a Hopf hypersurface with con-
stant principal curvatures in CHn(c). The second author gave the following
characterization of the horosphere HS in CHn(c):
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Theorem A ([14]) For a real hypersurface M2n−1 isometrically immersed
into CHn(c), n ≥ 2, the following three conditions are mutually equivalent :

(1) M is locally congruent to the horosphere HS (i.e., a homogeneous real
hypersurface of type (A0));

(2) At every point p ∈ M , there exist orthonormal vectors v1, . . . , v2n−2

orthogonal to the characteristic vector ξp such that all geodesics γi =
γi(s) (1 ≤ i ≤ 2n− 2) satisfying the initial condition that γi(0) = p and
γ̇i(0) = vi are mapped to a circle of the same positive curvature

√
|c| /2

in the ambient space CHn(c);
(3) M satisfies either dη(X, Y ) = (

√
|c| /2)g(X, φY ) for all X, Y ∈ TM or

dη(X, Y ) = −(
√
|c| /2)g(X, φY ) for all X, Y ∈ TM , where dη is the

exterior derivative of the contact form η on M and φ is the structure
tensor on M induced from the Kähler structure J of CHn(c).

Here, dη is given by

dη(X, Y ) = (1/2){X(η(Y ))−Y (η(X))−η([X, Y ])} for X, Y ∈ TM. (1.1)

Inspired by Theorem A, in this paper we establish the following four
theorems on real hypersurfaces in CPn(c):

Theorem 1 A real hypersurface M2n−1 isometrically immersed into
CPn(c), n ≥ 2 is locally congruent to either a geodesic sphere G(π/(2

√
c ))

of radius π/(2
√

c ) (i.e., a homogeneous real hypersurface of type (A1) of
radius π/(2

√
c )) or a tube T1(π/(2

√
c )) of radius π/(2

√
c ) around a com-

plex `-dimensional totally geodesic submanifold CP `(c) (1 ≤ ` ≤ n − 2)
(i.e., a homogeneous real hypersurface of type (A2) of radius π/(2

√
c ))

if and only if at every point p ∈ M , there exist orthonormal vectors
v1, . . . , v2n−2 orthogonal to the characteristic vector ξp such that all geodesics
γi = γi(s) (1 ≤ i ≤ 2n − 2) satisfying the initial condition that γi(0) = p

and γ̇i(0) = vi are mapped to a circle of the same positive curvature
√

c /2
in the ambient space CPn(c).

Theorem 2 A real hypersurface M2n−1 isometrically immersed into
CPn(c), n ≥ 2 is locally congruent to a geodesic sphere G(π/(2

√
c )) of

radius π/(2
√

c ) if and only if at every point p ∈ M , there exist orthonormal
vectors v1, . . . , v2n−2 orthogonal to the characteristic vector ξp such that all
geodesics γi = γi(s) (1 ≤ i ≤ 2n − 2) satisfying the initial condition that
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γi(0) = p and γ̇i(0) = vi are mapped to a circle of the same positive curva-
ture

√
c /2 in CPn(c) and there exists just one extrinsic geodesic on M (i.e.,

this geodesic is also a geodesic in CPn(c)) with respect to the full isometry
group I(M) of M .

Theorem 3 A real hypersurface M2n−1 isometrically immersed into
CPn(c), n ≥ 2 is locally congruent to either a geodesic sphere G(π/(2

√
c ))

of radius π/(2
√

c ) or a tube T2(r) of radius r with cot(
√

c r/2) =
√

2 + 1
around a complex hyperquadric CQn−1 (i.e., a homogeneous real hypersur-
face of type (B) of radius (2/

√
c ) cot−1(

√
2 + 1) if and only if M satis-

fies either dη(X, Y ) = (
√

c /2)g(X, φY ) for all X, Y ∈ TM or dη(X, Y ) =
−(
√

c /2)g(X, φY ) for all X, Y ∈ TM , where dη is the exterior derivative of
the contact form η on M and φ is the structure tensor on M induced from
the Kähler structure J of CPn(c).

Theorem 4 A real hypersurface M2n−1 isometrically immersed into
CPn(c), n ≥ 2 is locally congruent to a geodesic sphere G(π/(2

√
c )) of ra-

dius π/(2
√

c ) if and only if M satisfies either dη(X, Y ) = (
√

c /2)g(X, φY )
for all X, Y ∈ TM or dη(X, Y ) = −(

√
c /2)g(X, φY ) for all X, Y ∈ TM and

M is positively curved at some point x ∈ M (i.e., every sectional curvature
of M is positive at x ∈ M).

We remark that for a real hypersurface M2n−1 isometrically immersed
into a nonflat complex space form M̃n(c), n ≥ 2 the following hold:

(1) There does not exist a real hypersurface M all of whose geodesics are
mapped to circles in M̃n(c).

(2) There does not exist a real hypersurface M satisfying dη ≡ 0 on M .

Weakening the above two conditions, we establish all of our results
Theorems A, 1, 2, 3 and 4.

In section 8, we will show that a real hypersurface M isometrically
immersed in CPn(4) is locally congruent to a geodesic hypersphere G(r) of
radius r ∈ (π/4, π/2) if and only if there exists α ∈ (0, π), α 6= π/2 such
that for each point p ∈ M and each unit tangent vector Xp ∈ Tp(M) with
g(Xp, ξp) = cos α, the geodesic γ of M satisfying γ(0) = p and γ̇(0) = X is
an extrinsic geodesic (see Theorem 5).

The authors would like to thank the referee for his/her valuable sugges-
tions and comments.
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2. Terminologies and fundamental results on real hypersurfaces

Let M2n−1 be a real hypersurface with unit normal local vector field N
of a nonflat complex space form M̃n(c), n ≥ 2. The Riemannian connections
∇̃ of M̃n(c) and ∇ of M are related by the following:

∇̃XY = ∇XY + g(AX, Y )N (2.1)

and

∇̃XN = −AX (2.2)

for all vector fields X and Y on M , where g denotes the metric induced
from the standard Riemannian metric of M̃n(c) and A is the shape operator
of M in M̃n(c) associated with N . On M an almost contact metric struc-
ture (φ, ξ, η, g) associated with N is canonically induced from the Kähler
structure J of the ambient space M̃n(c). They are defined by

g(φX, Y ) = g(JX, Y ), ξ = −JN and η(X) = g(ξ, X) = g(JX,N ).

It follows from the Gauss formula (2.1), the Weingarten formula (2.2) and
the property ∇̃J = 0 that

∇Xξ = φAX (2.3)

and

(∇Xφ)Y = η(Y )AX − g(AX, Y )ξ (2.4)

for each X ∈ TM . We denote by R the curvature tensor of M . Then R is
given by

g((R(X, Y )Z, W ) = (c/4){g(Y, Z)g(X, W )− g(X, Z)g(Y, W )

+ g(φY, Z)g(φX, W )− g(φX, Z)g(φY, W )

− 2g(φX, Y )g(φZ, W )}
+ g(AY, Z)g(AX, W )− g(AX, Z)g(AY, W ). (2.5)

The following is called the equation of Codazzi.
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(∇XA)Y − (∇Y A)X = (c/4)(η(X)φY − η(Y )φX − 2g(φX, Y )ξ). (2.6)

Let K be the sectional curvature of M . That is, K is defined by K(X, Y ) =
g(R(X, Y )Y, X), where X and Y are orthonormal vectors on M . Then it
follows from (2.5) that

K(X, Y ) = (c/4)
(
1+3g(φX, Y )2

)
+g(AX, X)g(AY, Y )−g(AX, Y )2. (2.7)

We call eigenvalues and eigenvectors of the shape operator A principal
curvatures and principal curvature vectors of M in M̃n(c), respectively. Here
and in the following, we set Vλ := {X ∈ TM |AX = λX}. We usually call M

a Hopf hypersurface if the characteristic vector ξ of M is a principal curva-
ture vector at each point of M . The following lemma clarifies fundamental
properties of principal curvatures of a Hopf hypersurface M in M̃n(c) (for
examples, see [17]).

Lemma A Let M be a Hopf hypsurface of a nonflat complex space form
M̃n(c), n ≥ 2. Then the following hold.

(1) If a nonzero vector v ∈ TM orthogonal to ξ satisfies Av = λv, then (2λ−
δ)Aφv = (δλ + (c/2))φv, where δ is the principal curvature associated
with ξ. In particular, when c > 0, we have Aφv =

(
(δλ + (c/2))/(2λ−

δ)
)
φv.

(2) The principal curvature δ associated with ξ is constant locally on M .

Remark 1 When c < 0, the horosphere HS in CHn(c) shows that we
must consider the case of 2λ− δ = δλ + (c/2) = 0 in Lemma A(1) (see the
following table of the principal curvatures in the case of c < 0).

We here recall the classification theorems of Hopf hypersurfaces with
constant principal curvatures in a nonflat complex space form M̃n(c), n ≥ 2.

Theorem B ([18], [12]) For real hypersurface M2n−1 in CPn(c) (n ≥ 2),
the following three conditions are mutually equivalent.

(1) M is homogeneous in CPn(c).
(2) M is locally congruent to a Hopf hypersurface all of whose principal

curvatures are constant.
(3) M is locally congruent to one of the following :

(A1) a geodesic sphere of radius r, where 0 < r < π/
√

c ;
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(A2) a tube of radius r around a totally geodesic CP `(c) (1 ≤ ` ≤ n−2),
where 0 < r < π/

√
c ;

(B) a tube of radius r around a complex hyperquadric CQn−1, where
0 < r < π/(2

√
c );

(C) a tube of radius r around the Segre embedding of CP 1(c) ×
CP (n−1)/2(c), where 0 < r < π/(2

√
c ) and n (≥ 5) is odd ;

(D) a tube of radius r around the Plüker embedding of a complex Grass-
mannian CG2,5, where 0 < r < π/(2

√
c ) and n = 9;

(E) a tube of radius r around a Hermitian symmetric space
SO(10)/U(5), where 0 < r < π/(2

√
c ) and n = 15.

These real hypersurfaces are said to be of types (A1), (A2), (B), (C),
(D) and (E). Unifying real hypersurfaces of types (A1) and (A2), we call
them hypersurfaces of type (A). The numbers of distinct principal curva-
tures of these real hypersurfaces are 2, 3, 3, 5, 5, 5, respectively. The principal
curvatures of these real hypersurfaces in CPn(c) are given as follows:

(A1) (A2) (B) (C,D,E)

λ1

√
c

2 cot
(√c

2 r
) √

c
2 cot

(√c
2 r

) √
c

2 cot
(√c

2 r − π
4

) √
c

2 cot
(√c

2 r − π
4

)

λ2 — −
√

c
2 tan

(√c
2 r

) √
c

2 cot
(√c

2 r + π
4

) √
c

2 cot
(√c

2 r + π
4

)

λ3 — — —
√

c
2 cot

(√c
2 r

)

λ4 — — — −
√

c
2 tan

(√c
2 r

)

δ
√

c cot(
√

c r)
√

c cot(
√

c r)
√

c cot(
√

c r)
√

c cot(
√

c r)

Theorem C ([8]) Let M be a connected Hopf hypersurface all of whose
principal curvatures are constant in CHn(c) (n ≥ 2). Then M is locally
congruent to one of the following homogeneous real hypersurfaces:

(A0) the horosphere HS in CHn(c);
(A1,0) a geodesic sphere G(r) of radius r (0 < r < ∞);
(A1,1) a tube of radius r around a totally geodesic CHn−1(c), where 0 <

r < ∞;
(A2) a tube of radius r around a totally geodesic CH`(c) (1 ≤ ` ≤ n− 2),

where 0 < r < ∞;
(B) a tube of radius r around a totally real totally geodesic RHn(c/4),

where 0 < r < ∞.
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Remark 2 There exist many non-Hopf homogeneous real hypersurfaces
M in CHn(c), n ≥ 2 (see Theorem 4.4 in [10]). Needless to say, these homo-
geneous real hypersurfaces have constant principal curvatures (for details,
see [9]).

Here, type (A1) means either type (A1,0) or type (A1,1). Unifying real
hypersurfaces of types (A0), (A1) and (A2), we call them hypersurfaces of
type (A). A real hypersurface of type (B) with radius r = (1/

√
|c| ) loge(2+√

3 ) has two distinct constant principal curvatures λ1 = δ =
√

3|c| /2
and λ2 =

√
|c| /(2

√
3 ). Except for this real hypersurface, the numbers of

distinct principal curvatures of Hopf hypersurfaces with constant principal
curvatures are 2, 2, 2, 3, 3, respectively. The principal curvatures of these
real hypersurfaces in CHn(c) are given as follows (see [7]):

(A0) (A1,0) (A1,1) (A2) (B)

λ1

√
|c|
2

√
|c|
2

coth
`√|c|

2
r
´ √|c|

2
tanh

`√|c|
2

r
´ √

|c|
2

coth
`√|c|

2
r
´ √

|c|
2

coth
`√|c|

2
r
´

λ2 — — —

√
|c|
2

tanh
`√|c|

2
r
´ √|c|

2
tanh

`√|c|
2

r
´

δ
p
|c|

p
|c| coth(

p
|c| r)

p
|c| coth(

p
|c| r)

p
|c| coth(

p
|c| r)

p
|c| tanh(

p
|c| r)

For the later use we prepare the following lemma (cf. [15], [17]):

Lemma B For a real hypersurface M isometrically immersed into a non-
flat complex space form M̃n(c), n ≥ 2 the following three conditions are
mutually equivalent :

(1) M is of type (A);
(2) φA = Aφ;
(3) g((∇XA)Y, Z) = (c/4){−η(Y )g(φX, Z) − η(Z)g(φX, Y )} for all X, Y

and Z ∈ TM .

3. Circles in Riemannian geometry

First of all we review the definition of the congruency for a smooth real
curve γ = γ(s) parametrized by its arclength s on a Riemannian manifold
N . Two curves γ1 and γ2 are congruent if there exists an isometry ϕ on N

with γ2(s) = (ϕ ◦ γ1)(s + s0) for each s and some s0.
Before proving Theorem 1 we recall the definition of circles in Rieman-

nian geometry and the congruency theorem on circles in a nonflat complex
space form M̃n(c), n ≥ 2.

Let γ = γ(s) be a smooth real curve parametrized by its arclength s
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on a Riemannian manifold N with Riemannian metric g. If the curve γ

satisfies the following ordinary differential equations with some nonnegative
constant k:

∇γ̇ γ̇ = kYs and ∇γ̇Ys = −kγ̇, (3.1)

where ∇γ̇ is the covariant differentiation along γ with respect to ∇ of N and
Ys is the so-called the unit principal normal vector of γ, we call γ a circle of
curvature k on N . We regard a geodesic as a circle of null curvature. It is
known that Equation (3.1) is equivalent to

∇γ̇(∇γ̇ γ̇) + g(∇γ̇ γ̇,∇γ̇ γ̇)γ̇ = 0. (3.2)

By virtue of the existence and the uniqueness of solutions to ordinary differ-
ential equations we can see that for each point p ∈ N , an arbitrary positive
constant k and every pair of orthonormal vectors X and Y of TpN , there
exists locally the unique circle γ = γ(s) on N satisfying the initial condition
that γ(0) = p, γ̇(0) = X and Y0 = Y .

Let γ = γ(s) be a circle of positive curvature k on M̃n(c). For the curve
γ we set ργ := g(γ̇(s), JYs). Then it follows from Equation (3.1) and the
equality ∇̃J = 0 that γ̇ργ̇ = 0 (see [5], [3]). So, ργ is a constant along γ

with −1 ≤ ργ ≤ 1. In the following, we call ργ the structure torsion of γ.
The congruency theorem for circles in M̃n(c) is stated as follows:

Lemma C ([5], [3]) In a nonflat complex space form M̃n(c), n ≥ 2, two
circles γi = γi(s) of curvature ki and the structure torsion ργi

are congruent
if and only if one of the following two conditions holds:

(1) k1 = k2 = 0;
(2) k1 = k2 > 0 and |ργ1 | = |ργ2 |.

We remark that in Lemma C(2) when ργ1 = ργ2 (resp. ργ1 = −ργ2)
circles γ1 and γ2 of the same positive curvature are congruent by a holomor-
phic (resp. an anti-holomorphic) isometry of a nonflat complex space form.
For a circle γ of positive curvature we call γ a Kähler circle (resp. totally
real circle) when ργ = ±1 (resp. ργ = 0).
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4. Proof of Theorem 1

(⇐=) Take orthonormal vectors v1, v2, . . . , v2n−2 at any fixed point p of
a real hypersurface M in CPn(c), n ≥ 2 satisfying the assumption. Then,
from (3.2) those curves γi = γi(s) (1 ≤ i ≤ 2n− 2) satisfy

∇̃γ̇i
(∇̃γ̇i

γ̇i) = −(c/4)γ̇i. (4.1)

On the other hand, from Gauss formula (2.1) and the Weingarten formula
(2.2) we have

∇̃γ̇i
(∇̃γ̇i

γ̇i) = g((∇γ̇i
A)γ̇i, γ̇i)N − g(Aγ̇i, γ̇i)Aγ̇i. (4.2)

Comparing the tangential components of (4.1) and (4.2), we find that

g(Aγ̇i, γ̇i)Aγ̇i = (c/4)γ̇i,

so that at s = 0 we get

g(Avi, vi)Avi = (c/4)vi for 1 ≤ i ≤ 2n− 2.

This implies that

Avi = (
√

c /2)vi or Avi = −(
√

c /2)vi for 1 ≤ i ≤ 2n− 2. (4.3)

Hence ξ is a principal curvature vector because g(Aξ, vi) = g(ξ, Avi) = 0 for
1 ≤ i ≤ 2n− 2. Then M is a Hopf hypersurface with at most three distinct
constant principal curvatures

√
c /2,−√c /2 and δ = g(Aξ, ξ). Therefore in

view of Theorem B and the table of the principal curvatures of case c > 0
we can see that our real hypersurface M is a real hypersurface of type (A) of
radius π/(2

√
c ) or a certain real hypersurface of type (B). But, every real

hypersurface M of type (B) does not have such principal curvatures ±√c /2.
In fact,

λ1 =
√

c

2
cot

(√
c

2
r − π

4

)
< −

√
c

2
,

0 < λ2 =
√

c

2
cot

(√
c

2
r +

π

4

)
<

√
c

2
,

(4.4)
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since 0 < r < π/(2
√

c ). Thus we can see that M is of type (A) of radius
π/(2

√
c ).

(=⇒) Our aim here is to prove the following lemma:

Lemma 1 For every real hypersurface M of type (A) in a nonflat comm-
plex space form M̃n(c), n ≥ 2, take a unit principal curvature vector v with
principal curvature λ which is perpendicular to ξp at an arbitrary fixed point
p ∈ M . Then the geodesic γ = γ(s) with initial condition that γ(0) = p and
γ̇(0) = v is mapped to a totally real circle of positive curvature |λ| in the
ambient space M̃n(c).

Proof of Lemma 1. Let γ = γ(s) be a geodesic satisfying the assumption of
Lemma 1. We call ργ := g(γ̇(s), ξγ(s)) the structure torsion of the geodesic γ

on a real hypersurface of type (A). Then ργ is constant along γ. Indeed, from
(2.3), Lemma B, the symmetry of A and the skew symmetry of φ we have
γ̇ργ = ∇γ̇(g(γ̇, ξ)) = g(γ̇,∇γ̇ξ) = g(γ̇, φAγ̇) = g(γ̇, Aφγ̇) = −g(φAγ̇, γ̇) =
0. This, together with the hypothesis g(γ̇(0), ξp) = g(v, ξp) = 0, implies that
our geodesic γ = γ(s) is orthogonal to the characteristic vector field ξγ(s)

along the curve γ. Furthermore, from the above fact and Lemma B we obtain
γ̇
(‖Aγ̇(s)−λγ̇(s)‖2) = 0, which, combined with Aγ̇(0) = Av = λv = λγ̇(0),

implies that our geodesic γ satisfies Aγ̇(s) = λγ̇(s) for every s. Thus, by
virtue of Gauss formula (2.1) and the Weingarten formula (2.2) we have
∇̃γ̇ γ̇ = λN , ∇̃γ̇N = −λγ̇ and ργ = g(γ̇(s), JN ) = −g(γ̇(s), ξγ(s)) = 0.
Therefore we obtain the desired conclusion of Lemma 1. ¤

We next return to the discussion in the proof of Theorem 1. Since our
real hypersurface M is of type (A) of radius π/(2

√
c ), from Lemma 1 and

the table of the principal curvatures in the case of c > 0, at any fixed point
p ∈ M we can see that all geodesics γi = γi(s) (1 ≤ i ≤ 2n− 2) on M with
initial condition that γi(0) = p and γ̇i(0) = vi are mapped to the totally real
circle of curvature

√
c /2 in CPn(c), where v1, v2, . . . , v2n−2 are orthonormal

principal curvature vectors orthogonal to the characteristic vector ξp. Hence
we have proved Theorem 1.

5. Proof of Theorem 2

We first recall the congruence theorem for geodesics on a real hyper-
surface M of type (A) in a nonflat complex space form. For a geodesic
γ = γ(s) on a real hypersurface M2n−1 of type (A) in a nonflat com-
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plex space form M̃n(c), n ≥ 2, we call ργ = g(γ̇, ξ) the structure torsion
of γ. Similarly, by the discussion in the proof of Lemma C and (2.3)
we know that ργ is constant along γ. Indeed, from Lemma B we have
γ̇ργ = ∇γ̇(g(γ̇, ξ)) = g(γ̇, φAγ̇) = −g(φAγ̇, γ̇) = 0.

For geodesics on a real hypersurface which is either of type (A0) or
type (A1), we can classify them by means of their structure torsions (see
Proposition 2.3 in [6]).

Lemma D On a real hypersurface M which is either of type (A0) or type
(A1) in a nonflat complex space form M̃n(c), n ≥ 2, two geodesics γ1, γ2 are
congruent to each other with respect to the full isometry group I(M) of M

if and only if their structure torsions ργ1 and ργ2 satisfy |ργ1 | = |ργ2 |.
To obtain a congruence theorem for geodesics on a real hypersurface M

of type (A2) in M̃n(c), we need another invariant. For a geodesic γ on a
real hypersurface of type (A) in M̃n(c) we define its normal curvature κγ by
κγ = g(Aγ̇, γ̇). By Lemma B we have ∇γ̇κγ̇ = g((∇γ̇(s)A)γ̇(s), γ̇(s)) = 0,
whic yields that κγ is constant along γ. The following lemma shows that
geodesics on real hypersurface of type (A2) are classified by means of their
structure torsions and normal curvatures (see Theorem 2 in [4]).

Lemma E On a real hypersurface M of type (A2) in a nonflat complex
space form M̃n(c), n ≥ 2, two geodesics γ1, γ2 are congruent to each other
with respect to the full isometry group I(M) of M if and only if their struc-
ture torsions and normal curvatures satisfy |ργ1 | = |ργ2 | and κγ1 = κγ2 .

Next, we recall the notion of extrinsic geodesics. For a Riemannian man-
ifold Mn isometrically immersed into anothe Riemannian manifold M̃n+p

through an isometric immersion f , a smooth curve γ = γ(s) on M is an
extrinsic geodesic on M if the curve f ◦ γ is a geodesic in the ambient space
M̃ . In order to prove Theorem 2 we shall establish the following proposition
which is a key in this section.

Proposition 1 Let M be a real hypersurface of type (A) in a nonflat
complex space form M̃n(c), n ≥ 2. Then the number of congruency classes
of extrinsic geodesics on M with respect to the full isometry group I(M) of
M is as follows:

(1) In CPn(c),
1a) Every geodesic sphere G(r) (0 < r < π/(2

√
c )) has no extrinsic
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geodesics;
1b) Every geodesic sphere G(r) (π/(2

√
c ) ≤ r < π/

√
c )) has just one

congruency class of extrinsic geodesics;
1c) Every real hypersurface M of type (A2) of radius (0 < r < π/

√
c )

has uncountably infinite congruency classes of extrinsic geodesics.
(2) In CHn(c), every real hypersurface M of type (A) has no extrinsic

geodesics.

Proof of Proposition 1. First of all by virtue of Lemma B and the above
discussion we know that a geodesic γ = γ(s) on a real hypersurface M of
type (A) is an extrinsic geodesic if and only if the initial vector γ̇(0) of the
curve γ satisfies

g(Aγ̇(0), γ̇(0)) = 0. (5.1)

(1) Let M be a geodesic sphere G(r) (0 < r < π/
√

c ). For a geodesic
γ = γ(s) of G(r), the initial vector γ̇(0) is written as:

γ̇(0) = ργξγ(0) +
√

1− ρ2
γ u, (5.2)

where ργ is the structure torsion of γ and u is a unit vector orthogonal to
ξγ(0). Then in view of Equation (5.2) and equalities Aξγ(0) =

√
c cot(

√
c r)

·ξγ(0), Au = (
√

c /2) cot(
√

c r/2)u,
√

c cot(
√

c r) = (
√

c /2) cot(
√

c r/2) −
(
√

c /2) tan(
√

c r/2) we have ρ2
γ = cot2(

√
c r/2). This, combined with

0 ≤ |ργ | ≤ 1, shows that r ≥ π/(2
√

c ). Thus we get the statement
1a). Furthermore, from Lemma D for a geodesic sphere G(r) of radius
r (π/(2

√
c ) ≤ r < π/

√
c ) we obtain the statement 1b).

Let M be a real hypersurface of type (A2) of radius r (0 < r < π/
√

c ).
For a geodesic γ = γ(s) of M , the initial vector γ̇(0) can be expressed as:

γ̇(0) =
√

1− a2 − b2 ξγ(0) + au + bv, (5.3)

where a, b are nonnegative constants, Aξγ(0) =
√

c cot(
√

c r)ξγ(0), Au =
(
√

c /2) cot(
√

c r/2)u and Av = −(
√

c /2) tan(
√

c r/2)v. These, together
with Equation (5.1), yields

(
cot

(√
c r

2

)
−tan

(√
c r

2

))
(1−a2−b2)+a2 cot

(√
c r

2

)
−b2 tan

(√
c r

2

)
= 0.
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So, setting x = cot(
√

c r/2) (> 0), we have

x− 1
x

+
a2

x
− b2x = 0,

so that

cot
(√

c r

2

)
=

√
1− a2

1− b2
with 0 ≤ a2 + b2 < 1.

Thus, from lemma E we get the statement 1c).
(2) Since all principal curvatures of real hypersurfaces of type (A)

are positive (see the table of the principal curvatures in the case of
c < 0) and the equality

√
|c| coth(

√
|c| r) = (

√
|c| /2) coth(

√
|c| r/2) +

(
√
|c| /2) tanh(

√
|c| r/2), by the discussion in (1) we get the statement (2).

¤

As an immediate consequence of Theorem 1 and Proposition 1 we can
establish Theorem 2. ¤

6. Proof of Theorem 3

Before proving Theorem 3 we comment on the condition that ei-
ther dη(X, Y ) = (

√
c /2)g(X, φY ) for all X, Y ∈ TM or dη(X, Y ) =

−(
√

c /2)g(X, φY ) for all X, Y ∈ TM . In general, by changing N into
−N we know that every real hypersurface M has two almost contact metric
structures (φ, ξ, η, g) and (φ,−ξ,−η, g) on M . From this viewpoint dη(X, Y )
depends on the choice of the unit normal vector N , but g(X, φY ) does not
depend on N . Hence the equality dη(X, Y ) = (

√
c /2)g(X, φY ) is not well-

defined. So, in Theorems 3 and 4 we suppose these equalities.
It follows from (1.1) that

dη(X, Y ) = (1/2){X(g(ξ, Y ))− Y (g(ξ, X))− g(∇XY −∇Y X, ξ)}
= (1/2){g(∇Xξ, Y )− g(∇Y ξ, X)}
= (1/2){g(φAX, Y )− g(φAY, X)}
= (1/2)g((φA + Aφ)X, Y ).

So, the hypothesis that dη(X, Y ) = ±(
√

c/2)g(X, φY ) is equivalent to
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φA + Aφ = ∓√c φ. (6.1)

By Equation (6.1) we first know that ξ is principal. So we can take a
principal curvature vector X with AX = λX orthogonal to ξ. It follows
from Lemma A and Equation (6.1) that

λ +
δλ + (c/2)

2λ− δ
= ∓√c , (6.2)

which implies that the λ satisfies the quadratic equation:

2λ2 ± 2
√

c λ + (c/2)∓ δ
√

c = 0, (6.3)

where the signatures take the same order. Hence our Hopf hypersurface M

has at most three distinct constant principal curvatures λ1, λ2 which are
solutions to Equation (6.3) and δ = g(Aξ, ξ). Then M is either of type (A)
or type (B) (see Theorem B).

We shall check (6.1) one by one for real hypersurfaces of types (A) and
(B). Let M be of type (A). Since φA = Aφ (see Lemma B), Equation (6.1)
is reduced to

AX = (
√

c /2)X for ∀X(⊥ ξ) or AX = −(
√

c /2)X for ∀X(⊥ ξ).

This shows that M is locally congruent to a geodesic sphere G(π/(2
√

c )).
Next, let M be of type (B). Note that φVλ1 = Vλ2 (see Lemma A and the
table of the principal curvatures in the case of c > 0). So we have only to
solve the following equation:

√
c

2
cot

(√
c

2
r − π

4

)
+
√

c

2
cot

(√
c

2
r +

π

4

)
= ∓√c .

By putting x = cot(
√

c r/2), the above equation can be rewritten as:

1 + x

1− x
+

x− 1
1 + x

± 2 = 0,

so that x = 1 ± √2 or x = −1 ± √2. Since x > 1, we get x = 1 +
√

2 , so
that r = (2/

√
c ) cot−1(

√
2 + 1). Therefore we obtain the conclusion.
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7. Proof of Theorem 4

We shall investigate the sectional curvatures K for all homogeneous real
hypersurfaces in CPn(c), n ≥ 2.

Proposition 2 (1) For every real hypersurface M of type (A1), the
sectional curvature K of M satisfies (c/4) cot2

(√
c r/2

) ≤ K ≤ c +
(c/4) cot2

(√
c r/2

)
.

(2) For every real hypersurface M of type (A2), the sectional curvature K

of M satisfies 0 ≤ K ≤ c + max
{
(c/4) cot2

(√
c r/2

)
, (c/4) tan2

(√
c r/2

)}
.

(3) For every real hypersurface M of either type (B), type (C), type (D) or
type (E), the sectional curvature K satisfies K(π1) < 0 for some plane π1

and K(π2) > 0 for some plane π2.

Proof of Proposition 2. The authors ([16]) already proved the statements
(1) and (2). But we here give the complete proof of the statement (1) for
readers.

(1) We take an arbitrary pair of orthonormal vectors X and Y , which
are orthogonal to the characteristic vector ξ of M . In order to estimate
sectional curvatures K, from (2.7) we have the following

K(sin θ ·X + cos θ · ξ, Y ) =
c

4
{

sin2 θ
(
1 + 3g(φX, Y )2

)
+ cot2

(√
c r/2

)}
.

Hence we find that sectional curvatures K of M satisfy

(c/4) cot2
(√

c r/2
) ≤ K ≤ c + (c/4) cot2

(√
c r/2

)
.

This yields that M has positive sectional curvature at its each point. Note
that these estimations are sharp. Indeed,

K(X, ξ) =
c

4
cot2

(√
c r

2

)
and K(X, φX) = c +

c

4
cot2

(√
c r

2

)

for each unit vector X perpendicular to ξ.
(2) See [16]. We remark that

K(X, Y ) = 0,
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K(X, φX) = c +
c

4
cot2

(√
c r

2

)
and K(Y, φY ) = c +

c

4
tan2

(√
c r

2

)

for all unit vectors X of V(
√

c /2) cot(
√

c r/2) and all unit vectors Y of
V−(

√
c /2) tan(

√
c r/2). We emphasize that the estimations in the statement

(2) are sharp.
(3) Let M be of either type(B), type (C), type (D) or type (E). Then

every real hypersurface M has two common principal curvatures λ1 and λ2

satisfying (4.4). Setting x = cot(
√

c r/2) (> 1), the principal curvatures
δ, λ1 and λ2 are expressed as:

δ =
√

c

2

(
x− 1

x

)
, λ1 =

√
c

2
x + 1
1− x

and λ2 =
√

c

2
x− 1
1 + x

. (7.1)

By virtue of (2.7) and (7.1) we find that

K(X, ξ) =
c

4
− c

4
(1 + x)2

x
< 0 for each unit X ∈ Vλ1

and

K(Y, ξ) =
c

4
+

c

4
(x− 1)2

x
> 0 for each unit Y ∈ Vλ2 .

Thus we obtain the statement (3).
As an immediate consequence of Theorem 3 and Proposition 2 we can

establish Theorem 4. ¤

8. Extrinsic geodesics on real hypersurfaces in CP n

The class of ruled surfaces in R3 is an interesting subject in surface
geometry. So if a submanifold M satisfies that through every point of M

there is an extrinsic geodesic that lies on M , then M is considered as a
generalization of ruled surface.

Now we study extrinsic geodesics on a geodesic hypersphere in CPn. In
this section we assume that c = 4. Let G(r) be a geodesic hypersphere
in CPn(4) (n ≥ 2) with radius r (π/4 < r < π/2). G(r) is realized as
image of Riemannian product of a (2n− 1)-sphere S2n−1(sin r) and a circle
S1(cos r) under Hopf fibration π : S2n+1(1) → CPn(4). We denote Mr =
S2n−1(sin r)× S1(cos r) ⊂ S2n+1(1). Let
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p0 = ((sin r, 0, . . . , 0), cos r) ∈ Mr ⊂ Cn × C1

be a point in Mr. Then a unit normal vector Np0 of Mr in S2n+1(1) at p0

and a horizontal lift ξ′p0
of structure vector ξπ(p0) of G(r) in CPn are given

by

Np0 = ((− cos r, 0, . . . , 0), sin r) and

ξ′p0
= −iNp0 = ((i cos r, 0, . . . , 0),−i sin r),

respectively. We put

X± := X±(z1, . . . , zn−1) = ((±i cot r cos r, z1, . . . , zn−1),∓i cos r) ∈ Cn × C,

where |z1|2 + · · ·+ |zn−1|2 = 1− cot2 r. Then we have X± ∈ Tp0(Mr) with
‖X±(z1, . . . , zn−1)‖ = 1 and X±(z1, . . . , zn−1) ⊥ ip0. So if we put

γ±(t; z1, . . . , zn−1) = cos tp0 + sin tX±(z1, . . . , zn−1),

then we see that t 7→ γ±(t; z1, . . . , zn−1) is a horizontal great circle in S2n+1

and lies on Mr such that γ±(0; z1, . . . , zn−1) = p0 and γ̇±(0; z1, . . . , zn−1) =
X±(z1, . . . , zn−1). Hence t 7→ π(γ±(t; z1, . . . , zn−1)) is an extrinsic geodesic
on the geodesic hypersphere G(r) through π(p0). Note that

g(ξ′p0
, X±(z1, . . . , zn−1)) = ± cot r,

and

{X ∈ Tp0(Mr)| g(ξ′p0
, X) = ± cot r}

= {X±(z1, . . . , zn−1) ∈ Tp0(Mr)| |z1|2 + · · ·+ |zn−1|2 = 1− cot2 r}

hold. Since G(r) is a homogeneous real hypersurface, we have:

Proposition 3 Let G(r) be a geodesic hypersphere of radius r (π/4 < r <

π/2) in CPn(4). Then for each point p ∈ G(r) and each unit tangent vector
Xp ∈ Tp(G(r)) with g(Xp, ξp) = ± cot r, the geodesic γ of G(r) satisfying
γ(0) = p and γ̇(0) = X is an extrinsic geodesic.

Conversely we obtain:
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Theorem 5 Let M2n−1 be a real hypersurface isometrically immersed in
CPn(4). Suppose that there exists α ∈ (0, π), α 6= π/2 such that for each
point p ∈ M and each unit tangent vector Xp ∈ Tp(M) with g(Xp, ξp) =
cos α, the geodesic γ of M satisfying γ(0) = p and γ̇(0) = X is an extrinsic
geodesic. Then M is locally congruent to a geodesic hypersphere G(r) of
radius r ∈ (π/4, π/2) with cot r = | cos α|.
Proof. For p ∈ M2n−1 and α ∈ (0, π), α 6= π/2, we put

Sp(α) := {Xp ∈ Tp(M)| ‖X‖ = 1, g(Xp, ξp) = cos α}.

Let Yp and Zp be unit tangent vectors at p satisfying g(Yp, ξp) = g(Zp, ξp) =
g(Yp, Zp) = 0. For t ∈ R, if we put

X(t;Yp, Zp) = cos αξp + sinα(cos tYp + sin tZp),

then we have X(t;Yp, Zp) ∈ Sp(α). Hence by the assumption of the Theo-
rem, we can compute

0 = g(AX(t;Yp, Zp), X(t;Yp, Zp))

= cos2 αg(Aξp, ξp) + sin2 α

(
1 + cos 2t

2
g(AYp, Yp) +

1− cos 2t

2
g(AZp, Zp)

)

+ sin2 α sin 2tg(AYp, Zp) + sin 2α(cos tg(Aξp, Yp) + sin tg(Aξp, Zp)).

Since the above equation is valid for any t ∈ R, we obtain

g(Aξp, Yp)=g(Aξp, Zp)=g(AYp, Zp) = 0, g(AYp, Yp)=g(AZp, Zp), (8.1)

cos2 αg(Aξp, ξp) + sin2 αg(AYp, Yp) = 0. (8.2)

It follows from (8.1) that M is η-umbilic at its each point p, namely our
real hypersurface M is locally congruent to a geodesic hypersphere G(r) of
radius (, say) r with r ∈ (0, π/2). Furthermore, by virtue of (8.2) we find that
g(Aξp, ξp) = ±2 cot(2r) = ±(cot r − tan r) and g(AYp, Yp) = ± cot r, where
these signatures take the same orders. Therefore we have cot2 r = cos2 α

and r ∈ (π/4, π/2). Thus we have proved Theorem 5. ¤

Remark 3 In Theorem 5, a real hypersurface M in CPn satisfies the
assumption with α = π/2 (resp. α = 0 or α = π) if and only if M is a ruled
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real hypersurface (resp. a real hypersurface satisfies Aξ = 0).

Remark 4 We here explain the feature of real hypersurfaces of type (A)
in CPn(4), n ≥ 2. We first consider the so-called Clifford hypersurface

Mp,q(r1, r2) := S2p+1(r1)× S2q+1(r2)

in a unit sphere S2n+1(1), where r2
1 + r2

2 = 1, p + q = n − 1 and 0 ≤ q ≤
p ≤ n− 1. Mp,q(r1, r2) has two distinct constant principal curvatures r2/r1

with multiplicity 2p + 1 and −r1/r2 with multiplicity 2q + 1 in the ambient
space S2n+1(1). We here set MC

p,q := π(Mp,q(r1, r2)), where π : S2n+1(1) →
CPn(4) is the Hopf fibration. The manifold MC

p,q is a real hypersurface
of type (A) in CPn(4), n ≥ 2. MC

p,0 is a Hopf hypersurface having two
distinct principal curvatures (r2/r1)− (r1/r2) with multiplicity 1 and r2/r1

with multiplicity 2n− 2, which is congruent to a geodesic sphere G(r) (0 <

r < π/2) with cot r = r2/r1. When pq 6= 0, MC
p,q is a Hopf hypersurface

having three distinct constant principal curvatures (r2/r1) − (r1/r2) with
multiplicity 1 and r2/r1 with multiplicity 2p and−r1/r2 with multiplicity 2q,
which is a congruent to a tube of radius r (0 < r < π/2) with tan r = r1/r2

around a totally geodesic CP q(4) in the ambient space CPn(4).

A surface is doubly ruled if through each point there are two distinct
lines that lie on the surface. The hyperbolic paraboloid and the hyperboloid
of one sheet are doubly ruled surfaces. The plane is the only surface which
contains at least three distinct lines through each point. On the other hand,
the minimal Clifford torus T in 3-sphere satisfies that through each point p

there are two distinct great circles that lie on T such that two great circles
meet orthogonally at p.

In general, the following hold:

Proposition 4 Let M be an n-dimensional submanifold in a Riemannian
manifold M̃ . Suppose that at each point p ∈ M , there exist n extrinsic
geodesics γi (i = 1, 2, . . . , n) of M through p such that γ1, γ2, . . . , γn meet
orthogonally at p. Then M is a minimal submanifold of M̃ .

In fact, since each γi is an extrinsic geodesic of M̃ , we have
σ(γ̇i(0), γ̇i(0)) = 0 where we put γi(0) = p and σ denotes the second funda-
mental tensor of M . Since γ̇1(0), γ̇2(0) . . . , γ̇n(0) form an orthonormal basis
of Tp(M), the mean curvature vector of M in M̃ vanishes. Of course, every
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totally geodesic submanifold satisfies the condition. So it seems that sub-
manifolds satisfying the conditon of the above proposition are geometrically
good one among minimal submanifolds.

Now we consider the minimal geodesic hypersphere in CP 2. A
geodesic hypersphere G(r) with radius r (0 < r < π/2) is realized as
π(S3(sin r) × S1(cos r)), where π : S5 → CP 2 is the Hopf fibration and
S3(sin r) × S1(cos r) is a hypersurface in S5(1). Also G(r) is minimal in
CP 2 if and only if S3(sin r)× S1(cos r) is minimal in S5(1), and we can see
that G(r) is minimal if and only if r = π/3. Hence M := S3(

√
3/2)×S1(1/2)

(resp. G(π/3)) is a minimal hypersurface in S5(1) (resp. CP 2(4)).
We define

γ(t; p1, v1, p2, v2) =
(√

3
2

(cos tp1 + sin tv1),
1
2
(cos tp2 + sin tv2)

)
,

where p1 ∈ S3(1), v1 ∈ Tp1(S
3(1)) (|v1| = 1), p2 ∈ S1(1) and v2 ∈

Tp2(S
1(1)) (|v2| = 1). Then γ(t; p1, v1, p2, v2) is a great circle in S5(1)

and lies on M with

γ(0; p1, v1, p2, v2) =
(√

3
2

p1,
1
2
p2

)

and γ̇(0; p1, v2, p2, v2) =
(√

3
2

v1,
1
2
v2

)
.

We put

p1 = (1, 0) ∈ S3(1) ⊂ C2, p2 = 1 ∈ S1(1) ⊂ C1

and p0 =
((√

3
2

, 0
)

,
1
2

)
∈ M.

Then unit tangent vectors v1 ∈ Tp1(S
3(1)) and v2 ∈ Tp2(S

1(1)) are written
as

v1 = (iy, z) (y ∈ R, z ∈ C, |y|2 + |z|2 = 1) and v2 = ±i,

respectively.
For θ ∈ R, we put
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γ1(t; θ) = γ
(
t; p1,

(− i/3,
√

8eiθ/3
)
, p2, i

)

=
((√

3
2

cos t− i sin t√
12

,

√
2
3
eiθ sin t

)
,
eit

2

)
,

γ2(t; θ) = γ
(
t; p1,

(
i/3,

√
8ei(θ+π/3)/3

)
, p2,−i

)

=
((√

3
2

cos t +
i sin t√

12
,

√
2
3
ei(θ+π/3) sin t

)
,
e−it

2

)
,

γ3(t; θ) = γ
(
t; p1,

(− i/3,
√

8ei(θ+2π/3)/3
)
, p2, i

)

=
((√

3
2

cos t− i sin t√
12

,

√
2
3
ei(θ+2π/3) sin t

)
,
eit

2

)
.

Then γ1(t; θ), γ2(t; θ) and γ3(t; θ) are all horizontal great circles in S5(1)
which lie on M with γ1(0; θ) = γ2(0; θ) = γ3(0; θ) = p0. Hence π(γ1(t; θ)),
π(γ2(t; θ)) and π(γ3(t; θ)) are extrinsic geodesics on the minimal geodesic
hypersphere G(π/3) through π(p0). Furthermore, we have

γ̇1(0; θ) =
((

− i√
12

,

√
2
3
eiθ

)
,
i

2

)
,

γ̇2(0; θ) =
((

i√
12

,

√
2
3
ei(θ+π/3)

)
,− i

2

)
,

and γ̇3(0; θ) =
((

− i√
12

,

√
2
3
ei(θ+2π/3)

)
,
i

2

)
.

Consequently these 3 extrinsic geodesics meet orthogonally at π(p0). Since
G(r) is a homogeneous hypersurface in CP 2, the same phenomena occur at
each point of G(π/3).

9. Viewpoint from the contact geometry

For real hypersurfaces M in M̃n(c) we recall some notions in the contact
geometry. We first say that every real hypersurface M has two almost
contact metric structures (φ, ξ, η, g) and (φ,−ξ,−η, g) (see Section 6). A real
hypersurface M is a Sasakian manifold if and only if the structure tensor φ of
M satisfies either the equation (∇Xφ)Y = g(X, Y )ξ− η(Y )X for all vectors
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X, Y ∈ TM or (∇Xφ)Y = −g(X, Y )ξ + η(Y )X for all vectors X, Y ∈ TM .
A Sasakian manifold manifold M is called a Sasakian space form if every φ-
sectional curvature K(u, φu) := g(R(u, φu)φu, u) associated to a unit vector
u(∈ TM) orthogonal to ξ does not depend on the choice of u, where R is the
curvature tensor of M . A real hypersurface M is called a contact manifold
if the exterior differentiation of the contact form η on M satisfies either
dη(X, Y ) = g(X, φY ) for all X, Y ∈ TM or dη(X, Y ) = −g(X, φY ) for all
X, Y ∈ TM . When M is contact and Lξg = 0, M is called a K-contact
manifold, where L is the Lie derivative on M . In the contact geometry,
Sasakian always means K-contact. In general the converse does not hold
(cf. [11]). But, in the theory of real hypersurfaces the following hold:

Proposition A ([13]) For a real hypersurface M isometically immersed
into a nonflat complex space form M̃n(c), n ≥ 2, the following three condi-
tions are mutually equivalent :
(1) M is a Sasakian space form.
(2) M is a Sasakian manifold.
(3) M is a K-contact manifold.
In Condition (1), M has automatically φ-sectional curvature c + 1.

It is well-known that a Sasakian space form of constant φ-sectional cur-
vature 1 is realized as a real hypersurface S2n−1(1) of a flat complex space
form Cn. J. Berndt showed that every Sasakian space form of constant
φ-sectional curvature c(6= 1) can be a realized as a real hypersurface in a
nonflat complex space form through an isometric immersion.

Proposition B ([7]) Let M2n−1 be a connected real hypersurface isomet-
rically immersed into a nonflat complex space form M̃n(c), n ≥ 2. Suppose
that M is a Sasakian space form. Then M is locally congruent to one of the
following real hypersurfaces in the ambient space M̃n(c) :

i) a geodesic sphere G(r) of radius r with cot(
√

c r/2) = 2/
√

c (0 < r <

π/
√

c ) in CPn(c);
ii) the horosphere in CHn(−4);
iii) a geodesic sphere G(r) of radius r with coth(

√
|c| r/2) = 2/

√
|c| (0 <

r < ∞) in CHn(c) (−4 < c < 0);
iv) a tube of radius r around a totally geodesic CHn−1(c) with

coth(
√
|c| r/2) =

√
|c| /2 (0 < r < ∞) in CHn(c) (c < −4).
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In these cases, M has constant φ-sectional curvature c + 1.

The following are classification theorems of contact real hypersurfaces
in a nonflat complex space form.

Proposition C ([2]) Let M2n−1 be a connected real hypersurface isomet-
rically immersed into CPn(c), n ≥ 2. Suppose that M is a contact manifold.
Then M is locally congruent to one of the following homogeneous real hy-
persurfaces in the ambient space CPn(c) :

1) a geodesic sphere G(r) of radius r with cot(
√

c r/2) = 2/
√

c (0 < r <

π/
√

c ) in CPn(c);
2) a tube of radius r = (2/

√
c ) cot−1((

√
c + 4 +

√
c )/2) around a complex

hyperquadric CQn−1, 0 < r < π(2
√

c ).

Proposition D ([2]) Let M2n−1 be a connected real hypersurface isomet-
rically immersed into CHn(c), n ≥ 2. Suppose that M is a contact manifold.
Then M is locally congruent to one of the following homogeneous real hy-
persurfaces in the ambient space CHn(c) :

1) the horosphere HS in CHn(c) (c = −4);
2) either a geodesic sphere G(r) of radius r = (1/

√
|c| ){log(2 +

√
|c| ) −

log(2−
√
|c| )} or a tube of radius r = (1/(2

√
|c| )){log(2+

√
|c| )−log(2−√

|c| )} around a totally real totally geodesic RHn(c/4) (−4 < c < 0),
3) a tube of radius r = (1/

√
|c| ){log(

√
|c| + 2)− log(

√
|c| − 2)} around a

totally geodesic CHn−1(c) (c < −4).

In consideration of Propositions B and C we can see our real hypersur-
faces in Theorems A, 2 and 3 from the viewpoint of the contact geometry.

(1) The horosphere HS in CHn(c) is a Sasakian space form (of constant
φ-sectional curvature −3) if and only if c = −4.

(2) The geodesic sphere G(π/(2
√

c )) in CPn(c) is a Sasakian space form
(of constant φ-sectional curvature 5) if and only if c = 4.

(3) The tube T2(r) of radius r with cot(
√

c r/2) =
√

2 +1 around a complex
hyperquadric CQn−1 in CPn(c) is a contact manifold in CPn(c) if and
only if c = 4.
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10. The length spectrum on the geodesic sphere G(π/4) in
CP n(4)

We first recall the fact that in CPn(c) every geodesic sphere G(r) (0 <

r < π/
√

c ) has countably infinite congruency classes of closed geodesics
with respect to I(G(r)) (cf. [6]) and every real hypersurface M of type (A2)
of radius r (0 < r < π/

√
c ) has uncountably infinite congruency classes of

closed geodesics with respect to I(M) (see the discussion in the proof of
Theorem 2 and [1]). Note that every geodesic γ of each real hypersurface
M of type (A) is a simple curve.

In the last section, we state some fundamental results in the length
spectrum Lspec(G(π/4)), which is the set of lengths (on a real line R) of all
closed geodesics on a Sasakian space form G(π/4) (of constant φ-sectional
curvature 5) in CPn(4), n ≥ 2 (for details, see [6]).

(1) The length of every integrable curve γ of the characteristic vector field
(i.e., ργ = ±1) is the first length spectrum given by π. The length of every
geodesic γ with structure torsion ργ = 0 is the second length spectrum given
by
√

2 π.
Lspec(G(π/4)) is expressed as:

Lspec(G(π/4)) =
{
π,
√

2 π,
√

5 π,
√

10 π,
√

13 π,
√

17 π, 5π,
√

26 π,
√

29 π,
√

34 π,
√

37 π,
√

41 π,
√

50 π,
√

53 π,
√

58 π,
√

61 π,
√

65 π,
√

73 π, . . .
}
.

Note that the multiplicity of
√

65 π is two, namely it is the common length
of geodesics of structure torsions 3/

√
65 and 7/

√
65. Every spectrum which

is shorter than
√

65 π is simple, i.e., its multiplicity is one.

(2) Lspec(G(π/4)) is a discrete unbouded subset in the real line R.
We here denote by mG(π/4)(λ) the number of congruency classes of

closed geodesics on G(π/4) with length λ, that is, the multiplicity of
λ ∈ Lspec(G(π/4)). Then mG(π/4)(λ) is finite for each λ ∈ Lspec(G(π/4)).
But it is not uniformly bounded, i.e., lim supλ→∞mG(π/4) = ∞. In
this case, the growth order of mG(π/4) is not so rapid. It satisfies
limλ→∞ λ−δmG(π/4)(λ) = 0 for every positive δ.

(3) We denote by nG(π/4)(λ) the number of congruency classes of closed
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geodesics on G(π/4) whose length λ is not longer than λ. Then we obtain
limλ→∞(nG(π/4)(λ)/λ2) = 3/4π3.
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