On homotopically trivial links

Dedicated to Professor Yoshie Katsurada on her 60th birthday

By Kazuaki Kobayashi

§ 1. Introduction.

Throughout this paper we shall only be concerned with the combinatorial category, consisting of simplicial complexes and piecewise linear maps (for the combinatorial categoryf see [3]). Zeeman [3] shows that if (n, k, 2)-link $L=(S^n\supset K_1^k\cup K_2^k)$ is homotopically trivial and if $2n\ge 3k+4$, then L is geometrically trivial. And if n=k+2, it is well known that there exists a homopically trivial (n, n-2, 2)-link which is not geometrically trivial (for example, in (3, 1, 2)-link). For the case $n\ge k+3$ and $2n\le 3k+3$ Zeeman says that there exist homotopically trivial links which are not geometrically trivial same as (3, 1, 2)-link. But there is no proof for these links be geometrically non-trivial. So we consider the relation between homotopically trivial links and geometrically trivial links under $n\ge k+3$ and $2n\le 3k+3$. In this paper we obtain a geometrical sufficient condition for a homotopically trivial (n, k, 2)-link be geometrically trivial. I should like to express my sincere gratitude to the members of Kōbe and Hokkaidō topology seminars for many discussion of this problem.

§ 2. Notations and Definitions

 S^n is a standard n-sphere and D^n is a standard n-cell. An (n, k, 2)-link L is a pair $(S^n \supset K_1^k \cup K_2^k)$ of an n-sphere S^n and a disjoint union of locally flatly embedded k-spheres K_i^k , i=1, 2 in S^n . ∂X and Int X mean the boundary and the interior of a manifold X. X * Y denote the join of spaces X and Y. \cong means "homeomorphic to". $V S_i^p$ means one point join of p-spheres S_1^p, \dots, S_m^p and I = [0, 1]. For any manifolds X, Y such that X is a submanifold of Y, U(X, Y) means a regular neighborhood of X in Y. And we always take U(X, Y) to be a second derived neighborhood of X in Y for a suitable subdivision of X and Y unless otherwise stated.

DEFINITION 1. Let X, Y be subsets in an n-manifold Z. We say that X and Y split each other in Z if there exists an n-cell B^n in Z such that either $X \subset \operatorname{Int} B^n, \ Y \cap B^n = \phi$ or $Y \subset \operatorname{Int} B^n, \ X \cap B^n = \phi$.

DEFINITION 2. We say that an (n, k, 2)-link $L = (S^n \supset K_1^k K_2^k)$ is geometrically trivial or briefly G-trivial if there exist locally flatly embedded (k+1)-cells B_1^{k+1} , B_2^{k+1} in S^n such that $\partial B_i^{k+1} = K_i^k$, i = 1, 2 and $B_1^{k+1} \cap B_2^{k+1} = \phi$.

REMARK 1. When $n \ge k+3$ it is sufficient that there exists a locally flatly embedded (k+1)-cell B^{k+1} which is bounded by K_1^k or K_2^k in $S^n-K_2^k$ or $S^n-K_1^k$. For if $\partial B^{k+1}=K_1^k$ and $B^{k+1}\subset S^n-K_2^k$, by Zeeman's Unknotting theorem [4] we can find a locally flatly embedded (k+1)-cell B_2^{k+1} bounded by K_2^k in $S^n-U(B_1^{k+1}, S^n-K_2^k)\cong D^n$.

DEFINITION 3. We say that an (n, k, 2)-link $L = (S^n \supset K_1^k \cup K_2^k)$ is homotopically trivial or briefly *H*-trivial if K_1 is contractible in S^n -Int $U(K_2, S^n)$ and if K_2 is contractible in S^n -Int $U(K_1, S^n)$.

DEFINITION 4. We say that an (n, k, 2)-link $L = (S^n \supset K_1^k \cup K_2^k)$ is weak H-trivial if either K_1^k or K_2^k is contractible in the complementary of the other or equivalently if there exists a map $F: (S_1^k \cup S_2^k) \times I \rightarrow S^n$ such that

- (1) $F_0(S_i^k) = K_i$, i = 1, 2,
- (2) $(S^n \supset F_1(S_1^k) \cup F_1(S_2^k))$ is a G-trivial link,
- (3) $F_t(S_1^k) \cap F_t(S_2^k) = \phi$ for any $t \in [0, 1]$.

Remark 2. G-trivial \Longrightarrow H-trivial \Longrightarrow weak H-trivial.

Remark 3. If $2n \ge 3k+4$

weak H-trivial \iff H-trivial \iff G-trivial (Zeeman [3]).

REMARK 4. If n=k+2 weak H-trivial $\Longrightarrow H$ -trivial

Fig. 1.

REMARK 5. Let n=k+2 and $(S^n\supset K_i^k)$, i=1,2 be both trivial knots. And if $k\geq 2$, any such (k+2,k,2)-link is H-trivial. If k=1, for any such (3,1,2)-link, homologically trivial link \iff weak H-trivial link \iff H-trivial.

We assume $n \ge k+3$ throughout the remaining of the paper unless otherwise is stated. Then the *knots* $(S^n \supset K_i^k)$, i=1,2 are both trivial by [4]. Hence $K_1^k \subset S^n - \text{Int } U(K_2^k, S^n) \cong S^{n-k-1} \times D^{k+1}$.

Condition $(n-k-1, k, m, \mu)$ (briefly Cond. (m, μ)). For any link L=

 $(S^n \supset K_1^k \cup K_2^k)$ $(n \geqq k+3)$ since $K_1^k \subset S^n$ -Int $U(K_2^k, S^n) \cong S^{n-k-1} \times D^{k+1}$ we identify S^n -Int $U(K_2^k, S^n)$ and $S^{n-k-1} \times D^{k+1}$ and so we consider $S^{n-k-1} \times D^{k+1} \supset K_1^k$. We say that L satisfies Cond. (m, μ) if there exist a point $p \in S^{n-k-1}$ and a neighborhood U_p of p in S^{n-k-1} satisfying the following conditions;

- (1) $U_p \times D^{k+1} \cap K_1^k \cong \bigcup_{i=1}^m D_i^k$ for some m,
- $(2) \quad \bigcup_{i=1}^m D_i^k \ \ \text{properly embedded in} \ \ U_p \times D^{k+1},$
- (3) $(\partial D_1^k \cup \cdots \cup \partial D_p^k)$ and $(p \times \partial D^{k+1}) \cup (\partial D_{p+1}^k \cup \cdots \cup \partial D_m^k)$ split each other in $\partial (U_p \times D^{k+1})$ for some $\mu \leq m$.

PROPOSITION. If a link $L=(S^n\supset K_1^k\cup K_2^k)$ satisfies Cond. (m,m), L is weak H-trivial.

PROOF. Since $\partial D_1^k \cup \cdots \cup \partial D_m^k$ splits from $p \times \partial D^{k+1}$ in $\partial (U_p \times D^{k+1})$, $\bigcup_{i=1}^m D_i^k$ contracts into $\partial U_p \times D^{k+1}$. Next we push $\bigcup_{i=1}^m D_i^k$ into $(S^{n-k-1} - \operatorname{Int} U_p) \times D^{k+1}$ $\cong D^n$ using a collar of $\partial U_p \times D^{k+1}$ in $(S^{n-k-1} - \operatorname{Int} U_p) \times D^{k+1}$. Hence K_1^k contracts into $(S^{n-k-1} - \operatorname{Int} U_p) \times D^{k+1} \cong D^n$. So K_1^k is contractible in $S^{n-k-1} \times D^{k+1} = S^n - \operatorname{Int} U(K_2^k, S^n)$. Therefore L is weak H-trivial.

THEOREM. If an (n, k, 2)-link $L = (S^n \supset K_1^k \cup K_2^k)$ $(n \ge k+3)$ satisfies Cond. (m, m), L is G-trivial.

§ 3. Lemmas and Proof of Theorem.

Lemma 1. For a link $L = (S^n \supset K_1^k \cup K_2^k)$, L satisfies (1), (2) of Cond. (m, μ) and satisfies that $\overset{m}{U} \partial D_i^k$ bound a manifold M_1 in $\partial U_p \times D^{k+1}$ which is homeomorphic to $S^k - \overset{\mu}{U}$ Int D_i^k , then L is G-trivial. Proof. Let $M_2 = (S^{n-k-1} - \operatorname{Int} U_p) \times D^{k+1} \cap K_1^k$. Then $(S^{n-k-1} - \operatorname{Int} U_p) \times D^{k+1}$

PROOF. Let $M_2 = (S^{n-k-1} - \operatorname{Int} U_p) \times D^{k+1} \cap K_1^k$. Then $(S^{n-k-1} - \operatorname{Int} U_p) \times D^{k+1} \cap K_1^k \cong S^k - \bigcup_{i=1}^p \operatorname{Int} D_i^k$ by (1), (2) of *Cond.* (m, μ) . Hence $M_1 \cong M_2$. Since $(S^{n-k-1} - \operatorname{Int} U_p) \times D^{k+1}$ has a collar [3], we push homeomorphically M_1 into $\operatorname{Int} ((S^{n-k-1} - \operatorname{Int} U_p) \times D^{k+1})$ keeping ∂M_1 fixed using the collar. We denote it M_0 . Then the followings hold for M_0 ;

- 1) $n \ge k + 3$,
- 2) M_0 is homeomorphic to M_2 and $\partial M_0 = \partial M_1 = \partial M_2$,
- 3) M_0 is (k-2)-connected because $M_0\cong S^k-\bigcup_{i=1}^p \mathrm{Int}\,D_i^k$ has a homotopy type of $\bigvee_{i=1}^{p-1} S_i^{k-1}$,
 - 4) M_0 is homotopic to M_2 keeping the boundary fixed because (S^{n-k-1})

 $-\operatorname{Int} U_{n} \times D^{k+1} \cong D^{n}.$

So by Zeeman's Unknotting Theorem [3. chap. 8] M_0 and M_2 are ambient isotopic by an ambient isotopy of $S^{n-k-1} \times D^{k+1}$ keeping $\partial(S^{n-k-1} \times D^{k+1}) \cup U_p \times D^{k+1}$ fixed. Therefore conversely we can consider M_2 ambient isotopic to M_1 through M_0 by an ambient isotopy of $S^{n-k-1} \times D^{k+1}$ keeping $\partial(S^{n-k-1} \times D^{k+1}) \cup W_p \times D^{k+1}$ where $W_p = U_p - (collar \ of \ \partial U_p)$. Next we push homeomorphically M_1 into $U_p \times D^{k+1} \cong D^n$ using a collar of $\partial U_p \times D^{k+1}$ in $U_p \times D^{k+1}$. Hence we can ambient isotop K_1^k into $\mathrm{Int}\ (U_p \times D^{k+1}) \cong \mathrm{Int}\ D^n$ and so K_1^k bound a k-cell in $\mathrm{Int}\ (U_p \times D^{k+1}) \subset S^{n-k-1} \times D^{k+1} = S^n - \mathrm{Int}\ U(K_2^k, S^n)$ because $n \ge k+3$. Therefore L is G-trivial (see Remark 1).

Lemma 2. For any link $L = (S^n \supset K^k \cup K_1^{k-1} \cup \cdots \cup K_m^{k-1})$ (codimension is unrestricted) if $(S^n \supset K_1^{k-1} \cup \cdots \cup K_\mu^{k-1})$ ($\mu \leq m$) is G-trivial and if $K_1^{k-1} \cup \cdots \cup K_\mu^{k-1}$ and $K^k \cup K_{\mu+1}^{k-1} \cup \cdots \cup K_m^{k-1}$ split each other in S^n , K_i^{k-1} , $1 \leq i \leq \mu$ bound disjoint locally flat k-cells in $S^n - (K^k \cup K_{\mu+1}^{k-1} \cup \cdots \cup K_m^{k-1})$.

PROOF. Since $(S^n \supset K_1^{k-1} \cup \cdots \cup K_n^{k-1})$ is G-trivial K_i^{k-1} , $1 \leq i \leq \mu$ bound locally flat disjoint k-cells D_i^k , $1 \leq i \leq \mu$. And we may suppose that $UD_i^k \subset S^n - \operatorname{Int} |St(v,S^n)|$ for some vertex v. Since $K_1^{k-1} \cup \cdots \cup K_n^{k-1}$ and $K^k \cup K_{n+1}^{k-1} \cup \cdots \cup K_m^{k-1}$ split each other, there exists an

 $K_1^{k-1} \cup \cdots \cup K_n^{k-1}$ and $K^k \cup K_{\mu+1}^{k-1} \cup \cdots \cup K_n^{k-1}$ split each other, there exists an n-cell B_1^n such that $K^k \cup K_{\mu+1}^{k-1} \cup \cdots \cup K_n^{k-1} \subset \operatorname{Int} B_1^n$ and $U^{\mu} K_i^{k-1} \cap B_1^n = \phi$.

Let $B_2^n = S^n - \text{Int } U(B_1^n, S^n)$. Then by [1] there exists a PL homeomorphism $h: S^n \to S^n$ which is isotopic to the identity and $h(B_1^n) = |St(v, S^n)|$. Since h is isotopic to the identity and since $(S^n \supset K_1^{k-1} \cup \cdots \cup K_{\mu}^{k-1})$ is G-trivial, $(S^n \supset h(K_1^{k-1}) \cup \cdots \cup h(K_{\mu}^{k-1}))$ is also G-trivial. Hence $h(K_i^{k-1})$, $1 \le i \le \mu$ bound locally flat disjoint k-cells in $S^n - \text{Int } |St(v, S^n)| \subset S^n - \bigcup_{i=\mu+1}^m h(K_i^{k-1}) \cup h(K^k)$. Hence K_i^{k-1} , $1 \le i \le \mu$ bound locally flat disjoint k-cells in $S^n - K^k \cup K_{\mu+1}^{k-1} \cup \cdots \cup K_m^{k-1}$.

Lamma 3. If a link $L = (S^n \supset K_1^k \cup K_2^k)$ satisfies Cond. (m, m), ∂D_i^k , $1 \le i \le m$ bound locally flat disjoint k-cells B_1^k, \dots, B_m^k in $\partial U_p \times D^{k+1}$.

PROOF. Since $\partial D_i^k, 1 \leq i \leq m$ bound locally flat disjoint k-cells D_1^k, \cdots, D_m^k in $U_p \times D^{k+1} \cong D^n$, $(\partial (U_p \times D^{k+1}) \supset \partial D_1^k \cup \cdots \cup \partial D_m^k)$ is G-trivial by [2. Th. 7 and Remark 1]. And since $\bigcup_{i=1}^m \partial_i^k$ and $p \times \partial D^{k+1}$ split each other in $\partial (U_p \times D^{k+1})$ by Cond. (m, m), ∂D_i^k , $1 \leq i \leq m$ bound locally flat disjoint k-cells in $\partial (U_p \times D^{k+1}) - p \times \partial D^{k+1}$ by Lemma 2. But since $U_p \times \partial D^{k+1}$ is a regular neighborhood of $p \times \partial D^{k+1}$ in $\partial (U_p \times D^{k+1})$ and since the complement of $U_p \times \partial D^{k+1}$ in $\partial (U_p \times D^{k+1})$ is $\partial U_p \times D^{k+1}$, hence ∂D_i^k , $1 \leq i \leq m$ bound locally flat disjoint k-cells D_1^k, \cdots, D_m^k in $\partial U_p \times D^{k+1}$.

PROOF OF THEOREM. Since the link $L = (S^n \supset K_1^k \cup K_2^k)$ satisfies Cond. $(m \ m)$, ∂D_i^k , $1 \le i \le m$ bound locally flat disjoint k-cells B_1^k, \dots, B_m^k in $\partial U_p \times D^{k+1}$ by Lemma 3. Since $n \ge k+3$, there exist embeddings

$$h_i: I \times D^{k-1} \rightarrow \partial U_n \times D^{k+1}, \quad 1 \le i \le m-1$$

such that

- $(1) \quad h_i(I \times D^{k-1}) \cap h_i(I \times D^{k-1}) = \phi,$
- (2) for all i, $h_i(I \times D^{k-1}) \cap \bigcup_{i=1}^m B_i^k = h_i(\{0\} \times D^{k-1} \cup \{1\} \times D^{k-1}) \subset B_1^k \cup B_i^k$
- (3) $h_i(\{0\} \times D^{k-1}) \subset B_1^k, h_i(\{1\} \times D^{k-1}) \subset B_i^k.$

 $\begin{array}{lll} \text{Let} & M = (\overset{m}{U} B^k_j) \underset{\cup h_i}{\cup} (\overset{m}{U} h_i (I \times D^{k-1})) - \overset{m-1}{U} h_i (I \times (\operatorname{Int} D^{k-1})). & \text{Then } M \text{ is a manifold homeomorphic to } S^k - \overset{m}{U} D^k_i. & \text{Hence } \overset{m}{U} \partial D^k_i \text{ bounds a manifold homeomorphic to } S^k - \overset{m}{U} D^k_i \text{ in } \partial U_p \times D^{k+1} \text{ and } L \text{ is } G\text{-trivial by Lemma 1.} \\ \end{array}$

Department of Mathematics Hokkaido University

References

- [1] V. K. A. M. GUGENHEIM: Piecewise linear isotopy and embedding of elements and spheres (I), (II), Proc. London Math. Soc. 3 (1953) 29-53, 129-152.
- [2] W. B. R. LICKORISH: The piecewise linear unknotting of cones, Topology, 4 (1965), 67-91.
- [3] E. C. ZEEMAN: Seminar on Combinatorial Topology, I. H. E. S., 1963-1966 (mimeographed).
- [4] E. C. ZEEMAN: Unknotting combinatorial balls, Ann. of Math. 78 (1963), 501-526.

(Received August 5, 1971)