A remark on the Steenrod representation of $B(Z_p \times Z_p)$

Dedicated to Professor Yoshie Katsurada on her 60th birthday

By Hiroaki Koshikawa

§ 1. Introduction

For a topological space $X, z \in H_n(X; Z)$ is Steenrod representable if there exists a closed oriented smooth n-manifold M and a continuous map $f: M \rightarrow X$ such that $f_*(\sigma) = z$, where σ is a fundamental homology class of M. In [4], Thom showed that for a finite polyhedron X any $z \in H_n(X; Z)$ is representable if $n \leq 6$, but if $n \geq 7$ not everything is representable. He exhibited a class in $H_7(L^7(3) \times L^7(3); Z)$ which was not, where $L^7(3)$ is 7-dimesional lens space mod 3. Moreover Burdick [1] extended to $B(Z_3 \times Z_3)$, classifying space of $Z_3 \times Z_3$, and computed all representable elements. He dermined E^{∞} terms of bordism spectral sequence of $B(Z_3 \times Z_3)$ and used necessary condition of representability of Thom [4].

In this note we show the case p=2 and any odd prime p. Latter case we use the same methods as Burdick's. We have

THEOREM 1.

- (a) Every elements of $H_*(B(Z_2 \times Z_2); Z)$ are Steenrod representable.
- (b) For p an odd prime the elements of $H_*(B(Z_p \times Z_p); Z)$ which are Steenrod representable are generated by $e_0 \otimes e_0$, $e_{2i-1} \otimes e_{2j-1}$, $e_0 \otimes e_{2j-1}$, $e_{2i-1} \otimes e_0$, $\{(e_2 \otimes e_{2j-1} + e_1 \otimes e_2) + (e_6 \otimes e_{2j-5} + e_5 \otimes e_{2j-4}) + \cdots\}$, and $\{(e_4 \otimes e_{2j-3} + e_3 \otimes e_{2j-2}) + (e_8 \otimes e_{2j-7} + e_7 \otimes e_{2j-6}) + \cdots\}$.

The author whishes to express his thanks to Professors H. Suzuki and F. Uchida for their many valuable suggestions.

§ 2. Homology groups of $B(\mathbf{Z}_p \times \mathbf{Z}_p)$

Let
$$X=B(Z_p\times Z_p)$$
, $Y=B(Z_p)$.

Case (a): p=2.

Let RP^n be the n dimensional real projective space, RP^{∞} be the direct limit of it. Then we can consider $Y=RP^{\infty}$, and so $X=Y\times Y$. The cell structure of RP^n and its boundary operations are given as follows:

$$RP^n = e_0 \cup e_1 \cup \cdots \cup e_n$$

$$\partial e_{2i} = 2e_{2i-1}, \quad \partial e_{2i+1} = 0,$$

where e_i is the *i* dimensional cell. *Y* is a *CW* complex with one cell e_i in each dimension. We will use the same symbol e_i for the homology class containing e_i .

Let $C_*(X)$ and $C_*(Y)$ be the chain complexes as CW complex X and Y respectively. $C_*(X) \cong C_*(Y) \otimes C_*(Y)$ by cross product, thus $C_n(X) = H_n(X^n, X^{n-1}; Z) \cong \sum\limits_{i+j=n} H(Y^i, Y^{i-1}; Z) \otimes H_j(Y^j, Y^{j-1}; Z)$, where X^n and Y^n are n-skeleton of X and Y respectively. Therefore $C_n(X)$ is generated by $e_i \otimes e_{n-i}$ for $i=0,1,\cdots,n$ and $\partial_n:C_n(X) \to C_{n-1}(X)$ is given as follows:

$$\begin{aligned} \partial_{n}(e_{2i-1} \otimes e_{2j-1}) &= 0 , \\ \partial_{n}(e_{2i} \otimes e_{2j-1}) &= 2e_{2i-1} \otimes e_{2j-1} , \\ \partial_{n}(e_{2i-1} \otimes e_{2j}) &= -2e_{2i-1} \otimes e_{2j-1} , \\ \partial_{n}(e_{2i} \otimes e_{2j}) &= 2e_{2i-1} \otimes e_{2j} + 2e_{2i} \otimes e_{2j-1} . \end{aligned}$$

Then we have

(1.3) $H_{2n}(X;Z)$ is generated by $e_{2i-1} \otimes e_{2n-2i+1}$ for $i=1, \dots, n$ and $H_{2n-1}(X;Z)$ is generated by $e_{2i-1} \otimes e_{2n-2i} + e_{2i} \otimes e_{2n-1-2i}$ for $i=0,1,\dots,n$ and every elements are order 2. $H_0(X;Z) \cong Z$ generated by $e_0 \otimes e_0$.

Case (b): p is the odd prime.

Let S^{2n+1} be the unit (2n+1)-sphere. A point of S^{2n+1} is represented by a (n+1)-tuple of complex numbers (z_0,z_1,\cdots,z_n) with $\sum\limits_{i=0}^n|z_i|^2=1$. Let T be the rotation of S^{2n+1} defined by $T(z_0,z_1,\cdots,z_n)=(\lambda z_0,\lambda z_1,\cdots,\lambda z_n)$, where $\lambda=\exp(2\pi i/p)$. T generates a fixed point free topological transformation group of S^{2n+1} of order p, so we will say it Z_p action on S^{2n+1} . Then the lens space mod p is defined to be the orbit space $L^{2n+1}(p)=S^{2n+1}/Z_p$. This is the closed orientable 2n+1 smooth manifold. For m< n consider S^{2m+1} as contained in S^{2n+1} with $(z_0,\cdots,z_m)=(z_0,\cdots,z_m,0,0,\cdots)$. Then $L^1(p)\subset L^3(p)\subset\cdots$. Let $L^\infty(p)$ be the direct limit of this sequence, then we can consider $Y=L^\infty(p)$, and so $X=Y\times Y$. The cell structure of $L^{2n+1}(p)$, and its boundary relations are given as follows:

$$L^{2n+1}(p) = e_0 \cup e_1 \cup \cdots \cup e_{2n+1} ,$$

$$\partial e_{2i} = p e_{2i-1} , \quad \partial e_{2i+1} = 0 .$$

Y is a CW complex with one cell e_i in each dimension and the (2n+1)-skeleton is $L^{2n+1}(p)$. $C_n(X)$ is generated by $e_i \otimes e_{n-i}$ $(i=0,1,\cdots,n)$ and $\partial_n: C_n(X) \rightarrow C_{n-1}(X)$ is given as follows:

(1.5)
$$\partial_{n}(e_{2i-1} \otimes e_{2j-1}) = 0 ,$$

$$\partial_{n}(e_{2i} \otimes e_{2j-1}) = p e_{2i-1} \otimes e_{2j-1} ,$$

$$\partial_{n}(e_{2i-1} \otimes e_{2j}) = -p e_{2i-1} \otimes e_{2j-1} ,$$

$$\partial_{n}(e_{2i} \otimes e_{2j}) = p e_{2i-1} \otimes e_{2j} + p e_{2i} \otimes e_{2j-1} .$$

Then we have

(1.6) $H_{2n}(X;Z)$ is generated by $e_{2i-1}\otimes e_{2n-2i+1}$ $(i=1,\dots,n)$, $H_{2n-1}(X;Z)$ is generated by $e_{2i-1}\otimes e_{2n-2i}+e_{2i}\otimes e_{2n-2i-1}$ $(i=0,1,\dots,n)$ and every elements are order p. $H_0(X;Z)\cong Z$ generated by $e_0\otimes e_0$.

§ 3. Theorems

Let $\Omega_n(X,A)$ be n-dimensional oriented bordism group of (X,A). There is a natural homomorphism $\mu:\Omega_n(X,A)\to H_n(X,A;Z)$. Given $[B^n,f]\in\Omega_n(X,A)$, let $\sigma_n\in H_n(B^n,\partial B^n;Z)$ denote the fundamental homology class of B^n . Then μ is defined $\mu[B^n,f]=f_*(\sigma_n)\in H_n(X,A;Z)$. The image of μ is the subgroup of integral homology classes representable in the sense of Steenrod. μ has following properties which are proved by Conner-Floyd.

THEOREM 2. (Conner-Floyd) ([2], (7. 2))

The edge homomorphism $\Omega_n(X,A) = J_{n,0} \rightarrow E_{n,0}^{\infty} \rightarrow E_{n,0}^2 = H_n(X,A;Z)$ of the bordism spectral sequence coincides with the homomorphism $\mu:\Omega_n(X,A) \rightarrow H_n(X,A;Z)$.

THEOREM 3. (Conner-Floyd) ([2], (15. 1))

If (X, A) is a CW pair then the bordism spectral sequence is trivial if and only if $\mu: \Omega_n(X, A) \rightarrow H_n(X, A; Z)$ is an epimorphism for all $n \ge 0$.

THEOREM 4. (Conner-Floyd) ([2], (15. 2))

If (X, A) is a CW pair such that each $H_n(X, A; Z)$ is finitely generated and has no odd torsion, then the bordism spectral sequence is trivial.

Next theorem is useful to obtain the manifold with Z_p action.

Theorem 5. (Conner-Floyd) ([2], (46. 1))

Consider the generating set α_{2k-1} ; $k=1,2,\cdots$ for $\Omega_*(Z_p)$, p an odd prime, where $\alpha_{2k-1}=[T,S^{2k-1}]$. Then there exist closed oriented manifolds M^{4k} , $k=1,2,\cdots$, such that for each k, $p\alpha_{2k-1}+[M^4]\alpha_{2k-5}+[M^8]\alpha_{2k-9}+\cdots=0$ in $\Omega_*(Z_p)$.

§ 4. Proof of Theorem 1.

Case (a): p=2.

This case follows immediately from Theorems 3 and 4. Because each

 $H_n(B(Z_2 \times Z_2); Z)$ is finitely generated and has no odd torsion from (1.3).

Remark. $e_0 \otimes e_0$, $e_{2i-1} \otimes e_0$, $e_0 \otimes e_{2j-1}$ and $e_{2i-1} \otimes e_{2j-1}$ are explicitly represented by $RP^0 \times RP^0$, $RP^{2i-1} \times RP^0$, $RP^0 \times RP^{2j-1}$ and $RP^{2i-1} \times RP^{2j-1}$ respectively. $e_{2i-1} \otimes e_{2n-2i} + e_{2i} \otimes e_{2n-1-2i}$ is represented by $H_{2i,2n-2i}$ which is the subset in $RP^{2i} \times RP^{2n-2i}$ defined by the equation

$$x_0y_0 + x_1y_1 + \cdots + x_my_m = 0$$
,

where $m\!=\!\min(2i,\,2n\!-\!2i)$, and $(x_0,\,\cdots,\,x_{2i})$ and $(y_0,\,\cdots,\,y_{2n-2i})$ are the standard homogeneous coordinates in RP^{2i} and RP^{2n-2i} respectively. It is a smooth submanifold of codimension 1, and orientable because its first Stiefel-Whitney class $w_1\!=\!0$. Consider the intersection of $H_{2i,2n-2i}$ and 1 cycles of $RP^{2i}\times RP^{2n-2i}$ we can see that $i_*:H_{2n-1}(H_{2i,2n-2i};Z)\!\!\rightarrow\!\!H_{2n-1}(RP^{2i}\times RP^{2n-2i};Z)$ is non-trivial, that is onto.

Case (b): p an odd prime.

By Theorem 5 there exists compact orientable 2n dimensional manifold V^{2n} with $\partial V^{2n} = p S^{2n-1} \cup M^4 \times S^{2n-5} \cup M^8 \times S^{2n-9} \cup \cdots$ and an action of Z_n restricted to $M^{4k} \times S^{2n-4k-1}$ is $id \times T$. We can chose following classifying maps from the property of classifying space:

$$f_{2n}:V^{2n}/Z_p\longrightarrow Y=B(Z_p)$$
 such that $f_{2n}(V^{2n}/Z_p)\subseteq Y^{2n}$, $f_{2n}(M^{4k}\times S^{2n-4k-1}/Z_p)\subseteq Y^{2n-4k-1}$

and $f_{2n*}(\sigma_{2n}) = e_{2n}$, where σ_{2n} is fundamental homology class of V^{2n}/Z_p .

Let $f_0: V^0/Z_p \to Y^0$ and let $f_{2n-1}: S^{2n-1}/Z_p \to Y^{2n-1}$ be inclusion, then $f_{2n-1*}(\sigma'_{2n-1}) = e_{2n-1}$, where σ'_{2n-1} is fundamental class of S^{2n-1}/Z_p .

Next let $G = Z_p \times Z_p$ and choose classifying maps

$$g_j: S^{2j-1} \times S^{2n-2j+1}/G \longrightarrow X^{2n}$$
,
 $h_j: V^{2j} \times S^{2n-2j-1}/G \longrightarrow X^{2n-1}$,
 $k_j: S^{2j-1} \times V^{2n-2j}/G \longrightarrow X^{2n-1}$,
 $l_j: V^{2j} \times V^{2n-2j}/G \longrightarrow X^{2n}$

such that

$$\begin{split} & h_{j}(M^{4k} \times S^{2j-4k-1} \times S^{2n-2j-1}/G) \subseteq X^{2n-4k-2} \; , \\ & k_{j}(M^{4k} \times S^{2j-1} \times S^{2n-2j-4k-1}/G) \subseteq X^{2n-4k-2} \; , \end{split}$$

$$\text{ and } \quad l_{j} \Big(\big\{ \! (M^{4k} \times V^{2j} \times S^{2n-2j-4k-1} / G) \cup (M^{4k} \times S^{2j-4k-1} \times V^{2n-2j} / G) \! \big\} \Big) \! \subseteq \! X^{2n-4k-1}.$$

Then each fundamental class is mapped onto $e_{2j-1} \otimes e_{2n-2j+1}$, $e_{2j} \otimes e_{2n-2j-1}$, $e_{2j-1} \otimes e_{2n-2j}$ and $e_{2j} \otimes e_{2n-2j}$ by g_{j*} , h_{j*} , k_{j*} and l_{j*} respectively.

Let

$$\begin{split} &\alpha_{j}^{2n} = [g_{j},\,S^{2j-1} \times S^{2n-2j+1}/G]\,, & j = 1,\,\cdots,n\,, \\ &\delta_{j}^{2n} = [l_{j},\,V^{2j} \times V^{2n-2j}/G]\,, & j = 0,\,\cdots,n\,, \\ &\beta_{j}^{2n-1} = [h_{j},\,V^{2j} \times S^{2n-2j-1}/G]\,, & j = 0,\,\cdots,n-1\,, \\ &\gamma_{j}^{2n-1} = [k_{j},\,S^{2j-1} \times V^{2n-2j}/G]\,, & j = 1,\,\cdots,n\,. \end{split}$$

Then α_j^{2n} and δ_j^{2n} generate $\Omega_*(X^{2n},X^{2n-1})$ freely over Ω_* , and β_j^{2n-1} and Γ_j^{2n-1} generate $\Omega_*(X^{2n-1},X^{2n-2})$ freely over Ω_* , because $\mu:\Omega_*(X^r,X^{r-1}){\to} H_*(X^r,X^{r-1};\Omega_*)$ is an Ω_* isomorphism.

LEMMA.

C²-term of bordism spectral sequence of $X=B(Z_p\times Z_p)$ is generated over Ω_* by δ_0^0 , α_i^{2n} , β_0^{2n-1} , Γ_n^{2n-1} , and $(\beta_j^{2n-1}+\Gamma_j^{2n-1})$, $(n=1,2,\cdots;\ i=1,\cdots,n;\ j=1,\cdots,n-1)$ and B²-term is generated over Ω_* by $p\alpha_i^{2n}$, $p\beta_0^{2n-1}$, $p\Gamma_n^{2n-1}$ and $p(\beta_j^{2n-1}+\Gamma_j^{2n-1})$, $(n=1,2,\cdots;\ i=1,\cdots,n;\ j=1,\cdots,n-1)$.

Proof.

$$\begin{split} C^{\scriptscriptstyle 2}_{\, *} &= Ker(\partial: \varOmega_{*}(X^{\, r}, X^{\, r^{-1}}) {\longrightarrow} \varOmega_{*}(X^{\, r^{-1}}, X^{\, r^{-2}})) \\ &= \mu^{\scriptscriptstyle -1}(Ker \; \partial: H_{*}(X^{\, r}, X^{\, r^{-1}}; \; \varOmega_{*}) {\longrightarrow} H_{*}(X^{\, r^{-1}}, X^{\, r^{-2}}; \; \varOmega_{*})) \end{split}$$

and

$$\partial \mu(\delta_j^{2n}) = p e_{2j-1} \otimes e_{2n-2j} + p e_{2j} \otimes e_{2n-2j-1},$$

 $\partial \mu(\alpha_i^{2n}) = 0, \quad \partial \mu(\beta_i^{2n-1}) = p e_{2j-1} \otimes e_{2n-2j-1}$

and

 $\partial \mu(\varUpsilon_{j}^{2n-1}) = -p e_{2j-1} \otimes e_{2n-2j-1}$ therefore C^2 -term follows.

$$\begin{split} B_*^2 &= \operatorname{Im}\left(\partial: \mathcal{Q}_*(X^{r+1}, X^r) {\longrightarrow} \mathcal{Q}_*(X^r, X^{r-1})\right) \\ &= \mu^{-1} \operatorname{Im}(\partial: H_*(X^{r+1}, X^r; \mathcal{Q}_*) {\longrightarrow} H_*(X^r, X^{r-1}; \mathcal{Q}_*)) \end{split}$$

and $\mu^{-1}\partial(e_{2j}\otimes e_{2n+1-2j}) = p\alpha_j^{2n}$, $\mu^{-1}\partial(e_{2j-1}\otimes e_{2n-2j+2}) = -p\alpha_j^{2n}$, $\mu^{-1}\partial(e_{2j}\otimes e_{2n-2j}) = p(\mathcal{T}_j^{2n-1} + \beta_j^{2n-1})$, $\mu^{-1}\partial(e_0\otimes e_{2n}) = p\beta_0^{2n-1}$, $\mu^{-1}\partial(e_{2n}\otimes e_0) = p\mathcal{T}_n^{2n-1}$ and $\mu^{-1}\partial(e_{2j-1}\otimes e_{2n+1-2j}) = 0$, so we have B^2 -term.

Next theorem essentially is the same as the case p=3 proved by Burdick [1].

Theorem 6. The bordism spectral sequence of $X = B(Z_p \times Z_p)$ is as follows:

$$E^2 \cong \cdots \cong E^5; \quad E^6 \cong \cdots \cong E^{\infty}$$

$$\begin{split} E^{\infty} & \text{ is generated by } \delta_0^0, \ \alpha_i^{2n}, \ \beta_0^{2n-1}, \ \varUpsilon_n^{2n-1} \ (n=1,2,\cdots,i=1,2,\cdots,n), \ \{(\beta_1^{2n-1}+\varUpsilon_1^{2n-1}) + (\beta_3^{2n-1}+\varUpsilon_3^{2n-1}) + \cdots\}, \ \text{ and } \ \{(\beta_2^{2n-1}+\varUpsilon_2^{2n-1}) + (\beta_4^{2n-1}+\varUpsilon_4^{2n-1}) + \cdots\} \ \text{ with relations } \\ [M^4][\alpha_i^{2n}-\alpha_{i-2}^{2n}] = 0, \ \text{ and every element except } \delta_0^0 \ \text{ has order } p. \end{split}$$

Proof.

Every elements of $H_m(X; Z)$ have order p (odd prime). Ω_n is free group

if $n \equiv 0 \pmod{4}$ and 2-torsion groups if $n \not\equiv 0 \pmod{4}$.

$$E_{m,n}^{\scriptscriptstyle 2} = H_m(X\,;\, \varOmega_n) = H_m(X\,;\, Z) \otimes \varOmega_n + H_{m-1}(X\,;\, Z) * \varOmega_n \;.$$

Therefore we have $d^2=d^3=d^4=0$, so $E^2\cong\cdots\cong E^5$. Now recall the definition of $d_{m,n}^r$:

where i, j, i', j' are inclusion maps and $\partial_1, \partial_2, \partial_3$ are boundary homomorphisms of triple, then there exist homomorphism Ψ such that $\Psi = \partial_1 \cdot j_* = i'_* \cdot \partial_2$, every triangles are commutative.

Let $C_{m,n}^r = Im \ j_*$, $C_{m,n}^{r+1} = Im \ j_*$, $B_{m-r,n+r-1}^{r+1} = Im \ \partial_2$ and $B_{m-r,n+r-1}^r = Im \ \partial_3$. Then the definition of $d_{m,n}^r$ is composition of $d_{m,n}^r : E_{m,n}^r = C_{m,n}^r / B_{m,n}^r \xrightarrow{b_-} C_{m,n}^r / C_{m,n}^{r+1} \xrightarrow{\partial_1} C_{m,n}^r / C_{$

For $j = 1, \cdots, n-1$ let N_j^{2n-1} be the manifold obtained from $V^{2j} \times S^{2n-2j-1} \cup S^{2j-1} \times V^{2n-2j}$ by joining $pS^{2j-1} \times S^{2n-2j-1}$ in $\partial (V^{2j} \times S^{2n-2j-1})$ to $-pS^{2j-1} \times S^{2n-2j-1}$ in $\partial (S^{2j-1} \times V^{2n-2j})$.

$$\begin{array}{ll} \text{Then} & \partial N_j^{2n-1} \!=\! M^4 \!\times\! S^{2j-5} \!\times\! S^{2n-2j-1} \!\cup\! -M^4 \!\times\! S^{2j-1} \!\times\! S^{2n-2j-5} \\ & \cup M^8 \!\times\! S^{2j-9} \!\times\! S^{2n-2j-1} \!\cup\! -M^8 \!\times\! S^{2j-1} \!\times\! S^{2n-2j-9} \!\cup\! \cdots. \end{array}$$

There is an induced action of $G = Z_p \times Z_p$ on N_j^{2n-1} . Choose classifying maps $\phi_j : N_j^{2n-1}/G \longrightarrow X^{2n-1}$ such that $\phi_j(\partial(N_j^{2n-1}/G)) \subseteq X^{2n-6}$ and such that

$$N_j^{2n-1}/G \xrightarrow{\phi_j} X^{2n-1}$$

$$\downarrow h_j \cup k_j$$

$$(V^{2j} \times S^{2n-2j-1}/G) \cup (S^{2j-1} \times V^{2n-2j}/G)$$

commutes up to homotopy.

Then $\phi_{j*}(\sigma) = e_{2j} \otimes e_{2n-2j-1} + e_{2j-1} \otimes e_{2n-2j}$, where σ is a fundamental class of

$$\begin{split} N_j^{2n-1}/G. \quad \text{Thus } & [\phi_j, \, N_j^{2n-1}/G] = \beta_j^{2n-1} + \varUpsilon_j^{2n-1} \quad \text{in } \ \Omega_{\bigstar}(X^{2n-1}, \, X^{2n-2}). \\ \text{By the definition of } & d^5, \, d^5(\beta_j^{2n-1} + \varUpsilon_j^{2n-1}) = [M^4] [\alpha_{j-2}^{2n-6} - \alpha_j^{2n-6}]. \quad \text{Therefore Ker} \\ d^5 \quad \text{is generated by } & \delta_0^0, \, \alpha_i^{2n}, \, \beta_0^{2n-1}, \, \varUpsilon_n^{2n-1} \quad \text{and } \{(\beta_1^{2n-1} + \varUpsilon_1^{2n-1}) + (\beta_3^{2n-1} + \varUpsilon_3^{2n-1}) + \cdots\} \\ \text{and } & \{(\beta_2^{2n-1} + \varUpsilon_2^{2n-1}) + (\beta_4^{2n-1} + \varUpsilon_4^{2n-1}) + \cdots\}. \end{split}$$

Let K_1^{2n-1} be the identification manifold obtained from

$$V^2 \times S^{2n-3} \cup S^1 \times V^{2n-2} \cup V^6 \times S^{2n-7} \cup S^5 \times V^{2n-6} \cup V^{10} \times S^{2n-11} \cup \cdots$$

by identifying pair-wise of boundary components of this manifold.

Then K_1^{2n-1} is an orientable closed (2n-1)-manifold with induced natural action of $G=\mathbb{Z}_n\times\mathbb{Z}_n$.

Let $\Psi_1: K_1^{2n-1}/G \to X^{2n-1}$ be a classifying map, then $[\Psi_1, K_1^{2n-1}/G] = (\beta_1^{2n-1} + \gamma_1^{2n-1}) + (\beta_3^{2n-1} + \gamma_3^{2n-1}) + \cdots$ in $\Omega_*(X^{2n-1}, X^{2n-2})$. Likewise construct K_2^{2n-1} from

$$V^4 \times S^{2n-5} \cup S^3 \times V^{2n-4} \cup V^8 \times S^{2n-9} \cup S^7 \times V^{2n-8} \cup \cdots$$

and $\Psi_2: K_2^{2n-1}/G \to X^{2n-1}$ with

$$[\varPsi_{2}, K_{2}^{2n-1}/G] = (\beta_{2}^{2n-1} + \gamma_{2}^{2n-1}) + (\beta_{4}^{2n-1} + \gamma_{4}^{2n-1}) + \cdots$$

Therefore every generator of E^6 can be represented by a closed manifolds, so $d^6 = d^7 = \cdots = 0$ and hence $E^6 \cong \cdots \cong E^{\infty}$.

Proof of Theorem 1.

The classes listed in Theorem 6 really belong to $E_{*,0}^{\infty}$. Therefore from Theorems 2 and 6 $e_0 \otimes e_0$, $e_0 \otimes e_{2j-1}$, $e_{2i-1} \otimes e_0$ and $e_{2i-1} \otimes e_{2j-1}$ are represented by $V^0 \times V^0/G$, $V^0 \times S^{2j-1}/G$, $S^{2i-1} \times V^0/G$ and $V^{2i-1} \times V^{2j-1}/G$ respectively.

$$(e_2 \otimes e_{2j-1} + e_1 \otimes e_{2j}) + (e_6 \otimes e_{2j-5} + e_5 \otimes e_{2j-4}) + \cdots$$
 and $(e_4 \otimes e_{2j-3} + e_3 \otimes e_{2j-2}) + (e_8 \otimes e_{2j-7} + e_7 \otimes e_{2j-6}) + \cdots$ are

represented by K_1^{2j+1}/G and K_2^{2j+1}/G respectively.

The proof of Theorem 1 is completed.

Department of Mathematics, Hokkaido University

References

- R. O. BURDICK: Manifolds fibered over the circle, University Microfilms, Inc., Ann Arbor, Michigan (1966).
- [2] P. E. CONNER and E. E. FLOYD: Differentiable Periodic Maps, Springer-Verlag, Berlin (1964).
- [3] N. E. STEENROD: Cohomology operations, Princeton Univ. (1962).
- [4] R. THOM: Quelques propriétés globales des variétés différentiables, Comm. Math. Helv. 28 (1954), pp. 17–86.