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Introduction. 

This paper deals with the perturbation problems of closed linear operators 

A and B in a Banach space. We give in ~ 1 an elementary criterion in order 

that A + B be again closed (See Theorem 1. 2). We apply this result to 
perturbation problems of two accretive operators A and B and obtain a 

criterion in order that 一(A+ B) generate a strongly continuous semi-group 
of contraction operators (See Theorem 2.7). However, we should note that 
the essence of our criterion was discovered by Trotter. In ~ 3 we develop 

a Hilbert space theory and obtain several su伍cient conditions, covering 
Nelson's condition (See Theorems 3.7 and 3.10). 

~ 1. A criterion for c10sedness of A + B. 

Consider two linear operators A and B in a Banach space X. We 

define a third operator A + B by 

(1. 1) (A + B)x = Ax+ Bx for x ε D(A+B) = D(A)nD(B) .1) 

We exclude from our consideration the trivial case D(A)nD(B)=O. 

Now we pose the following 

PROBLEM 1. 1. Assume that A and B be closed. When is A + B also 
closed? 

The following result is our partial answer to this problem. 

THEOREM 1. 2. Assume that the resolvent set of ll, P(A), be nonｭ
oゆわI and that there be a À εC such that ﾀ + B is of closed range and inverｭ
tible. Let-με P(A). Then the following two conditions are equivalent: 

(1. 2) 

(1. 3) 

A + B is closed and -με P(A+B); 

-1εP(B(μ十At 1)

ホ) Partly supported by the Sakkokai Foundation. 
1) D(T) standδfor the de五nition domain of a linear operator T in X. We shall denote 
by R¥T) the range of T , and by N(T) the null-space of 1'. 
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Here B(μ + A)-1 is a closed φerator with D(B(μ+ A)-I) = {XEX; (μ +A)一lX

ε D(B)} . 

REMARK 1. 3. This theorem is quite formal, but it enables us to reduce 
the Problem 1. 1 to a ‘better' behaving operator B(μ +A)一 1 In later sections, 
we apply it to perturbation problems of (say) accretive operators. 

In the rest of this section, we are going to prove Theorem 1. 2. For 
later convenience, the proof is devided into several propositions. First, we 
verify that B(μ + A)-1 is closed so that the statement (1. 3) has a meaning. 

Namely, we prove 
PROPOSITION 1. 4. Under the aぉumptions of Theorem 1. 2, B(μ +A)-1 

is a closed φerator. 

PROOF. Let x"ED(B(μ + At1) be such that x"• x and B(μ +A)-IX，.→ 
y for some x and y in X. Let l be as in Theorem 1. 2. Then, since 
(μ + A t 1 is bounded, (え +B)(μ +A)-IX"→え(μ +A)-IX+ Y. Since R(え+B)1) is 

closed, there is a z ε D(B) such that l(μ +A)一 l x+ y =(l+B)z. On the other 

hand, l+B being invertible, (l+B)-I: R(l 十 B)→X is bounded by the closed 

graph theorem. It follows that (μ +A)IX"→z ， whence (μ +A)-IX=Z. In 

other words, xε D(B(μ 十 A)← 1) and (l+B)(μ +A)← lX=(え +B)z=l(μ +A)-IX + Y.

Thus, B(μ +A)一 lX=y ， and the proposition is proved. Q.E.D. 

PROPOSITION 1. 5. D(B(μ +A) 一 1)=(μ +A)(D(A)nD(B)) ， 一με P(A).

PROOF. Let xε D(B(〆 +A) 1). Then (μ +A)← lX ε D(A) n D(B). That 
is, xE (μ +A)(D(A)nD(B)). Conversely, let xE(μ +A)(D(A)nD(B)). Then 
(μ +A)一lX ぞ D(B)nD(A). That is, xε D(B(μ +A)-I). Q.E.D. 

PROPOSITION 1. 6. R(μ+A+B)=R(I+B(μ +At 1)， -με P(A). 

PROOF. Let z εR(μ + A + B). Then there is a xε D(A)nD(B) such 

that z= μx+Ax+Bx. Let y=px+Ax. Then yED(B(μ +A)一 1) and z= ν 

+B(μ +A)-ly. This shows R(μ +A+B)cR(I+B(μ + A) 1). Conversely, let 
zER(I+B(μ + A)-I). Then there is a y ε D(B(μ +A)一 1) such that z= ν+ 

B(μ +A)一 ly・ Let x=(μ +A) 一 ly . Then xε D(A)nD(B) and z=px+Ax+ 

BXER(μ +A+B). This shows R(I+B(μ +A)-I)cR(μ +A+B). Q.E.D. 

PROPOSITION 1. 7. Let 一με P(A). μ +A + B is invertible if and only 
if I+B(μ + A)-1 is invertible. 

PROOF. Assume thatμ + A + B be invertible. Let y ε D(B(μ +A)-I) be 

such that y+B(μ +A)--ly =O. Set x=(μ +A)-ly. Then xε D(A) n D(B) and 
μx+Ax+Bx=O. It follows that x=O and so y=O. Now suppose that 

I+B(μ +A)一 1 be invertible. Let x ε D(A) 門 D(B) be such thatμx+Ax+ 

Bx=O. Set y=(μ +A)ιThen y ε D(B(μ +A) 1) and y+B(μ十 A)~ly=O.

Thus, y=O and 80 x=O. Q.E.D. 
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REMARK 1. 8. 1n Propositions 1. 5-1. 7, our arguments relied only on 
algebraic properties. 1n other words, we did not employ in an essential way 
the topological requirements on A and B such as closedness of their graphs. 

PROPOSITION 1. 9. lf-1 ε P(B(μ 十 A)-I) ， then A + B is closed. 

PROOF. Let Xn ε D(A) n D(B) be such that Xn• X and Zn= μふる十 AXn 十

BXn• Z for some X and Z in X. Let 払ι=(μ +A)xn. Then Yn ε D(B(μ 十 At 1)

and Zn = {1十 B(μ + A)~I} (p.十 A)xn = {l +B(μ +At 1}Yn ・ Since {1 十 B(μ+

At1} 1 is bounded, Yn→ν = {l+B(μ +A) 1} -IZ. We see thusνε D(B(μ+ 

A) 1). We also have that Xn• X and Yn=(μ 十 A)ぬ→y. Since A is closed, 
it follows that Xε D(A) and ?I =(μ + A)x. Hence, X=(μ +At1νε D(A) 円 D(B)，

a吋 (μ +A+B)x= {1+B(μ +A)一 1}ν = {1+B(μ +A)← 1} {1 + B(μ +A)一 1} 一 l Z =Z.

Thus, closedness of A十B is proved. Q. E. D. 

Now we proceed to a 

PROOF of Theorem 1. 2. 

(i) (1. 2) implies (1. 3).μ+A+B is invertible and R(μ +A+B) = X. 
Thus, by Propositions 1. 6 and 1. 7, 1+ B(μ + At1 is invertible and 
R(I+B(μ +At 1)=X. Then, by Proposition 1. 4, 1十 B(μ +At1 is closed 

and so is {1十 B(μ +At1} -1. Hence, by the closed graph theorem, 
{1+B(μ + A)-I} -1 is bounded and -1 E P(B(μ+ At1). 

(ii) (1. 3) implies (1. 2). 1+ B(μ 十 A) 1 is i町ertible and R(1 + B(μ +A) 1) 

= X. Then, by Propositions 1. 6 and 1. 7， μ + A + B is invertible and R(μ 十

A + B) = X. Then , by Proposition 1. 9 ， μ +A 十 B is closed, and so is (μ 十

A + B)-1 Using again the closed graph theorem, (μ + A + B)-1 is bounded 

and -με P(A+B). Thus the theorem is proved. Q.E.D. 

REMARK 1. 10. 1n the statements of Theorem 1. 2, the statement 

(1. 2) is equivalent to the following: 

(1. 2')μ+ A + B is invertible and R(μ 十 A+B)= X.

1n fact, (1. 2') implies (1. 3) and so (1. 2). 

REMARK 1. 11. The requirement that X be a Banach space is not 

essential as can easily be seen from our proof of Theorem 1. 2. For any 

topological linear space where the closed graph theorem is valid, Theorem 
1. 2 would hold good. 

~ 2. Applications to perturbation problems of accretive operators. 

We begin by introducing a semi-inner product in a Banach space X in 

order to de:fine accretivity (or diss争ativity) of operators in X. Then we 

state the well-known characterization of the in五nitesimal generators of strongly 
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continuous semi-groups of contraction operators in terms of thus def�ed 

accretivity of operators. Using these terminologies and Theorem 1. 2, we 
give a criterion for perturbations of accretive operators. We then apply our 

criterion to particular cases to re-discover or to obtain more practical su伍cient

condition. 

PROPOSlTION 2.1. (Lumer [4]). There is a ma，ρρing [,]: 

(2. 1) XxX ぅ (x， y)一→ [x， y] E C 

with the following properties: 

(2.2) 

(2. 3) 

(2. 4) 

and 

(2. 5) 

[x+ ν， z] = [x, z] + [y , z] for any x , y， 氏 X;

[Àx , y] = À[x， ν] for any ÀεC and x， 戸X;

[x, y] 1 壬 JJxJJJJyJJ 戸r a砂川εX

[x, x] = JJXJJ2 

[x, y] is called a semi-inner product of x and y (compatible with the norm 
of X). 

PROOF. See [4]. [5] or [10]. Q.E. D. 

REMARK 2. 2. If X is a Hilbert space, there is a unique semi-inner 
product compatible with the norm of X. This unique semi-inner product is 

nothing but the inner product of X. 

In the rest of this section we only consider a 五xed semi-inner product 

compatible with the norm of X unless the contrary is explicitly stated. 

DEFI~ITION 2 .3. (Lumer-Phillips [5]). A linear operator T in X is 

said to be accretive if 

(2.6) Re[Tx, x] 孟 0 for all xED(T). 

T is called dissipative if -T is accretive. 

PROPOSITION 2. 4. (Lumer-Phillips [5]). If T 白 a densely defined accreｭ

tive operator, tlzen T is closable. The closuγe T-of T is accretive in a 
semi-inner product (possibly di.D鑽ent from the original but compatible with 
the ね01"悦 of X). 

PROOF. See Lumer-Phillips [5]. p. 693-694. Q.E.D. 

Note that for a closed accretive operator T , À 十 T is invertible and of 
closed range for any Rd> O. 

The following result is well-known. 

PROPOSITION 2. 5. (Lumer-Phillips [5]). Let T be a densely defined 
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closed operator in X. Then the following three conditions are equivalent: 

(2. 7) -T generates a strongly continuous semiすroψ of contraction ψ炉

ators in X; 

(2.8) T お accretive and μεP( -T) for some μ， Reμ>0; 

(2.9) T is accretive and μP( -T) for any μ， Reμ>0. 

Now we state our problem of this section. 

PROBLEM 2.6. Assume that A and B be two closed operator in X with 

D (A) n D (B) dense in X. Assume furthermore that -A generate a strongly 
continuous semi-group of contraction operators in X. Then the question is: 
When does -(A + B) generate a strongly continuous semi-group of contracｭ

tion operators in X? 

The following is our answer to this problem, by means of Theorem 1. 2. 

THEOREM 2. 7. Let -A be the infinitesimal genera拘r of a strongly 

continuous sem匂mゆ of contraction operators in X. Let B be a closed 
operator in X such that D(A)nD(B) is dense in X and that A+B is accreｭ

tive. Then the following thr・'ee conditions are mutually equivalent: 

(2.10) A+B is closed and -(A+B) generates a strongly continuous semiｭ

group of contraction opera如何 in X; 

(2. 11) 

(2. 12) 

-1ε P(B(μ+AJ- l) for some μ， Reμ>0; 

-lEP(B(μ +At 1) 戸f 仰はeμ>0

REMARK 2.8. Close results to this are known (e. g., Trotter [9]. See 
our lntroduction). Höwever, it seems that a result in this form has never 
been stated explicitly. Nevertheless, an exact statement like this may permit 
us a new scope. 

PROOF of Theorem 2. 7. Proposition 2.5 shows the equivalence of (2.10) 

with each of the following two conditions: 

(2. 13) με P(A+B) for someμ， Reμ>0; 

~1~ -με P(A+B) for anyμ， Reμ>0. 

By Theorem 1. 2, (2. 13) is equivalent to (2. 11) and (2. 14) to (2. 12). Q. E. D. 
We state some supplements to our Theorems 2. 7 and 1. 2. This is a 

slight generalization of Trotter's lemma [9]. (cf. Kato [2]). 

COROLLARY 2.9. Let A and B be two closed operators in X such 

that D(A) 円 D(B) is dense in X. Assume that -A generate a strongly 
continuous semi-group of contraction operators in X and that A十B be accre・
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tive. Then the following tωo conditions a何 equivalent.

(2. 15) The closure 一(A+Bt ザー(A+ B) generat，ω a strongly continuｭ

。ω semz-grouρ of contraction φerators in X; 

(2. 16) -1ε P(B(μ 十 A)-I) U í: c(B(μ +A)-I) for some μ， Reμ>0. 

Here L.c(B(p 十 A)-I) denotesthe set {ﾀE C; ).-B(μ + At1 has a densely deｭ
fined inverse, closed but not bounded}. 

PROOF. We only need to discuss the case when R(μ +A+B) is dense 

in X but not identical with X. This happens if and only if -1ε 
L.c(B(μ +A)一 1) by virtue of Propositions 1. 6 and 1. 7. Q. E. D. 

In the rest of this section, we con白le ourselves to the case D(A)cD(B). 

First we prepare some terminologies. 

DEFl�'!ITION 2. 10. (Kato [2]). Let A and B be two linear operators 

with D(A)cD(B). B is said to be relatively bounded with respect to A (in 

short, A-bounded) if there are positive constants a and b such that 

(2. 17) IIBxl1 豆 aIlxll + b 11 A.xll for all xε D(A). 

If X is a Hilbert space, (2. 17) is equivalent to: 

(2. 18) IIBx Il 2 ;;玉 a/llxl1 2+ b/IIAxI12 for all xE D(A) 

with some positive constants a1 and b1 ・

DEFINITION 2.11. (Kato [2]). The lower bound bo of all possible b in 

(2.17) is called the A-bound of B. If X is a Hilbert space, bo coincides with 
the lower bound of all possible b1 in (2. 18). 

If both A and B are closed, then D(A)cD(B) is equevalent to that B 
is A-bounded. This can be seen by the closed graph theorem. Furthermore, 
if P(A) 弓とり， then B(μ +A) 1 , με P(A)， is a bounded operator. Then the 

relation between the A-bound of B and the norm of B(μ +A)一 1 is given by 

the following 

PROPOSITIO;..r 2.12. Assume that A and B be closed with D(A)cD (B). 

Let bo be the A-bound of B. 1f -A  genera化s a strongly continuous semiｭ

groψ ザ contraction 0ρerators in X , then we have 

(2. 19) b。豆 lim inf IIB(え十 At1 11 豆 limsup IIB (J..十 A)一 111 豆 2bo ・

1n ρarticular， if X is a Hilbert space, then 

(2. 20) bo = lim IIB(). + A)一 111 . 

1n (2. 19) and(2.20) the limits are taken for ).→∞. 
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The proof is straightforward and so omitted. 

Using this proposition, we prove the following slight generalizations of 
Nelson's and Yosida's results as corollaries to Theorem 2.7. 

COROLLARY 2. 13. (Nelson [6]). Assume that A and B be two closed 

operators in X with D(A.)cD(B) such that A+B is accretive. 1f-A 

generates a strongly continuous semi-groψ of contraction 0ρerators in Xωld 

if the A-bound bo of B is less th仰 1/2 ， then A + B is closed ωld 一 (A 十 B)

genera的 a strongly continuous s仰i-group of contraction operators. 1f X 

is a Hilbert 乎ace， the conclusion is true when bo< 1. 

PROOF. Since bo< 1/2, there is a ﾀ>O such that IIB (,{ + At111 < 1. This 
is true when bo< 1 if X is a Hilbert space. Thus -1ε P(B(À+At 1) and 

the corollary follows from Theorem 2.7. Q. E. D. 

COROLLARY 2. 14. (Yosida [11]). Assume that A and B be two closed 

Qρerators in X with D(A)cD(B) such that A+B is accretive. 1f -A  genｭ

erates a strongly continuous semiてgroup of contraction operators and if 

D(Aα) cD(B) for some α， 0<α<1， then A+B is closed and -(A+B) 

generates a strongly continuous semiすroψ of contraction opera如何. In the 

above, Aα denotes the jトactional power of A (See for example Yosiぬ [10]

or・ Komatsu [3]). 

PROOF. For any À>O , IIB(À 十 A)-111 = IIB(l 十 A) “ (1+A)"(À+At 1 11. By 

the assumption, IIB(l 十 A) つ1< ∞. On the other hand, 11(1 十 A)(え +A)111 豆
11 {(1+A)(À+At 1} α1111 (社 A)α111 豆 M，{" 1 since (1 + A)(λ + A) 1 is uniformly 

bounded for ﾀ> 1. Hence, lim IIB(À 十 A)-111=0 (À→∞) and the corollary reｭ

duces to Corollary 2. 13. Q. E. D. 

For the sake of completeness, we state Gustafson's result. 

COROLLARY 2. 15. (Gustafson [1]). Assume that A and B be two closed 

accretive 0ρerators in X with D(A)cD(B). 1f -A  generat白 a strongly 

continuous semi-groψ of contraction 0.戸m如何 in Xωld if the A-bound bo 
of B is less than 1, then A + B is closed ωld -(A + B) generates a strongly 
continuous semi-groψ ザ contraction operators. 

PROOF. See Gustafson [1] p. 337. Q.E.D. 

Now we introduce another de五nition.

DEFINITION 2. 16. (Kato [2]). Let A and B be two linear operators in 

X with D(A)cD(B). B is said to be relatively compact with respect to A 

(in short, A・compact) if for any sequence {Xn} in D(A) with both {llxnll} 
and {IIAxnll} bounded, {Bxn} contains a convergent subsequence. 
A-compactness of B implies A・boundedness of B. In particular, if both 
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A and B be closed and P(A)手。， then A・compactness of B is equivalent to 
compactness of B(μ + A)-1 for ーμε P(A).

The following is another corollary to Theorem 2.7. 

COROLLARY 2. 17. Assume that A and B be two closed opera如何 in X 

切なh D(AcD(B) such that A+B is accretive. 1f -A generates a strongly 

continuous semi-groψ of contraction operators and if B is A・C01ψacム then

A + B is closed and 一(A+ B) generates a strongly continuous semi-group ザ
contraction 0，ρerators. Furthermore, A + B has compact resolvents if and 
only if A has compact resolvents. 

PROOF. Since B(μ +A)-\ Reμ>0， is compact, it su伍ces to show that 

I十 B(μ +A)一 1 is invertible. By Proposition 1. 7, we only need to check that 
μ +A+B， Reμ>0， is invertible. Let xε D(A) be such thatμx+Ax+Bx=O. 

Then, by accretivity of A + B , 0 = [μx+Ax+Bx， x] 孟ReμIlx11 2•

It follows that x=O, and hence， μ +A 十B is invertible. Now note μ 十A+B

=(1+B(μ +A)一 1) (μ + A). Since both sides are boundedly invertible, we have 
(μ +A+B)-1 = (1 +B(μ +A)一 1)一 1(μ +A)→ 1 and 

(μ +A)-1 = (μ 十 A+B)-I(1+B(μ +A)-I). If dim X <∞ the last statement is 

trivial. If dim X =∞， then (1 +B(μ +A)一 1) 1 is not compact. Hence the 

corollary is proved. Q. E. D. 

REMARK 2. 18. Our proof of Corollary 2. 13 is essentially the same as 

Nelson's original. This is an example that Theorem 2.7 has implicitly been 

employed. Our proof of Corollary 2.14 is a little di妊erent from Yosida's 

original proof. Corollary 2.17 follows also from Kato's stability theorem. 

(Kato [2]). 

~ 3. Further discussions in the case w hen X is a Hilbert space. 

If X is a Hilbert space, things are much simpli五ed. For example any 
semi-inner product compatible with the norm of X is the inner product く，) 
of X. Thus the notion of accretivity becomes easier to handle. In this 

section, we intend to transcribe the results of the previous section, using 
the numerical range of an operator. 

DEFINITION 3. 1. Let T be a linear operator in a Hilbert space 

X. The set 

(3. 1) W(T)= {くTx， x); xED(T), IIxll=l} 

is called the numerical range of T. 

We enumerate some properties of the numerical range (See, e. g., Kato 
[2]). 
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PROPOSITlON 3. 2. (Hausdorff・Stone. See Stone [8]) W(T) is a convex 

set in the COJη'Plex plane. 

Thus if we denoteby r=r(T) the closure of 羽T (T), then C -r has 
at most two components. 1n the following proposition, nul S = dim N (S), 
and def S=dim (XjR(S)), for an operator S. nul S is called the nullity of 
S, and def S the de五ciency of S. 
PROPOSITION 3. 4. (Kato [2]). Let T be a closed operato久 Then， for 

μ Er(T)， T-μ has closed range, nul (T -p) = 0 and def (T -μ)=const. in 
each ωmponent ofC-F(T). 1f def (T-μ)=0， then με P(T) and II(μ -T)一 111

壬 1jdist (μ， r). 1n ρarticular， if T is bounded, then C-F(T)cP(T). 
As we have mentioned at the beginning of this section the notion of 

accretivity in a Hilbert space is easier to handle. The following statements 

give a summary to this point. 

DIFINITION 3. 4. A linear operator T is said to be accretive if 

(3.2) Re <Tx, x) ~ 0 for x ε D(T). 

T is said to be m-accretive if T is closed, accretive and P( -T) contains 
all μ， Reμ>0. 

PROPOSITION 3. 5. (Kato [2]). An m-accretive ~ρ'erator is maximal in 

the sense that T does not permit any 1うroper accretive extension of T. T 

is necessarily densely defined. 1n 1うarticular， T is m-accretive if and only 
if -T generates a strongly continuous semi-group of contraction operators 
in X. 

1n the rest of this section we confine ourselves to the case D(A)cD(B). 

Before stating our first result, we need to make a supplementrary remark 
to Corollary 2. 9 in the case when X is a Hilbert space. 

PROPOSITION 3.6. Let A and B be two closed operators 叩ith D(A) 

cD(B). Assume that A be m-accretive and A十B be accretive. Then the 

following three conditions are mutually equivalent. 

(3. 3) The closure (A + Bt of A + B is not m-accretive; 

(3. 4) -1 is an eigenvalue of (B(μ +A)一1)* for some μ， Reμ>0; 

(3.5) -1 ゐ an eigenvalue of (B(μ +At1)* for any μ， Reμ>0. 

PROOF. (3.3) is equivalent to that R(μ + A + B) is non-dense in X for 

someμ， Re μ>0. And if R(μ + A + B) is non-dense in X for someμ， 

Re μ>0， then R(μ + A + B) is not dense in X for anyμ， Re μ>0. On the 
other hand, if R (μ + A + B) is non-dense in X , then so is R (1 + B(μ+ At1), 
by virtue of Proposition 1. 6. -1 is an eigenvalue of (B(μ +A)一1)* if and 



On 似γtUI'もatio抗 01 closed oþeγαtoγs i托 a Ba:抗α~ch s�ace 59 

only if R(I +B(μ + A)-I) is not dense in X. Thus the proposition is proved. 
Q.E.D. 

We have a su伍cient condition in order that the closure (A + B)-be 

m-accretive. Namely, 
THEOREM 3. 7. Let A and B be tωo closed opera如何回ith D(A)cD(B). 

Assume that A be m司αccretive and A + B be accretive. If, for some p, 
Reμ> 0, -1 is not an interior ρoint ザ W(B(μ +A)一 1) ， then (A+B)-is mｭ

accretive. In particular, if -1 お not in the closure of W(B(μ +A)-I)， then 

A + B is m-accretive. 

PROOF. We are going to prove that if (A+Bt is not m・accretive， then 
for anyμ， Re μ> 0, -1 is an interior point of W (B(μ +A)-I). Since (A+B)ー

is not m-accretive, -1 an eigenvalue of (B(え +A)-I)* for any 2, Re え >0.
Hence there is an eigenvectorν(2)εX such that Ily(2)11 = 1 and 

(3.6) (B(え十 A)-I)川)+ν(え)=0

On the other hand, by the resolvent equation, 

B(2+A)一1_B(μ 十 A)-I=(μ -2)B(2+A)-I(μ +A)1

for anyλμ， Re 2>0, Re μ>0. Taking the adjoints, we have 

(3.7) (B(え +A) ヤ (B(μ +A) γ ニ(戸 -Â)(戸 +A*) I(B(え +A) う

Here note that A* is also m-accretive. Now applying (3.7) to y(え)， and using 

(3. 6), we have 

(β3.8剖) ν叫州(υω』幻)+ (同凶B町(伽μ +A)-1う)*y川(何』ト)=(伊H 一え幻抑)(畑(伊戸十 A*竹汁)γ一-ly(

Take the inner product 0ぱf (β3.8剖) with ν(ω』川). Then 

(3.9) 1 +<B(μ +A)-1ν (2) ， y(2)) = (μ-2)<(μ +A)-ly(2) ， γ(2)) . 

Now choose 

(3.10) 2 =μ+ν ， ν =reio ， O<r<1μ1 ，一π 豆 θ 壬 π.

Then e 一向 (1+ <B(μ +A)-ly(え)， y(2))) = -rく(μ +A)-ly(ぇ)， y(え)) . It follows 

that, for anyθ ， -7r豆 0 豆7r， there is a 2 such that 

(3.11) Ree 柑 (1+ <B(μ 十 A)-1γ(え)， ν (2)))<0 

In fact, set z = (μ +A)-1ν(え). Then z学 0， and 

Re く (μ +A)-ly(2) ， ν (2)) = Re くz ， (μ +A)z) 

=(Re μ) lI zI1 2 +Re <z , Az) 

~ (Re [1) IlzW>O. 
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Since W(B(μ + A) 1) is convex, and -1 E W (B(μ +A)一 1) (takeえ =μin (3.9)), 
(3. 11) means that -1 is an interior point of W (B(μ ← A) 1). 1n fact, this 
is due to the following Lemma 3. 8. Thus the theorem is proved. Q. E. D. 

LEMMA 3. 8. Let K be a convex set in the complex 1ぅlane. Assume 

that 0ε K. 1}; for each θ， -1τ壬O 三五7r， there is a wE K such that Re {♂τ:v} <0 , 
then 0 is an intel旬r point of K. 

PROOF. If 0 were not an interior point, then there would be a 1;εc 
such that K c {zモ C}; Re <z, 0孟 O}. Q.E.D. 

REMARK 3. 9. The above theorem shows in particular that if we have 

(3. 10) jjBxjj2 豆 αjjxjj2+ jjAxjj2 , a>O , xE  D(A) , 

then (A + Bt is m-accretive. (see Okazawa [7]). 1n fact in this case, -1 
cannot be an interior point of W (B(μ +At 1)， μ2=a. 

Our next result is the following. The criterion given below contains 

the Kato・Nelson criterion ‘ as can be easily seen. 

THEOREM 3.10. Let A be m-accretive and B closed accretive with 

D(A)cD(B). Then ωe always hσE玖 for some real a and a non・negative b, 

(3.11) Re <Ax, Bx) ~ a jjxjj2-b jjAxjj2. 

1f the estimate (3. 11) holds 'U.成h 0豆 b<l， then A十 B is m-accretive. lf 
(3. 11) holds with b = 1, then (A + Bt is m-accretive. 

PROOF. 羽Te devide the proof into two parts, O<b<l , and b=1. 
FIRST CASE: 0豆b<1. Since B is accretive, (3.11) implies 

ReO+A)x , Bx) 孟 aIIxjj2-b jjAxll2 for "<>0. 

Thus 

Re くB(え +At 1y ， y) 与さ ajj(え十 A)一 1yjj2_b jjA(え +A)-1νjj2

孟一 (jαj/..<2 十 bjjA(..<+A)-ljj2) lI yjj2.

Since b jjA(..< 十 A) 1jj2< 1, we have, for su伍ciently large ..<, Re くB(..< 十 At 1y ， y) 

> -jjyW. Thus -1 is not in the closure of W(B(え十 A) 1). Hence A+B 

IS m-accretIve. 

SECOND CASE: b = 1. We see by the previous case that A + B/2 is 

m-accretive. Then, by (:3.11), taking A+B/2 and B/2 instead of A and B 
in (2. 18), respectively, we see that (2. 18) holds with b1 = 1. It follows from 
Remark 3. 9 that (A 十Bt=(A+B/2+B/2t is m・accretive. Q. E. D. 

COROLLARY 3.11. Let A and B be as in Theorem :).10. Assume that, 
for some θ，一π/2<θ<π/2， we have 
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(3. 12) Re eiO くAx， Bx> ミ aIlxl12-b IIAxI1 2, where a εRμnd b>O. 

lf (3. 16) holds with 0 三五 b< cos2 fJ, then A+B is m-accretive. lf (3.16) holds 

with μ= 0 and b = cos2 fJ, then (A + Bt お m-accretive.

PIWOF. This can be shown as in the fﾌrst case of the proof of Theｭ

orem 3. 10. Q. E. D. 

REM人RK 3. 12. 1t seems that Re くAx， Bx> was 五rst considered by Okaｭ

zawa [7]. He treated the case a=O and b=O in (3.11). The requirement 

a = 0 and b = 0 seems to be too particular. However, Mr. Y oshio Konishi 
has called to our attention that our Theorem 3.10 can be proved by means 

of Okazawa's result. We  note furthermore that in a condition of the form 

stated in Theorem ~1. 10, we can get rid of the assumption D(A)cD(B) if 
we assume, for instance, that R ((μ +(A 十 B)=X for some (, Re (<0, and 

for someμ， Re μsu伍ciently large > O. 
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