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Introduction.

This paper deals with the perturbation problems of closed linear operators
A and B in a Banach space. We give in §1 an elementary criterion in order
that A+ B be again closed (See Theorem 1.2). We apply this result to
perturbation problems of two accretive operators A and B and obtain a
criterion in order that —(A+ B) generate a strongly continuous semi-group
of contraction operators (See Theorem 2.7). However, we should note that
the essence of our criterion was discovered by Trotter. In §3 we develop
a Hilbert space theory and obtain several sufficient conditions, covering
Nelson’s condition (See Theorems 3.7 and 3.10).

§1. A criterion for closedness of 4+ B.

Consider two linear operators A and B in a Banach space X. We
define a third operator A+ B by

(1.1) (A+B)x=Axz+Bx for zeDA+B =DA)ND(B).Y

We exclude from our consideration the trivial case D(A)ND(B)=0.

Now we pose the following

ProBLEM 1.1. Assume that A and B be closed. When is A+ B also
closed ?

The following result is our partial answer to this problem.

THEOREM 1. 2. Assume that the resolvent set of A, P(A), be non-
empty and that there be a 1€ C such that 2+ B is of closed range and inver-
tible. Let —peP(A). Then the following two conditions are equivalent:

(1.2) A+B is closed and —peP(A+B);
(1. 3) —1eP(B(p+A)").

*) Partly suppokrted by the Sakkokai Foundation.
1) D(T) stands for the definition domain of a linear operator 7 in X. We shall denote
by R(T) the range of T, and by N(7') the null-space of T.
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Here B(p+ A)! is a closed operator with D(B(p+ A) )= {zxe X; (p+A) 'z
e D(B)}.

ReMARK 1.3. This theorem is quite formal, but it enables us to reduce
the Problem 1.1 to a ‘better’ behaving operator B(p+ A)'. In later sections,
we apply it to perturbation problems of (say) accretive operators.

In the rest of this section, we are going to prove Theorem 1.2. For
later convenience, the proof is devided into several propositions. First, we
verify that B(p+ A)™! is closed so that the statement (1.3) has a meaning.
Namely, we prove

ProrosiTiON 1.4. Under the assumptions of Theorem 1.2, B(p+ A)™!
is a closed operator.

Proor. Let x,eD(B(z+A) ") be such that x,—~x and B(g+ A)'x,—
y for some x and ¥ in X. Let 2 be as in Theorem 1.2. Then, since
(p+ A)' is bounded, (2+ B)(p+ A) 'x,— A+ A) 'x+y. Since R(A+B)" is
closed, there is a € D(B) such that A(p+ A) 'x+y=(A+B)z. On the other
hand, 1+ B being invertible, (1+ B)™': R(1+ B)—X is bounded by the closed
graph theorem. It follows that (g#+ A)'x,—z, whence (p+A) 'r=2. In
other words, x€ D(B(p+ A)™Y) and (A+ B)(p+ A) 'x=(1+B)z=i(p+ A) " +y.
Thus, B(pg+ A) 'x=y, and the proposition is proved. Q.E.D.

ProrosiTioN 1.5. D(B(p+A) H=(p+A)(DANDB), —peP(A).

Proor. Let xeD(R2(x+A)Y). Then (p+A)'ze DAND(B). That
is, x€(p+A)(DA)ND(B). Conversely, let xe(u+A)(DAND(B)). Then
(e+A)'2zeDB)ND(A). That is, ze D(B(p+A)". Q.E.D.

ProrosiTiON 1.6. R(p+A+B)=R{I+B(p+A)"), —peP(A).

Proor. Let z€e R(gp+A+B). Then there is a xe D(A)ND(B) such
that z=pxr+ Ax+ Bx. Let y=px+Ax. Then yeDB(p+A)"Y) and 2=y
+B(p+A)'y. This shows R(g+A+B)CR{I+ B(p+A) ). Conversely, let
2€R(I+B(p+A)"). Then there is a ye D(B(g+A)") such that z=y+
B(u+A)'y. Let x=(#+A)'y. Then zeDA)ND(B) and 2=pxr+ Ax+
BreR(p+A+B). This shows R(I+B(p+A)YCR(gp+A+B). Q.E.D.

Prorosition 1.7. Let —peP(A). p+A+B is invertible if and only
if I+B(p+A)" is invertible.

Proor. Assume that g+ A+ B be invertible. Let y€ D(B(z+ A)™") be
such that y+ B(p+ A) 'y=0. Set x=(p+A)'y. Then xe D(A)ND(B) and
px+ Ax+ Bx=0. It follows that x=0 and so y=0. Now suppose that
I+B(p+A)™" be invertible. Let xe D(A)ND(B) be such that pr+ Ax+
Bx=0. Set y=(u+A)x. Then yeDB(p+A)") and y+B(p+A) 'y=0.
Thus, y=0 and so x=0. Q.E.D.



52 A. Yoshikawa

Remark 1.8. In Propositions 1.5-1.7, our arguments relied only on
algebraic properties. In other words, we did not employ in an essential way
the topological requirements on A and B such as closedness of their graphs.

ProrosiTiON 1.9. If —1€P(B(p+A)™?"), then A+ B is closed.

Proor. Let x,€ D(A)ND(B) be such that x,—x and z,=px,+Ax,+
Bzx,—z for some x and z in X. Let y,=(p¢+A)x,. Then v, D(B(g+A)™
and z,={I+B(p+A)"} (g+Ax, ={{+B(pg+A)"}y,. Since {I+ B(p+
A)} 7! is bounded, y,—y ={I+B(p+ Ay} 'z. We see thus ye D(B(p+
A)Y. We also have that x,—~x and y,={(z+ A)x,—y. Since A is closed,
it follows that re D(A) and y=(z+ A)x. Hence, z=(p+ A) 'ye D(A)ND(B),
and (p+A+B)x={I+B(p+A) " y={I+Blp+A)"} {I+B(pg+ A"} lz==z.
Thus, closedness of A+ B is proved. Q.E.D.

Now we proceed to a

Proor of Theorem 1. 2.

(1) (1.2) implies (1.3). p+A+B is invertible and R(p+A+B)=X.
Thus, by Propositions 1.6 and 1.7, I+ B(p+ A)™ is invertible and
R(I+B(pg+A)")=X. Then, by Proposition 1.4, I+B(p+A)"' is closed
and so is{I+B(u+A)'}'. Hence, by the closed graph theorem,
{I+B(p+A)'} ! is bounded and —1eP(B(pz+A)™).

(i) (1.3) implies (1.2). I+ B(p+ A) ' is invertible and R(/+ B{pg+ A)™")
=X. Then, by Propositions 1.6 and 1.7, g+ A+ B is invertible and R(gx+
A+B)=X. Then, by Proposition 1.9, p+A+B is closed, and so is (p+
A+B)'. Using again the closed graph theorem, (p+A~+B)"' is bounded
and —peP(A+B). Thus the theorem is proved. Q.E.D.

ReEmark 1.10. In the statements of Theorem 1.2, the statement

(1. 2) is equivalent to the following:
(1.2") p+A-+B is invertible and R(zg+ A+ B)=X.

In fact, (1.2') implies (1.3) and so (1.2).
REMARK 1.11. The requirement that X be a Banach space is not
essential as can easily be seen from our proof of Theorem 1.2. For any

topological linear space where the closed graph theorem is valid, Theorem
1.2 would hold good.

§2. Applications to perturbation problems of accretive operators.

We begin by introducing a semi-inner product in a Banach space X in
order to define accretivity (or dissipativity) of operators in X. Then we
state the well-known characterization of the infinitesimal generators of strongly
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continuous semi-groups of contraction operators in terms of thus defined
accretivity of operators. Using these terminologies and Theorem 1.2, we
give a criterion for perturbations of accretive operators. We then apply our
criterion to particular cases to re-discover or to obtain more practical sufficient
condition.

ProrosiTioN 2.1. (Lumer [4]). There is a mapping [,]:

(2.1) XxX3(x,y)— [z, y]€C

with the following properties :

(2.2) [x+y, 2] =[x, 2] +[¥, 2] for any x,y,z€X;
(2. 3) [iz, y] =[x, y]  for any 1€C and z,yeX;
(2. 4) [zl lzlllyll  for any  yeX

and

(2.5) [z, ] = ||«]*

[z, y] is called a semi-inner product of x and vy (compatible with the norm
of X).

Proor. See [4]. [5] or [10]. Q.E.D.

Remark 2.2, If X is a Hilbert space, there is a unique semi-inner
product compatible with the norm of X. This unique semi-inner product is
nothing but the inner product of X.

In the rest of this section we only consider a fixed semi-inner product
compatible with the norm of X unless the contrary is explicitly stated.

DeriniTiON 2.3. (Lumer-Phillips [5]). A linear operator 7" in X is
said to be accretive if

(2.6) Re[Tx, ] =0 for all xzeD(T).

T is called dissipative if —7" is accretive.

ProrosiTioN 2.4. (Lumer-Phillips [5]). If T is a densely defined accre-
tive operator, then T is closable. The closure T~ of T is accretive in a
semi-inner product (possibly different from the original but compatible with
the norm of X).

Proor. See Lumer-Phillips [5]. p. 693-694. Q.E.D.

Note that for a closed accretive operator 7,2+ 7T is invertible and of
closed range for any Rei>0.

The following result is well-known.

ProrositioN 2.5. (Lumer-Phillips [5]). Let T be a densely defined
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closed operator in X. Then the following three conditions are equivalent:

2.7 — T generates a strongly continuous semi-group of contraction oper-
ators in X;

(2.8) T s accretive and pe P(—T) for some p, Rep>0;

(2.9) T is accretive and peP(—T) for any p, Rep>0.

Now we state our problem of this section.

PrOBLEM 2.6. Assume that A and B be two closed operator in X with
D(A)ND(B) dense in X. Assume furthermore that — A generate a strongly
continuous semi-group of contraction operators in X. Then the question is:
When does —(A+ B) generate a strongly continuous semi-group of contrac-
tion operators in X ?

The following is our answer to this problem, by means of Theorem 1.2.

THEOREM 2.7. Let —A be the infinitesimal generator of a strongly
continuous semi-group of contraction operators in X. Let B be a closed
operator in X such that D(A)ND(B) is dense in X and that A+ B is accre-
tive. Then the following three conditions are mutually equivalent:

(2. 10) A+ B is closed and —(A+ B) generates a strongly continuous semi-
group of contraction operators in X;

(2.11) —1le P(B(y+A)"1> Jor some p,Rep>0;

(2.12) —1le P(B(,u+A)’l> for any p,Rep>0.

REMARK 2.8. Close results to this are known (e.g., Trotter [9]. See
our Introduction). However, it seems that a result in this form has never
been stated explicitly. Nevertheless, an exact statement like this may permit
us a new scope.

ProoF of Theorem 2.7. Proposition 2.5 shows the equivalence of (2.10)
with each of the following two conditions:

(2.13) —peP(A+B) for some p, Rep>0;
(2.14) —peP(A+B) for any p,Rep>0.

By Theorem 1.2, (2.13) is equivalent to (2.11) and (2.14) to (2.12). Q.E.D.
We state some supplements to our Theorems 2.7 and 1.2. This is a
slight generalization of Trotter’s lemma [9]. (cf. Kato [2]).
COROLLARY 2.9. Let A and B be two closed operators in X such
that D(A)ND(B) is dense in X. Assume that —A generate a strongly
continuous semi-group of contraction operators in X and that A+ B be accre-
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tive. Then the following two conditions are equivalent.

(2. 15) The closure —(A+B)~ of —(A+ B) generates a strongly continu-
ous semi-group of contraction operators in X;

(2.16)  —1€P(B(p+A)")UDe(B(e+A)")  for some p,Rep>0.
Here 3(B(p+ A)"Y) denotesthe set {1€ C;1—B(p+A)" has a densely de-

Jfined inverse, closed but not bounded}.

Proor. We only need to discuss the case when R(u+ A+ B) is dense
in X but not identical with X. This happens if and only if —1¢
2e(B(p+ A" by virtue of Propositions 1.6 and 1.7. Q.E.D.

In the rest of this section, we confine ourselves to the case D(A)CD(B).
First we prepare some terminologies.

DeriniTioN 2.10. (Kato [2]). Let A and B be two linear operators
with D(A)cD(B). B is said to be relatively bounded with respect to A (in
short, A-bounded) if there are positive constants a and & such that

(2.17) |Bz| < al|z|| +&]|Ax]| for all xe D(A).
If X is a Hilbert space, (2.17) is equivalent to:
(2.18) |1Bx||? £ af||=||*+ b2} Ax)® for all xe D(A)

with some positive constants @, and b,.

DeriNniTION 2.11. (Kato [2]). The lower bound &, of all possible & in
(2.17) is called the A-bound of B. If X is a Hilbert space, b, coincides with
the lower bound of all possible &, in (2.18).

If both A and B are closed, then D(A)CD(B) is equevalent to that B
is A-bounded. This can be seen by the closed graph theorem. Furthermore,
if P(A)#0, then B(p+ A)', —peP(A), is a bounded operator. Then the
relation between the A-bound of B and the norm of B(p+ A)™' is given by
the following

ProrosiTioN 2.12. Assume that A and B be closed with D(A)CD(B).
Let b, be the A-bound of B. If — A generates a strongly continuous semi-
group of contraction operators in X, then we have

(2.19) by<liminf |[B(2+ A)™Y| £ lim sup | BA+ A)*|| < 25, .
In particular, if X is a Hilbert space, then

(2. 20) be=lim ||[B(2+A)™ .

In (2. 19) and(2. 20) the limits are taken for i—>oo.
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The proof is straightforward and so omitted.
Using this proposition, we prove the following slight generalizations of
Nelson’s and Yosida’s results as corollaries to Theorem 2.7.

CorROLLARY 2.13. (Nelson [6]). Assume that A and B be two closed
operators in X with D(A)CD(B) such that A+ B is accretive. If —A
generates a strongly continuous semi-group of coniraction operators in X and
if the A-bound b, of B is less than 1/2, then A+ B is closed and —(A+ B)
generates a strongly continuous semi-group of contraction operators. If X
is a Hilbert space, the conclusion is true when by<1.

Proor. Since 5,<1/2, there is a 1>>0 such that ||B(Az+A) '||<1. This
is true when ,<1 if X is a Hilbert space. Thus —1e€P(B(1+A)™") and
the corollary follows from Theorem 2.7. Q.E.D.

CoroLLARY 2.14. (Yosida [11]). Assume that A and B be two closed
operators in X with D(A)CD(B) such that A+ B is accretive. If —A gen-
erates a strongly continuous semi-group of contraction operators and if
D(A®) cD(B) for some a, 0<a<l, then A+B is closed and —(A+B)
generates a strongly continuous semi-group of contraction operators. In the
above, A® denotes the fractional power of A (See for example Yosida [10]
or Komatsu [3]).

Proor. For any i>0, [|[BA+A) Y =||BA+A)“1+Ara+A)". By
the assumption, ||B(1+ A) *||<occ. On the other hand, [|[(1+A4)1+A4)|=<
{A+A)a+A) " la+A) | = Mx! since (14+A)A+A)™" is uniformly
bounded for 2>1. Hence, lim ||B(1+ A)'||=0 (4—o0) and the corollary re-
duces to Corollary 2.13. Q.E.D.

For the sake of completeness, we state Gustafson’s result.

CoroLLARY 2.15. (Gustafson [1]). Assume that A and B be two closed
accretive operators in X with D(A)CD(B). If —A generates a strongly
continuous semi-group of contraction operators in X and if the A-bound b,
of B is less than 1, then A+ B is closed and —(A+ B) generates a strongly
continuous semi-group of contraction operators.

Proor. See Gustafson [1] p. 337. Q.E.D.
Now we introduce another definition.

DEerFiNITION 2.16. (Kato [2]). Let A and B be two linear operators in
X with D(A)CD(B). B is said to be relatively compact with respect to A
(in short, A-compact) if for any sequence {z,} in D(A) with both {||z,||}
and {||Ax,||} bounded, {Bx,} contains a convergent subsequence.

A-compactness of B implies A-boundedness of B. In particular, if both
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A and B be closed and P(A)+#0, then A-compactness of B is equivalent to
compactness of B(g+ A)™" for —pe P(A).

The following is another corollary to Theorem 2.7.

COROLLARY 2.17. Assume that A and B be two closed operators in X
with D(ACD(B) such that A+ B is accretive. If —A generates a strongly
continuous semi-group of contraction operators and if B is A-compact, then
A+ B is closed and —(A+ B) generates a strongly continuous semi-group of
contraction operators. Furthermore, A+ B has compact resolvents if and
only if A has compact resolvents.

Proor. Since B(p+ A)™Y, Rep>0, is compact, it suffices to show that
I+B(p+A)! is invertible. By Proposition 1.7, we only need to check that
p+ A+ B, Rep>0, is invertible. Let x€ D(A) be such that pxr+ Ax+ Bx=0.
Then, by accretivity of A+ B, 0=[px+ Ax+ Bz, x]=Re pt|| x|
It follows that x=0, and hence, pz+ A+ B is invertible. Now note p+ A+ B
=({I+B(p+A) ") (g+A). Since both sides are boundedly invertible, we have
(p+A+B)'={I+B(p+ A" (p+A)" and
(p+A)'=(p+A+B)'"I+B(p+A)". I dim X<oco the last statement is
trivial. If dim X=oco, then (/+B(pz+A)™") ! is not compact. Hence the
corollary is proved. Q.E.D.

REMARK 2.18. Our proof of Corollary 2.13 is essentially the same as
Nelson’s original. This is an example that Theorem 2.7 has implicitly been
employed. Our proof of Corollary 2.14 is a little different from Yosida’s
original proof. Corollary 2.17 follows also from Kato’s stability theorem.

(Kato [2]).

§3. Further discussions in the case when X is a Hilbert space.

If X is a Hilbert space, things are much simplified. For example any
semi-inner product compatible with the norm of X is the inner product {,)
of X. Thus the notion of accretivity becomes easier to handle. In this
section, we intend to transcribe the results of the previous section, using
the numerical range of an operator.

DeriniTION 3.1. Let 7" be a linear operator in a Hilbert space
X. The set

(3. 1) W(T) = {(T, «; xeD(T), ||zl =1)

is called the numerical range of T.

We enumerate some properties of the numerical range (See, e.g., Kato

(2D).
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ProrosiTioN 3. 2. (Hausdorff-Stone. See Stone [8]) W(T') is a convex
set in the complex plane.

Thus if we denoteby I'=I'(T) the closure of W(T'), then C—1I" has
at most two components. In the following proposition, nul S=dim N(S),
and def S=dim (X/R(S)), for an operator .S. nul S is called the nullity of
S, and def S the deficiency of S.

ProrosiTioN 3.4. (Kato [2]). Let T be a closed operator. Then, for
pe I'(T), T—p has closed range, nul (T'—p)=0 and def (T—p)=const. in
each component of C—I'(T'). If def (T—pu)=0, then peP(T) and ||(p—T)Y
<1/dist(g, I'). In particular, if T is bounded, then C—I'(T)CP(T).

As we have mentioned at the beginning of this section the notion of
accretivity in a Hilbert space is easier to handle. The following statements
give a summary to this point.

DiFiNiTION 3.4. A linear operator 7 is said to be accretive if
(3.2) Re(Tx,z) =0 for xeD(T).

T is said to be m-accretive if T is closed, accretive and P(—7') contains
all p, Rep>0.

ProrosiTioN 3.5. (Kato [2]). An m-accretive operator is maximal in
the sense that T does not permit any proper accretive extension of T. T
is necessarily densely defined. In particular, T is m-accretive if and only
if —T generates a strongly continuous semi-group of contraction operators
in X.

In the rest of this section we confine ourselves to the case D(A)CD(B).
Before stating our first result, we need to make a supplementrary remark
to Corollary 2.9 in the case when X is a Hilbert space.

ProrosiTiON 3.6. Let A and B be two closed operators with D(A)
CD(B). Assume that A be m-accretive and A+ B be accretive. Then the
Jfollowing three conditions are mutually equivalent.

3.3) The closure (A+ B)~ of A+ B is not m-accretive;
(3. 4) —1 is an eigenvalue of (B(p+ A))* for some p, Re p>0;
(3.5) —1 is an eigenvalue of (B(p+A)™")*  for any p, Rep>0.

Proor. (3.3) is equivalent to that R(#+ A+ B) is non-dense in X for
some g, Repx>0. And if R(z+A+B) is non-dense in X for some g,
Re >0, then R(z+ A+ B) is not dense in X for any g, Re #>0. On the
other hand, if R(z+ A+ B) is non-dense in X, then so is R(/+B(pg+A)™),
by virtue of Proposition 1.6. —1 is an eigenvalue of (B(pz+ A)™)* if and
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only if R(I+B(z+ A)™) is not dense in X. Thus the proposition is proved.
Q.E.D.

We have a sufficient condition in order that the closure (A+B)~ be
m-accretive. Namely,

THEOREM 3.7. Let A and B be two closed operators with D(A)CD(B).
Assume that A be m-accretive and A+B be accretive. If, for some p,
Re p>0, —1 is not an interior point of W (B(p+ A)™"), then (A+ B)~ is m-
accretive. In particular, if —1 is not in the closure of W (B(p+ A)™"), then
A+ B is m-accretive.

Proor. We are going to prove that if (A+B)~ is not m-accretive, then
for any p, Re >0, —1 is an interior point of W (B(z+ A)™'). Since (A+B)~
is not m-accretive, —1 an eigenvalue of (B(1+ A)™')* for any 1, Re2>0.
Hence there is an eigenvector y(1)€ X such that |y(2)]|=1 and

(3. 6) (B+A) ") *y(@)+y(2)=0.
On the other hand, by the resolvent equation,
B(a+A)'—B(p+A) ' =(p—2)Ba+A) (p+ A)?
for any 4, p, Re2>0, Re p>0. Taking the adjoints, we have
(8.7 (Ba+A))*—(B(p+A))* = (R—)(j+ A% B+ A))*.
Here note that A* is also m-accretive. Now applying (3. 7) to ¥(1), and using
(3.6), we have
(3.8) v+ (Bl A7) *y(2) = (=)@ + A%y (2).
Take the inner product of (3.8) with y(2). Then
(3.9) 1+{B(p+A)y(A), vy =(=<{r+A)"y(), y().
Now choose
(3.10) A=p+y, v=re", O<r<|p|, —7<O0=r.
Then e 1+ <(B(p+A)'y@A), yQA)))= —r{{g+A) Y1), yQ)>. It follows
that, for any 0, —7w<#=<r, there is a 2 such that
(3.11) Re e(1+(B(p+A) (), ¥(1))<0.
In fact, set 2=(p+ A)'y(2). Then 20, and
Red(p+A)'y(2), y(2)) =Relz, (p+A)2)
= (Re p)||z|I*+Re {z, A=)
= (Re p)|[z]*>0.
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Since W(B(p+ A)™?) is convex, and —1€ W(B(p+ A)™?Y) (takei=p in (3.9)),
(3.11) means that —1 is an interior point of W (B(z+A)'). In fact, this
is due to the following Lemma 3.8. Thus the theorem is proved. Q.E.D.

LemMA 3.8. Let K be a convex set in the complex plane. Assume
that 0e K. If, for each 0, —n <0<, there is a weK such that Re{e’w} <0,
then 0 is an interior point of K.

Proor. If 0 were not an interior point, then there would be a {eC
such that K {z€C}; Re<(z, {)=0}. Q.E.D.

REMARK 3.9. The above theorem shows in particular that if we have
(3.10) |Bx|* < a|z||*+ |Ax|?, a>0, xzeD(A),
then (A+B)~ is m-accretive. (see Okazawa [7]). In fact in this case, —1
cannot be an interior point of W (B(p¢+ A)™?Y), r=a.

Our next result is the following. The criterion given below contains
the Kato-Nelson criterion, as can be easily seen.

THEOREM 3.10. Let A be m-accretive and B closed accretive with
D(A)CD(B). Then we always have, for some real a and a non-negative b,
(3.11) Re (Axz, Bxy = a||x||*—b||Ax|]®.

If the estimate (3.11) holds with 0<b<1, then A+ B is m-accretive. If
(3.11) holds with b=1, then (A+ B)~ is m-accretive.
Proor. We devide the proof into two parts, 0<b<1, and b=1.
FirsT case: 0=b<1. Since B is accretive, (3. 11) implies

Re(Ad+A)x, Bxy Z allx||*—b||Ax|? for 2>0.
Thus

Re(B(A+A) "y, y) zala+A)y|*—bl|A(a+A) 'y|?
= —(lal/Z+b | A+ A) Ay
Since b||A(A+ A)Y|2< 1, we have, for sufficiently large 2, Re (B(i+ A) ™'y, v)>
>—|lyll>2 Thus —1 is not in the closure of W(B(A+A)?). Hence A+ B
is m-accretive.

SECOND case: b=1. We see by the previous case that A+B/2 is
m-accretive. Then, by (3.11), taking A+ B/2 and B/2 instead of A and B
in (2.18), respectively, we see that (2.18) holds with 4,=1. It follows from
Remark 3.9 that (A+B)"=(A+B/2+ B/2)~ is m-accretive. Q.E.D.

COROLLARY 3.11. Let A and B be as in Theorem 3.10. Assume that,
for some 0, —x/2<0<x/2, we have
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(3.12) Re ¢’{Ax, Bx) = al||z||*—b ||Ax|]?, where ac R and b>0.

If (3.16) holds with 0=b< cos®f, then A+ B is m-accretive. If (3.16) holds
with a=0 and b=cos* 6, then (A+ B)~ is m-accretive.

Proor. This can be shown as in the first case of the proof of The-
orem 3.10. Q.E.D.

REMARK 3.12. It seems that Re (Ax, Bx) was first considered by Oka-
zawa [7]. He treated the case a=0 and 4=0 in (3.11). The requirement
a=0 and »=0 seems to be too particular. However, Mr. Yoshio Konishi
has called to our attention that our Theorem 3.10 can be proved by means
of Okazawa’s result. We note furthermore that in a condition of the form
stated in Theorem 3.10, we can get rid of the assumption D(A)cD(B) if
we assume, for instance, that R({pg+{A+B)=X for some {, Re {<0, and
for some g, Re p sufficiently large >0.
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