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Introduction.

Our starting point is the following well known formula for an ovaloid
F in an Euclidean space E°® of three dimensions :

0. 1) SL(KP +H)dA=0,

where H and K are the mean curvature and the Gauss curvature at a point
P of F, p denotes the oriented distance from a fixed point 0 in E® to the
tangent space of F at P and dA is the area element of F at P. For convex
hypersurfaces, these formulas have been obtained by H. Minkowski for
m=2 [11]” and by T. Kubota for a general m [9] (cf. also [2], p. 64).

As a generalization of this formula for a closed orientable hypersurface,
C. C. Hsiung derived the following integral formulas of Minkowski type
which are valid in an Euclidean space E™*' [4].

TueoreMm A (C. C. Hsiung) Let V™ be a closed orientable hypersurface
twice differentiably imbedded in an Euclidean space E™' of m+1 (=3)
dimensions, then

(0. 2) S H,updA+S HAdA=0 for v=0,1, -, m—1,
y y

where Hy=1, H,(1=v=m) be the v-th mean curvature of V™ at P, p
denotes the oriented distance from a fixed point 0 in E™'' to the tangent
hyperplane of V™ at P, and dA be the area element of V™ at P.

Extension of this formulas in a Riemannian manifold R™*! has been
established by Y. Katsurada [5] [6]. Main result for a hypersurface V™ in
a Riemannian manifold is as follows:

TureoreM B (Y. Katsurada) Let V™ be a closed orientable hypersurface
of class C® imbedded in an (m+1)-dimensional Riemannian manifold R™"
which admils an infinitesimal point transformation, then

1) Numbers in brackets refer to the references at the end of the paper.
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(0.3) S H,pdA+_L S g% o g, dA =0,
pm pr §

2m

and if the manifold R™™ assumes of constant curvature which includes an
Euclidean space,

(0. 4) g HmpdAJr*lS HYBIBl#g,dA=0 (1<v<m—1).
Jym 2m Jym ¢

We use integral formulas of Minkowski type to generalize the Liebmann
theorem [10]: the only ovaloids with constant mean curvature H in an
Euclidean space E® are spheres. Extension of this theorem to a convex
hypersurface V™ in an (m+ 1)-dimensional Euclidean space E™" has been
given by W. Siiss [17] (cf. also [2], p. 118). The same problem for closed
hypersurfaces in an (m+ 1)-dimensional Euclidean space E™'' has been
investigated by C. C. Hsiung [4].

Tueorem C (C. C. Hsiung) Let V™ be a hypersurface satisfying the
condition of Theorem A. Suppose that there exist a point 0 in E™'' and
an integer s, 1 <s<m, such that at all points of V™ the support function p
is of the same sign, H,>0, for i=1,2, ---,s, and H, is constant. Then V™
is a hypersphere.

Extension of this theorem in a Riemannian manifold has been established
by Y. Katsurada [5] as follows:

Tureorem D (Y. Katsurada) Let R™'' be a space of constant curvature,
V™ a closed orientable hypersurface in R™"'. If there exists a one-parameter
group G of conformal transformations of R™' such that the scalar product
n; & of the normal vector n of V™ and the generating vector & of G does
not change the sign on V™ and is not identically zero, and if the principal
curvatures ky, ks, -+, k,, at each point of the hypersurface V™ are positive
and H, is constant for any v(1<v=m—1), then every point of V™ is umbilic.

For v=1, Y. Katsurada [6] obtained the following interesting

TueoreMm E (Y. Katsurada) Let R""* be an Einstein space, V™ a closed
orientable hypersurface in R™"'. If there exists a one-parameter group G
of conformal transformations of R™"' such that the scalas product n; & of
the normal wvector n of V™ and the generating vector & of G does not
change the sign on V™ and is not identically zero, and if H, is constant,
then every point of V™ is umbilic.

The analogous problems for a closed orientable hypersurface V™ in
a Riemannian manifold R™'! have been discussed by A.D. Alexandrov [1],
T. Koyanagi [8], M. Okumura [12], [13], T. Otsuki [14], R. C. Reilly [15].
M. Tani [18], K. Yano [20], [21], [22] and K. Yano and M. Tani [23].
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The purpose of this paper is to give certain generalization of formulas
(0.3) and (0.4) of Katsurada, and to obtain some properties of a closed
orientable hypersurface in a Riemannian manifold. Notations and general
formulas on hypersurfaces are given in §1. In §2, we derive generalized
Minkowski formulas. As a special case of §2, the later sections §3 and
§4 are devoted to establish several integral formulas of Minkowski type.
In §5, we give some properties of a closed orientable hypersurface in a
Riemannian manifold R™ '

The present author wishes to express his sincere thanks to Professor

Dr. Yoshie Katsurada for her constant guidance and criticism, and also to
Dr. Tamao Nagai for his kind help.

§1. Notations and general formulas on hypersurfaces.

Let R""' be an (m+ 1)-dimensional orientable Riemannian manifold of
class C"(r=3), and 27, ¢,5, “;7”, R}y, Ri;=R}; and R be local coordinates,

a Riemannian metric, the operator of covariant differentiation with respect
to the Christoffel symbols {z};} formed with the metric ¢,; the curvature

tensor, the Ricci tensor, and the curvature scalar of R™'! respectively.

We now consider a closed orientable hypersurface V™ of class C®
imbedded in a Riemannian manifold R” ! whose local parametric expression is

=t ),

where u* are local coordinates in V. Throughout this paper we will agree
on the following ranges of indices unless otherwise stated :

1=<h,4,5,-=m+1,
1§a,ﬁ,7’,---§m,
0<A v, <m—1.

We use the convention that repeated indices imply summation.
If we put

Y o
Bi=2%_
Qu”
then B are m linearly independent vectors tangent to V™. The first fun-

damental tensor g¢,; of V™ is given by

(1. 1) Gus = 9:; BB}

Sa

and ¢* is defined by ¢g“g,, =47, where 2 means the Kronecker deltas. We
assume that m vectors B, B:, ---, B, give the positive orientation on V™ and
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we denote by 7’ the uniquely determined unit normal vector of V" such
that Bi, B ---, B}, n’ give the positive orientation in R™ ' Denoting by
‘ the operation of van der Waerden-Bortolotti covariant differentiation

m

”»

<.
s

along the hypersurface V™, we have the equations of Gauss and Weingarten :

(1.2) Bls=byn’,

(1.3) nt, = —b. B,

where b,,=b,, are components of the second fundamental tensor of V" and
bi=b,.q7 b*=>b2g". We also have the equations of Gauss and Codazzi :

(1- 4) R,w-ﬂ.BﬁBéBﬁBé' = Ruﬁrﬁ_(barbﬁﬁ—bﬁrbm?) 5

(1.5) Ry Bin' BiB' = —(bus;;—buys) = — 2basn,

where R,s:=¢..R;, is the curvature tensor of the hypersurface V", and the

symbol [ ] means alternating in 2([16], p. 14). Contracting (1.5) by the
contravariant tensor ¢’* and using

(1. 6) g“BLB=g"7—n'n’,
we have
(1.7) an%Bg = ‘(bg'yr_b;;ﬁ = —20s.

If we denote by %, &, -+, k,, the principal curvature of V™, that is, the
roots of the characteristic equation

(1.8) bos—kga| =0,

then the p-th mean curvature H, is given by

(1.9) ('f)Hy: S ke k= % b b,
T, o,
and H,=1. From equations (1. 8) and (1. 9) it follows immeadiately
(L. 10) mH, = b; H, = _bT ,
g
where & and ¢’ are determinants of b, and ¢, respectively. Moreover we
have
(1. 11) m :rl—r<b“bﬂ— 102
. 2 2 2 al/g fYa >
(1. 12) bibl =nm*Hi—m(m—1)H, = m{mH{—(m- l)Hz}.

We note here that
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2 A S XY VR S Py
(1. 13) H:—H, m(m_1)<bﬂba Loy

L S (h—kp=0

T (m—1) s<a

and consequently, if

(1. 14) H!*—H,=0,
then

bhh=k=--=k,=k,
that is

by ="rkg.;.

A point of a hypersurface V™, at which all principal curvatures are equal,
is called an umbilical point. Furthermore we have

_vlm—y—1)!
(1. 15) HH—H o= B ok (b —F, Y.

If H,H, -, H, 1<v<m are positive, then

(1.16) H zH}z = H;,
where the equality at all stage implies & =Fk,=---=%k,. The proof of the
formula (1. 16) will be omitted here, but can be found in [3], p. 52.

For any v, if we put

“ 1 « « ,,
(1 17) H(f) - W—Wsa'mn"ﬂ’ i,,“‘ﬂm,,eﬂﬁl ﬁ””*’b'a: ot b‘g:,

] 19, Xyt

(1 18) H(y)ﬂ: oy M M rTy g2 ’msﬂﬂg"‘ﬁy+.7u+z"‘7‘mb£2 bf;"'bﬂ”+l

1 a a a
:‘—._..b l‘a baz... 15
m [8a,Ya, 1
v+1

then we have the following relations

(1' 19) gnﬂH?f) = mHv, baﬂH?f) = mHv+1 ’
and
(1. 20) HY,.,= —vmH,, 9%,

where ¢, .., denotes the e-symbol of V™ and the symbol [ ] means alter-
nating in v+ 1. In particular
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(1 21) H?g) = gaﬂ’ H(O)T = O 5

— N1 )
(1.22) Hepom 2 bl = — =2 R, 2By,

(m
2
and in virtue of (1.11) we have

(1.23) H).= _;l_bﬁu;ﬁb;] = ﬂ;ﬁ( ﬁ;ﬁ_ﬂ%—_}‘)‘Hz;n)
()
where we put
C:=0blbr—b00]
(see [8], p. 118).

§2. On a generalization of Minkowski Formulas.

We suppose that R™*! admits an one-parameter continuous group G of
transformations generated by an infinitesimal transformation

(2.1) 7 =2+ £,

where & are the components of a contravariant vector and dr is an infini-
tesimal. In R™"!, we consider a domain U. I the domain U is simply
covered by the orbits of transformations generated by &%, and & is every-
where of class C*® and %0 in U, then we call U a regular domain with
respect to the vector field (cf. [7], p. 448). If £ is a Killing vector, a homo-
thetic Killing vector, a conformal Killing vector, then the group G is called
isometric, homothetic and conformal respectively. The vector field & is said
to be conformal, homothetic, or Killing when it satisfies
;;f Gos=Eu5 65 = 20(x) 945,
(2.2) { Gi;=2CGs;,
¢

respectively, where -/ g¢;; denotes the Lie derivative of g¢,; with respect to
¢

the infinitesimal transformation (2.1), ¢ (x) is a scalar function, ¢ is a con-
stant and &,=g¢,;& [19]. When & is a conformal Killing vector, it satisfies

2.3 2} = et Riet

s i
=070;+050:— 9" 94;,
where ;= G4, 9" = Psg™.
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On the hypersurface V™ we can put
(2. 4) & = BL&"+pn’,
where P =n&.

Hereafter we denote by V™ an m-dimensional closed orientable hypersur-
face of class C* imbedded in a regular domain U with respect to the vector
&. We assume that at any point P on V™, the vector & is not on its
tangent space.

Let us consider a differential form of (m—1)-degree at a point P of the
hypersurface V™, defined by

((n’ fE, an, ° .‘7 5”’ dx7 ) "7 dx))
e e it
v m—y—1

=4g (n, f& on, -, on,dz, -, dx)
=g ( SE M, ey 1 ,a,i,“-,

vyt

au“m ‘)du“l/\ s A dufmer,
where the symbol () means a determinant of order m+1 whose columns
are the components of respective vectors or vector-valued differential forms,
and let dx® be a displacement along the hypersurface V™, i.e., dx*=B.du",
g the determinant of a metric tensor g;; of R”'' and f a differentiable scalar
function on V™,

Differentiating exteriorly, we have

d((n, f€, on, -, on,dx, -+, dx))

= ((on, f€, on, ---, on, dx, - ,dx)) +((n,
(2.6) dfe, on, -, 6n,dx, -, dx))+((n, fo€,
on, -+, on, dzx, -+, dx))+v((n, f& 6(én),

on, -+, on,dx, -+, dx)).
On substituting (1. 3) into the first term of the right-hand member of (2. 6),
we obtain
(2 7) ((57’1, fé, 5”5 Y 5”9 d'r, ] d'r))
— (=1 m! H,., fpdA,
where dA denotes the volume element of V™.
Since the vector naxdnx---xdnxdxx -xdx is orthogonal to the

v m—y—1
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normal vector n and on’= —b?Bidu*, the second and the third terms of the
right-hand member of (2. 6) become as follows :

(2. 8) ((n, df€, én, -, on, dzx, -+, dx))
|
= (=1 " PHBE fdA,

(2.9) ((n, f 8¢, on, -, on,dzx, -+, dx))
|
= (=1 5 fFHBBIBLL g,,dA,
where fo= ;TJ;,, ¢, = B¢,
Since we have
(2.10) 6 (0n?) = (bl Bi+ bLbsn) du Nd

the fourth term of the right-hand member of (2.6) becomes

(2 11> ((7’1, f€> 5(57’1), 571’ T 57’1, dx; Y dx))
=(—=1"""'"m! f&H,.dA.

Accordingly by means of (2.7), (2.8), (2.9) and (2. 11) it follows that

,ﬂ%d((%f{:, on, ---, on, dzx, -+, dx))
(2.12) =(—1)" ”{(H»*IP‘ZA'F%H"&BCL;B; o 0u,dA
& HopudA) f+ - H 6 fdAY.

Integrating both members of (2.12) over the whole hypersurface V™
and applying the Stokes’ theorem, we have

L S (0, S5 om, ey o, o, -, d)

),
(2.13) =1\ (e pdas o Hg BB g,dA
] Zm 3
Ve H,,.dA) f+—;1- Hoe, fﬂa’A},

where V™ means the boundary of V™. Since the hypersurface V™ is
closed, it follows that
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SﬂﬁWM%LSﬂM&&%%M
(I) 144 2m y 3
—vS fE“H<y>adA+iS He, fidA=0.
44 m ym
This formula is nothing but the generalization of (0.3) and (0. 4).

§3. Minkowski formulas concerning a conformal transformation.

In this section we shall discuss the formula (I) for a conformal infini-
tesimal point transformation.

Let G be a group of conformal transformations, then from equations
(1.1), (1.19) and (2. 2) we obtain

(3.1) H?ﬁBZBfaé{ 9e;=2m@H,.

Therefore (I) is rewritten in the following form :

g2 | {HoprHs—eHo e LHE S0,
On substituting f=const. into the formula (3. 2), we obtain
(1) sym(H,Hp+Hy¢—ys"H(y)a)dA =0.

For v=0, we have

(D). yym(Hl p+d)dA=0.

Formula (II), is due to Y. Katsurada ([5], p. 288).
Especially if our manifold R™*! is an Einstein space, that is,

R
3.3) R;;= a1 %

we have H;),=0 in virtue of (1.22) and (3. 3), and consequently, for v=1
from (I), we get

(3. 4) jpm(Hz p+H,$)dA=0.

Furthermore, if we assume that R™*! is a space of constant Riemann cur-
vature, that is,
(3- 5) Rlnij/c = ’C(glzjgik_ghlcgij) >

we obtain H,,,=0 from (1.5), (1. 18) and (3.5), and consequently from (I),
we have
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(3.6) [ (Hp+HHaA=0.

This formula (3. 6) is due to Y. Katsurata ([5], p. 288).

In the case where R™*' is a Euclidean space E™*! and & is the homo-
thetic Killing vector field on E™*' with components &=z x* being rectan-
gular coordinates with a point in the interior of V™ as origin in the space
E™*' then the orbits of the transformations generated by & are the straight
lines through the origin and we have

{ 9i5= Zgz'j .

Consequently, from (3. 2) and (3. 6) we obtain

(3.7) S {(Hv+1p+Hy)f+%H?f)xaﬁ}dA=0,
V7IL
(3.8) | (HoprHIaA=o0,
14
where p=n, 2", x,,=§x—a. The formula (3. 7) is a generalization of (0. 2) (also

[5], p. 290).
Now, let us consider a differential form of (m—1)-degree at a point of
the hypersurface V™, defined by

((n’ s;ini7 dx; T dx)) .
N —
m—1

Differentiating exteriorly, and applying the Stokes’ theorem, we have

_(r—ntll)_‘s ) ((n7 E;i ni, dxa ) dx))

- <—1>m§ (Ryn'e+mq)dA ,

m
14

by virtue of (2.3), where g=n’g,.
On making use of that the hypersurface V™ is closed, we have

(3.9) [, Roner+mgaa-o.

Let G be the group of homothetic transformations, that is, ¢=const., then
we have

(3. 10) s Ryn&dA—=0.
Vﬂlz
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Formulas (3.9) and (3.10) are due to K. Yano ([20], p. 337), who derived
these formulas by using the Green’s theorem.

§4. Integral formulas in R™"' admitting a scalar field such that
Os5=N(0) Gss.

In this section we assume that the Riemannian manifold R™'! admits
a non-constant scalar field © such that

4. 1) Oy =h(0)gs;, £;=04,
where A(P) is a differentiable function of @, and we put
(4.2) P! = Bip*+ an’

on the hypersurface V™.
We consider a differential form of (m—1)-degree at a point P of the
hypersurface V™ defined by

((7’1, f¢> 572, T 5”, d‘r’ ) dx))a

= 2=
v m—y—1
.9 L , . . .
where Q)zp”gj?, p'=g*p,, Differentiating exteriorly and making use of

calculations analogous to these in §2, we have the following integral formula:
(4. 3) S {(H, wa+ Hh—vpH,,.) f+ %—H(“;% o, ﬁ}dA _0.
V”I

where a=n’0.,;,, 0,=0,;B:. On substituting f=const. into the formula (4. 3),
we obtain

(1) S (H,.a+H,h—vp*H,),)dA =0,
Vm
in particular for v=0 we have also

(1) Sym(chH— R dA=0.

§5. Some properties of a closed orientable hypersurface.

In this section we shall show the follwing seven theorems for a closed
orientable hypersurface V™ in a Riemannian manifold R™".

TueEoREM 5. 1. Let R™"' be a Riemannian manifold which admits
a continuous one-parameter group G of conformal transformations and V™
a closed orientable hypersurface such that
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(1) H,=const. and & H,,,=0 for any v
(1=v=m—1),
(i1) A >0,k>0,-, k,>0 for any v
2=v=m—1),
(i) inner product p=n,;&" does not change the sign on V,,.
Then every point of V™ is umbilic.

ProoF. On substituting the assumption &“#,,,=0 into the formula (I),
in §3, we obtain
(I1I), S (H, p+H,$)dA=0.
Vm
From (IIl), and (II), in §3, we obtain

57(Hy:1p+Hu¢)dA:O,
V?L

S (H,H.p+H,¢)dA =0

V’”l

because of H,=constant. Therefore we have

(5.1) S (HH.—H, )pdA—=0.
V"L

Due to (1.15) and the assumptions (ii) and (iii), the integrand on the left
side of equation (5. 1) is non negative, and therefore

HIH»—HM 1=0,
which implies that
kl :kzz :km

at all points of the hypersurface V™. Accordingly every point of V™ is
umbilie.

Theorem 5.1 is due to T. Otsuki ([14], p. 339) for the case where v=1
and due to T. Koyanagi ([8], p. 121) for the case where v=2. In the case
where R™ ' admits a group G of proper homothetic transformations, Theorem
5.1 has been obtained by K. Yano ([20], p. 340) for v=1. Especially in the
case that R™'' is an Einstein space or a space of constant curvature, Theorem
5.1 becomes Katsurada’s ones, i.e., Theorem D and Theorem E stated in
the introduction.
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THEOREM 5.2. Let R™'' be a Riemannian manifold which admits a
non zero scalar field P such that 0,;;=h(P)g,;; and V™ a closed orientable
hypersurface such that

(1) H,=const. and P*"H,,=0 for any v
l=sv=m-—1),
(ii) &4>0,k>0,--, k,>0 for any v
2=v=m—1),
(i) ¢nner product a=n'P, does not change the sign on V™.

Then every point of V™ is umbilic.

ProoF. On substituting the assumption 0*H,,),=0 into the formula (I)
in §4, we have

(1) [ (HarH R =0,
Vm
From (IIT") and (I') in § 4, we obtain

S (H, ,a+HhdA =0,
Vm

S (H,H.a+H.h)dA =0

Vm

because of H,=constant. Therefore we have

(5.2) [, = )ada~o0.
Vn

Due to (1.15) and the assumptions (ii) and (iii), the integrand on the left
side of equation (5. 2) is non negative, and therefore
HlHu—Hv+1 =0 >
which implies that
klr“kz:"':km
at all points of the hypersurface V™. Accordingly every point of V™ is
umbilic.
For v=1, Theorem 5.2 becomes Yano’s one ([21], p. 440).

TueoreM 5.3. Let R™' be a Riemannian manifold which admits
a continuous one-parameter group G of conformal transformations and V™
a closed orientable hypersurface such that
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(1) Hp+¢=0 (or=0) and & H,,,,=0 for any v
1<v=m-—1),
(ii) £4>0,%>0,---,%,>0 for any v
2=2v=m—1),
(ili) inner product p=n;&" does not change the sign on V™.
Then every point of V™ is umbilic.
ProoOF. From our assumption (i) and (IT), in §3 we have the relation
(56.3) Hp=—¢.
Substituting (5. 3) into the formula (III),, we obtain

SVm(HIH,—HM) pdA =0,

which hold if and only if
HlHy_Hu-ll =0.

Then we obtain the conclusion.
Theorem 5.3 for y=1 is due to Y. Katsurada ([5], p. 292).

TureorReM 5.4. Let R be a Riemannian manifold which admits a
continuous one-parameter group G of conformal transformations and V™
a closed orientable hypersurface such that

(i) H, ,p+H,¢=0 (or =20) and & H,,,=0 for any v
1=v=m—1),

(il> k1>0, k2>0,"'a km>0a
(ill) inner product p=n;& does not change the sign on V.

Then every point of V™ is umbilic.

Proor. If we express the formula (III), as follows
g (H, \p+H.¢)dA =0,
v

then from our assumption (i) we have the relation
(5 4) Hulp = _Hu¢
Substituting (5. 4) into the formula (II), in § 3, we obtain

5.5) \,. - B H~H..)pdd =0,
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Due to (1.15) and the assumptions (ii) and (iii), the integrand on the left
side of equation (5.5) is non negative and therefore

HlH»—H;rrl = O ’
which implies that

Ay —
at all points of the hypersurface V™. Accordingly every point of V™ is
umbilic.

THEOREM 5.5. Let R™"' be a Riemannian manifold which admits a
continuous one-parameter group G of conformal transformations and V™
a closed orientable hypersurface such that

(i) — ;_bl zp (or<p) and &'H,,,=0 for any v

1

(1=v=m—1),
(ii) £,>0, k>0, -+, £, >0 for any v
2=Zv=m—1) and H,>0 (or<0) for v=1,
(i) inner product p=n;&" does not change the sign on V™.
Then every point of V™ is umbilic.

Proor. By virtue of our assumptions and (II), in §3, we obtain the
following relation

__ 9
P_ Hl.

Substituting (5. 6) into (III), in §3, we obtain

(5. 6)

| mm-m)paa=o,
[/»IL

which hold if and only if
HH—-H,,=0.

Then we obtain the conclusion.
Theorem 5.5 for v=1 is due to Y. Katsurada ([5], p. 293).

THEOREM 5.6. Let R™'' be a Riemannian manifold which admits
a continuous one-parameter group G of conformal transformations and V™
a closed orientable hypersurface such that
. H,:
i — 41
(i)

PER !

¢p=p (or<p) and &°H,,=0 for any v
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(I=sv=m—1),
(i) A >0, k>0, -, k,>0,
(i) inner product p=n;& does not change the sign on V™.
Then every point of V™ is umbilic.

Proor. The formula (III), is rewritten as follows

HP _—
By virtue of our assumptions, we have the following relation

—_ Hur
(5.7) p= i 0.

Substituting (5. 7) into (II), in §3, we obtain

1
- (HH,—H, ,)pdA =0,
SV’" Hy ( 1 1>P

which holds if and only if
HH—H,  =0.
Then we obtain the conclusion.

TueOREM 5.7. Let R™'" be a Riemannian manifold which admits
a continuous one-parameter group G of conformal transformations and V™
a closed orientable hypersurface such that
(i) H:p=—¢ for any v (2<v<m—1),
(i) H,>0,H,>0,---,H,>0,
(i1i) inner product p=n,& does not change the sign on V™.
Then every point of V" is umbilic.

Proor. On substituting the assumption (i) into the formula (II), in §3,
we obtain

(5. 8) SVW(HI—Hi)pdA ~0.

Due to the inequality (1. 16) the integrand in the left side of equation (5. 8)
is non negative, and therefore

which implies that
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at all points of the hypersurface V™. Then we obtain the conclusion.

The method of calculation referring to a differential form is learned
much from the paper [5] of Y. Katsurada.

Department of Mathematics,
Hokkaido University
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