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§1. Introduction and results.

We are concerned in this paper with the propagation speeds of solutions
of the mixed problem :

PX,D)u=f in ,>0, ,>0,

(1.1) B,(X,D)u=g; in 2,>0, =0 (j=1,2---1),
Diu=h, in 2,=0, ,>0 (k=0,1, -, m—1).
Here X=(xy, z, -+, Z,), \—1 D%:?aa?’ P(X,D) is a xstrictly hyperbolic

operator of order m, [ is the number of roots 1 with positive imaginary part
of p,(X, 7,4 06)=0 with Im >0, 6=(0,, 05+, 0,)ER*", B;(j=1,2---,1) are
differential operators of order m;. Furthermore we assume that m;Em, m;
#m; (i#j) and that P, B;(j=1,2, ---,[) are non-characteristic with respect
to the hyperplane x;=0.

Throughout the paper we assume that the coefficients of P and B; be
constant, unless the contrary is explicitly stated. We say that 0 (—(w;, ®))
is the propagation speed in the direction —(w;, ) with @, <0 of P under
the mixed boundary conditions if (—(w,, ®)) is the minimum of @(=0) with
the following property :

w2 I(rzl,a?l/})¢<supp (ult, ., .)), —(o w)>
' §Pt+max<supp (u(0, ., .), —(w, w)>
(z,%)

for any t€[0, T'] and for any solution u€C™([0 T]x R%) of (1.1) with f=0
and ¢,=0(j=1,2,---,[). Where t=x, =z, y;=2,(=2, -, n), Ri={x,
y)lx=0} and T is an arbitrary, but fixed positive number.

Let R (z,0) be the Lopatinski determinant for (1.1) with R,(z, ¢) as its
principal part. Put N=(1,0,0).. We denote by I'(P,N) the connected
component containing N in R**' of the complement of the zeros of p,, (€).

The aim of the present paper is to prove the following theorems.
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TueoreM 1. Let (0, 0)€S™™.  Set 0y (wy, w)=1. u.b. {0>0]|(1, Pw,, Pw)€
I'(P,N)}. Moreover let weS™ 2 Set 0, (w)=min{P=0|R,(1, Pw)=0}. Then
we have

p(—(oy, 0)=max {p, (0, 0)", o:(0/|o]) o}
for (1.1) with R,(1,0)#0. Where we assume —1<aw,<0.

TueOREM 2. Let P and B;(j=1, 2, ---,1) be homogeneous operators.
Assume problem (1. 1) with homogeneous boundary conditions be L*-well
posed, i. e., there are constants C>0 and T >0 such that for any fe H'([—co,
T1x R?) with supp (f)C[0, T x R* there exists a solution ue H™([—oo, T']
x R?) with supp (u)C[0, T x R? enjoining the following inequality :

el ([0, TT1x RT)=C | f1lo ([0, T]x R?),

Sfurthermore we assume that such solution be unique.

Then the propagation speed in the direction —(w,, w) with —1=Zw, <0 coin-
cides with that of solutions for Cauchy proboem with respect to the
operator P.

Theorem 2 is a direct consequence of Theorem 1 and the following

THEOREM 3. Under the assumptions of Theorem 2, the Hersh’s condi-
tion is valid for the problem (1,1), i.e., R(z,a) is not zero for any (z, o)
with Im <0 and € R* . Furthermore R (tr, o) does not vanish, whenever
(7, 4, 0)€l’ (P, N) for some real A.

It is not difficult to see that the above theorems are extended to the
mixed problems for systems of operators of the first order. In fact by
R. M. Lewis’ results [9] we were suggested the assertion of Theorem 3.
Moreover our results are also extended to the operator P such that the
hyperplane x;=0 is characteristic. Therefore it seems to us that our results
will be interesting for further investigations of energy inequalities and wave
propagations for mixed problems of hyperbolic systems.

§2. The proofs of Theorem 2 and 3.

Under the assumptions of Theorem 2 for the problem (1.1) the author
and Agemi [1] proved the following

LemMA 2. 1. ¢) Let 'V be the set {(r,0)| Im <0, 6€¢R*"', R(r, ¢)=0}.
Then S(r)={o|(z, )€V} is independent of © and its Lebesgue measure is
zero. 1i) Let (ty, 00)€S™ ™" such that the roots A of P(ty, 4, 0,)=0 are separated.

Then there is a neighborhood U (t, 6,) such that for any (r,e)eV°N
U (7o, 00) with Im <0, |t|*+|e|*=1 and for any j=1,2,---, I, k=I[+1,---,m
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(2. 1) |C; (z, 2% (z, 0), 0)|?
<Clz, 00)| Im 2} (7, 0)|| Im 2;(z, o)|| Im z| 7%,

where i (t, 6) are roots of P(z, 2, 6)=0 with Im 2} (t,6)>0 and Im ; (z, o)
<0 respectively, C(zy, 6,) is a positive constant and C,(z, A (z, 0), 0)

7 —

1, 2, ,l

=|/B,(z, 4 (z, 0), o)\ |"* |The matrix replacing 2} (z, o)
( ) in the left one by 2;(z, 9)

h

Now let §=(zy, 4, 6,)€I" (P, N). Then for any lower order term Q, (P+
Q) (10 +se,) € hyp (0) where ¢,=(0, 1,0, ---,0). Therefore P (t0+se,)€ Hyp,(0)
and since the surface x,=0 is noncharacteristic with respect to P, we see
that the roots ¢z, (s) are real, distinct and non-zero whenever s is real and not
zero. Hence it implies that the roots 1 of P(z,, 4, 6,)=0 are the form #,(1)™"
(¢:(1)+ 2+ 1) which are also real and distinct. Thus for (z;, 65)=(z,, o) ((|7o|?
+ ]aolz)*%) it satisfies the condition 1ii) of Lemma 2.1. Furthermore it follows

from the fact that 2, are all real and distinct that for some neighborhood
U (zg, 03) and for all (z/, ¢")e VeN U (i, 05) with Im ' <0

[Im 2%(<’, 6")| =0 (|Im 7'|).
Thus from (2.1) we see that for such (¢, ¢')
|C; (7, 25 (7', 0'), ¢')| S K' < 00

Furthermore by the homogeneity of P and B; we see that for some neigh-
borhood U (zy, 6y), for any (r, )€ V°N U (zy, 6,) with Im <0 and for any
j=1 - 1; k=l+1,--,m

(2.2) |C;(z, A (z, 0, )| S K< o0.

\

Since S=.S(r) is independent of 7, we can select a real analytic curve
o (p)=0(r) for n€[—e, ¢] (¢>>0) such that
T =1y+1), ¢(0)=0, and ¢ ()&.S for ne[—¢,0).
Now let F(z, i) be
B, (z, l‘, a(z)), B (z, ,2?* (z,0(7)), o()), -+, Bilz, '2f+ (z, 0(7)), o(7))

Bi(z, 2, 6(z)), Bi(z, % (z,0(c)), a(2)), -+, By(z, 2 (z, 0(2)), a(c)|.
Then R(z, a(z)) - lgj(l;' (z, 6(z)— A} (z, 6(z)))=F(z, & (z, 6(z)) which we denote

by R(z). Since for <0 and for r=7,+i5(zr, 6(z)) & V, R(z)=0.
Therefore if R(r,)=0, there is an integer £2=1 such that for some a,#0,
R(z)=a, »*(1+0(p)), i.e.,
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(2.3) F(z, 4 (z, a(c)) = 0(|9|*).
Then from (2. 2) and (2. 3) it follows that
F(z, 2; (7, (7)) = 0(|n}*) for i=[+1, -+, m,

and obviously we see that
F(z,2; (z,0(z))=0 for j=2,---, 1.

Since degree, F(r, )= max m,<m, by the above equalities we see that
z

g1, e,

F(z,, )=0.

Furthermore since F(r, )= B(z, 4, 6(t)) An{(z)+ - + B,(t, 4, a(z))+ A,,(z), where
Ay, -+, Ay are ({—1,1—1) cofactors of R(z), and by hypotheses in §1 B;(z,,
A, 00)(i=1,2, -+, [) are linearly independent as functions of 1, we obtain that

Ayl =0 (=1,2,---,1).
By the same method used above we also see that
(2. 4) At =0 (4, 7=1,2, -, 1).
If =2, using (2, 4) and differentiating F(4, z) with respect to z,
By (z, 2;(z, 0(1)), (1)) AL(x)+ -+ +B,(z, 4;(z, 0()), 0(r))
A (7)=0(jp|) for i=1,2,-,m.
Therefore from the same consideration used above it follows that
| Az;(2)] = 0(|7]*) (Gj=1,2,-10).
By the induction with respect to k we conclude that
(2.5) | Ass ()] = 0(In]*) (6,j=1,2,-1).

Finally by simple calculation with respect to determinant and from (2.5) it
implies that
R(z) ' =|Ay0) 57 1,2, -+, I S 0(|9]*).

Therefore from (2. 3) we see that ({—1) 2=l which is contradiction. Thus
we have the fact that the Lopatinski determinant R (z, ¢) is not zero when-
ever (z,2,0)¢l'(P,N) for some A. In particular (z, 0, 0)=zNeI'(P, N), hence
R(1,0)#0. Therefore by corollary 3.3 in our paper [1] we see that R(z,
0)#0 for (¢, ¢) with Im <0 and ¢e€R*!, i.e., V is empty. Thus we com-
plete our proof of Theorem 3.

Now we show that Theorem 1 and 3 imply Theorem 2. To show
this we have only to consider the case where —1<w,<0. Let (1, pw, pw)€
I'(P,N). Then by Theorem 3 we see that R(1, pw)#0. Therefore by the
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definitions described in Theorem 1 we obtain that

ooy, ) = pi (0] @) - o] 7

Hence by Theorem 1 we see that

p(—(w, ®) = po (0, ®)7",
which is the propagation speed with respect to the solutions of Cauchy
problem for P in the direction —(w,, ).

§3. The proof of Theorem 1.

In section 2 we deal only with L*-sense-solutions, but hereafter we treat
C™-solutions of problems (1.1) which is not always well posed. For this
purpose we use the following

LEMmMA 3.1. Let coefficients of P, B; be real analytic and f=h,=0(k
=0, -, m—1) and g,=7;- x5 ™ H(z,) (=1, ---, ) where 7, are analytic in
complex neighborhood U(0) of the origin and let H(x,) be the Heaviside
Sunction with respect to x, Assume R,(1,0)%0 where R, is the principal
part of Lopatinski determinant with respect to the constant coefficients pro-
blem (1. 1) resulting from freezing the coefficients at the origin.

Then there exist a neighborhood U, (0) independents of ~;(i=1,2,---, 1)
and a piecewise real analytic solution u(X) of (1,1) defined in U, (0) with
1,20 such that snpp (u(X)) in U, (0) with 2, =0 is contained in R, x R™.

We can prove Lemma 3.1 by a simple modification of Lax’s considera-
tion and Mizohata’s estimate (See also Hamada [4]).

Using Lemma 3.1 and Hormander-Hersh’s results [5] we obtain the
following

LEmMMA 3.2. Let the coefficients of P, B;(j=1, ---,1) be constant and
let Ry(z, w) be not identically zero. Then in order that (1.1) have a non-
trivial null solution it is necessary and sufficient that

Ry(1,0)=0.

Now we proceed to prove Theorem 1. Under the assumption in Theo-
rem 1, let £é=(1, pw,, pw) with p<0(w, w). Then by the definition of g,
éel'(P, N). Now we consider the case # (w/|o|])- o] ' <O (w,w). H o<
0, (o/|lol) lo]| !, Ro(1, Pw)=R,(1, o|@]| o/|w||)#0. Then by the coordinate
transformation

U =t+ 71 Pw; Yy,
(3.1) Yi="Y: ((=2,3, -, n),

=z,
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it follows that
P(Dt, ny Dy) = P(Dt/, Dz/ =+ PwlD,/, Dy/ + AOCUD;/),
B,(D,, D,, D,)= B;(D,, D,, + pw,D,, D, + PoD,,)

which we denote by P'(D,, D,,, D,,), Bj(D,,D,,D,) respectively. Then
P'(1,2 0)=P(l, i+ Pw, pw)==P((1, pw, Pw)+ 4e,). Since &' (P, N), as in the
proof of Theorem 3, we see that the number of negative roots 1 of P'(1,
2,0)=0 is / and the Lopatinski determinant R,(FP’, B;; 1, 0) corresponding
to the homogeneous operators P’ Bj are well defined and is equal to R,(1,
pw)#0. Furthermore it is easy to see that all the assumptions in the
introduction are valid for P, B} Hence from Lemma 3.1 with respect to
its dual problem it follows that the Holmgren uniqueness theorem with
respect to P, B, with the initial surface ¢+ 0w, -x+0<w,y>=0 is true.
From the fact that P, B; are of constant coefficients and by translating the
dependence domain of solutions, we see that ©(—(w, ))=0; (0/||lw])! ||o].
On the other hand if #=p,(0w/||w])- |o| !, then by the coordinate trans-
formation analogous to (3.1) the operators P, B; are transformed to P’, Bj
respectively such that R, (P, B} ; 7, ®) does not vanish identically, but that

R,(P",B}; 1,0)=0.

Therefore from Lemma 3.2 we see that there exists a non-trivial solution

u(x) of
Pu(X)=0 in x,>0,

(3.2) B,u(X)=0in ;=0 (7=1,2,---,10),
u(X)=0 in t+pwz,+0 <w,y> =0.

Then it follows from (3. 2) that

Max <supp u(0, z, y), —(w, w)> =0.

T, Y
Max <supp ult, z, v), —(w, w)> =0

which implies P(—(w, )< 0 (w/|w]]) * |lo||. Here we use, if necessary,
translations of a non-trivial null solution.

Finally we must consider the case where ©,(w/|w|])l|lo] =0, (®, ®), but
we have already known that £,(w,, @) ' is the propagation speed of Cauchy
problem for P in the direction —(w;, w). Therefore it is not difficult to see
that p(—(w, ©))=0,(w,, ») "

§4. Example.
Let P(D,, D, D,)=D:—D:—D? and B(D,, D,, D,)=D,+bD,+cD,, where
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b and ¢ are real.

Then if |b|=< —c(c<0) or H*+1<c*(¢>0), for any (w, ) P(—(0), )=
2o, ®) !

If c=1, R(1,0)=0. Finally in the other case P (—(®,, ®))>0(w;, w) * for
some (w,, w), i.e., there exists at least one supersonic wave (see Duff [3]).

Department of Mathematics
Hokkaido University
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