On the propagation speed of hyperbolic operator with mixed boundary conditions

Dedicated to Professor Yoshie Katsurada on her 60th birthday

By Taira Shirota

§ 1. Introduction and results.

We are concerned in this paper with the propagation speeds of solutions of the mixed problem:

(1.1)
$$P(X, D) u = f \text{ in } x_0 > 0, x_1 > 0,$$

$$B_j(X, D) u = g_j \text{ in } x_0 > 0, x_1 = 0 \qquad (j = 1, 2 \cdots l),$$

$$D_{x_0}^k u = h_k \text{ in } x_0 = 0, x_1 > 0 \qquad (k = 0, 1, \cdots, m-1).$$

Here $X=(x_0,x_1,\cdots,x_n)$, $\sqrt{-1}$ $D_{x_i}=\frac{\partial}{\partial x_i}$, P(X,D) is a x_0 -strictly hyperbolic operator of order m,l is the number of roots λ with positive imaginary part of $p_m(X,\tau,\lambda,\sigma)=0$ with $Im\ \tau>0$, $\sigma=(\sigma_2,\sigma_3\cdots,\sigma_n)\in R^{n-1}$, $B_j(j=1,2\cdots,l)$ are differential operators of order m_j . Furthermore we assume that $m_i\nleq m,m_i\neq m_j\ (i\neq j)$ and that $P,\ B_j(j=1,2,\cdots,l)$ are non-characteristic with respect to the hyperplane $x_1=0$.

Throughout the paper we assume that the coefficients of P and B_j be constant, unless the contrary is explicitly stated. We say that $\rho(-(\omega_1, \omega))$ is the propagation speed in the direction $-(\omega_1, \omega)$ with $\omega_1 \leq 0$ of P under the mixed boundary conditions if $\rho(-(\omega_1, \omega))$ is the minimum of $\rho(\geq 0)$ with the following property:

(1. 2)
$$\max_{(x,y)} \left\langle \text{supp } (u(t,.,.)), -(\omega_1, \omega) \right\rangle$$

$$\leq \rho t + \max_{(x,y)} \left\langle \text{supp } (u(0,.,.)), -(\omega_1, \omega) \right\rangle$$

for any $t \in [0, T]$ and for any solution $u \in C^m([0, T] \times R^n_+)$ of (1, 1) with f = 0 and $g_j = 0$ $(j = 1, 2, \dots, l)$. Where $t = x_0$, $x = x_1$, $y_i = x_i$ $(i = 2, \dots, n)$, $R^n_+ = \{x, y \mid x \ge 0\}$ and T is an arbitrary, but fixed positive number.

Let $R(\tau, \sigma)$ be the Lopatinski determinant for (1.1) with $R_0(\tau, \sigma)$ as its principal part. Put N=(1,0,0). We denote by $\Gamma(P,N)$ the connected component containing N in R^{n+1} of the complement of the zeros of $p_m(\xi)$.

The aim of the present paper is to prove the following theorems.

26 T. Shirota

Theorem 1. Let $(\omega_1, \omega) \in S^{n-1}$. Set $\rho_0(\omega_1, \omega) = 1$. $u.b. \{\rho > 0 | (1, \rho \omega_1, \rho \omega) \in \Gamma(P, N)\}$. Moreover let $\omega \in S^{n-2}$. Set $\rho_1(\omega) = \min \{\rho \geq 0 | R_0(1, \rho \omega) = 0\}$. Then we have

$$\rho(-(\omega_1, \omega)) = max \{ \rho_0(\omega_1, \omega)^{-1}, \rho_1(\omega/\|\omega\|)^{-1} \|\omega\| \}$$

for (1,1) with $R_0(1,0)\neq 0$. Where we assume $-1 < \omega_1 \leq 0$.

THEOREM 2. Let P and $B_j(j=1,2,\cdots,l)$ be homogeneous operators. Assume problem (1,1) with homogeneous boundary conditions be L^2 -well posed, i.e., there are constants C>0 and T>0 such that for any $f\in H^1([-\infty,T]\times R^n_+)$ with supp $(f)\subset [0,T]\times R^n_+$ there exists a solution $u\in H^m([-\infty,T]\times R^n_+)$ with supp $(u)\subset [0,T]\times R^n_+$ enjoining the following inequality:

$$||u||_{m-1}([0,T]\times R_+^n) \leq C||f||_0([0,T]\times R_+^n),$$

furthermore we assume that such solution be unique.

Then the propagation speed in the direction $-(\omega_1, \omega)$ with $-1 \le \omega_1 \le 0$ coincides with that of solutions for Cauchy proboem with respect to the operator P.

Theorem 2 is a direct consequence of Theorem 1 and the following

Theorem 3. Under the assumptions of Theorem 2, the Hersh's condition is valid for the problem (1,1), i.e., $R(\tau,\sigma)$ is not zero for any (τ,σ) with Im $\tau < 0$ and $\sigma \in R^{n-1}$. Furthermore $R(\tau,\sigma)$ does not vanish, whenever $(\tau,\lambda,\sigma) \in \Gamma(P,N)$ for some real λ .

It is not difficult to see that the above theorems are extended to the mixed problems for systems of operators of the first order. In fact by R. M. Lewis' results [9] we were suggested the assertion of Theorem 3. Moreover our results are also extended to the operator P such that the hyperplane $x_1=0$ is characteristic. Therefore it seems to us that our results will be interesting for further investigations of energy inequalities and wave propagations for mixed problems of hyperbolic systems.

§ 2. The proofs of Theorem 2 and 3.

Under the assumptions of Theorem 2 for the problem (1.1) the author and Agemi [1] proved the following

Lemma 2. 1. i) Let V be the set $\{(\tau, \sigma) | \text{ Im } \tau < 0, \ \sigma \in R^{n-1}, \ R(\tau, \sigma) = 0\}$. Then $S(\tau) = \{\sigma | (\tau, \sigma) \in V\}$ is independent of τ and its Lebesgue measure is zero. ii) Let $(\tau_0, \sigma_0) \in S^{n-1}$ such that the roots λ of $P(\tau_0, \lambda, \sigma_0) = 0$ are separated.

Then there is a neighborhood $U(\tau_0, \sigma_0)$ such that for any $(\tau, \sigma) \in V^c \cap U(\tau_0, \sigma_0)$ with Im $\tau < 0$, $|\tau|^2 + |\sigma|^2 = 1$ and for any $j = 1, 2, \dots, l$, $k = l + 1, \dots, m$

$$(2. 1) |C_{j}(\tau, \lambda_{k}^{-}(\tau, \sigma), \sigma)|^{2}$$

$$\leq C(\tau_{0}, \sigma_{0}) |Im \lambda_{j}^{+}(\tau, \sigma)| |Im \lambda_{k}^{-}(\tau, \sigma)| |Im \tau|^{-2},$$

where $\lambda_i^{\pm}(\tau, \sigma)$ are roots of $P(\tau, \lambda, \sigma) = 0$ with Im $\lambda_i^{+}(\tau, \sigma) > 0$ and Im $\lambda_i^{-}(\tau, \sigma) < 0$ respectively, $C(\tau_0, \sigma_0)$ is a positive constant and $C_i(\tau, \lambda_k^{-}(\tau, \sigma), \sigma)$

$$= \left| \left| \begin{array}{c} B_{h}\left(\tau, \lambda_{i}^{+}\left(\tau, \sigma\right), \sigma\right) \\ i \to \\ h \downarrow \end{array} \right|^{-1} \cdot \left| \begin{array}{c} The \ matrix \ replacing \ \lambda_{j}^{+}\left(\tau, \sigma\right) \\ in \ the \ left \ one \ by \ \lambda_{k}^{-}\left(\tau, \sigma\right) \\ \end{array} \right|.$$

Now let $\theta = (\tau_0, \lambda_0, \sigma_0) \in \Gamma(P, N)$. Then for any lower order term Q, $(P + Q)(t\theta + se_1) \in hyp(\theta)$ where $e_1 = (0, 1, 0, \dots, 0)$. Therefore $P(t\theta + se_1) \in Hyp_0(\theta)$ and since the surface $x_1 = 0$ is noncharacteristic with respect to P, we see that the roots $t_k(s)$ are real, distinct and non-zero whenever s is real and not zero. Hence it implies that the roots λ of $P(\tau_0, \lambda, \sigma_0) = 0$ are the form $t_k(1)^{-1} \cdot (t_k(1) \cdot \lambda_0 + 1)$ which are also real and distinct. Thus for $(\tau'_0, \sigma'_0) = (\tau_0, \sigma_0)(||\tau_0|^2 + |\sigma_0|^2)^{-\frac{1}{2}})$ it satisfies the condition ii) of Lemma 2. 1. Furthermore it follows from the fact that λ_k are all real and distinct that for some neighborhood $U(\tau'_0, \sigma'_0)$ and for all $(\tau', \sigma') \in V^c \cap U(\tau'_0, \sigma'_0)$ with $Im \tau' < 0$

$$|Im \lambda_i^{\pm}(\tau', \sigma')| = 0 (|Im \tau'|).$$

Thus from (2.1) we see that for such (τ', σ')

$$|C_j(\tau', \lambda_k^-(\tau', \sigma'), \sigma')| \leq K' < \infty$$
.

Furthermore by the homogeneity of P and B_j we see that for some neighborhood $U(\tau_0, \sigma_0)$, for any $(\tau, \sigma) \in V^c \cap U(\tau_0, \sigma_0)$ with $Im \ \tau < 0$ and for any $j = 1, \dots, l; \ k = l + 1, \dots, m$

$$(2. 2) |C_j(\tau, \lambda_k^-(\tau, \sigma, \sigma)| \leq K < \infty.$$

Since $S = S(\tau)$ is independent of τ , we can select a real analytic curve $\sigma(\eta) = \sigma(\tau)$ for $\eta \in [-\varepsilon, \varepsilon]$ ($\varepsilon > 0$) such that

$$\tau = \tau_0 + \mathrm{i} \eta, \ \sigma\left(0\right) = \sigma_0 \ \mathrm{and} \ \sigma\left(\eta\right) \not \in S \ \mathrm{for} \ \eta \in [\, -\varepsilon, \, 0) \, .$$

Now let $F(\tau, \lambda)$ be

$$\begin{vmatrix} B_1\left(\tau,\,\lambda,\,\sigma(\tau)\right)\!, & B_1\left(\tau,\,\lambda_2^+(\tau,\,\sigma(\tau))\!, & \sigma(\tau)\right)\!, & \cdots, & B_1(\tau,\,\lambda_t^+(\tau,\,\sigma(\tau))\!, & \sigma(\tau)\right)\!\\ \vdots & & \vdots & & \vdots \\ B_t\left(\tau,\,\lambda,\,\sigma(\tau)\right)\!, & B_t\left(\tau,\,\lambda_2^+(\tau,\,\sigma(\tau))\!, & \sigma(\tau)\right)\!, & \cdots, & B_t(\tau,\,\lambda_t^+(\tau,\,\sigma(\tau))\!, & \sigma(\tau)\right) \end{vmatrix}.$$

Then $R(\tau, \sigma(\tau)) \cdot \prod_{i>j} (\lambda_i^+(\tau, \sigma(\tau)) - \lambda_j^+(\tau, \sigma(\tau))) = F(\tau, \lambda_1^+(\tau, \sigma(\tau)))$ which we denote by $R(\tau)$. Since for $\eta < 0$ and for $\tau = \tau_0 + i\eta(\tau, \sigma(\tau)) \notin V$, $R(\tau) \not\equiv 0$.

Therefore if $R(\tau_0)=0$, there is an integer $k \ge 1$ such that for some $a_k \ne 0$, $R(\tau)=a_k \eta^k(1+0(\eta))$, i.e.,

28 T. Shirota

$$(2.3) F(\tau, \lambda_1^+(\tau, \sigma(\tau))) = O(|\eta|^k).$$

Then from (2.2) and (2.3) it follows that

$$F(\tau, \lambda_t^-(\tau, \sigma(\tau))) = O(|\eta|^k)$$
 for $i = l + 1, \dots, m$,

and obviously we see that

$$F(\tau, \lambda_i^+(\tau, \sigma(\tau))) \equiv 0$$
 for $j = 2, \dots, l$.

Since degree, $F(\tau, \lambda) = \max_{i=1, \dots, l} m_i < m$, by the above equalities we see that $F(\tau_0, \lambda) \equiv 0$.

Furthermore since $F(\tau, \lambda) = B_1(\tau, \lambda, \sigma(\tau))$ $A_{11}(\tau) + \cdots + B_l(\tau, \lambda, \sigma(\tau)) \cdot A_{1l}(\tau)$, where A_{11}, \dots, A_{1l} are (l-1, l-1) cofactors of $R(\tau)$, and by hypotheses in § 1 $B_l(\tau)$, λ, ρ_0 $(l=1, 2, \dots, l)$ are linearly independent as functions of λ , we obtain that

$$A_{1i}(\tau_0) = 0$$
 $(i = 1, 2, \dots, l).$

By the same method used above we also see that

(2.4)
$$A_{ij}(\tau_0) = 0$$
 $(i, j = 1, 2, \dots, l).$

If $k \ge 2$, using (2, 4) and differentiating $F(\lambda, \tau)$ with respect to τ ,

$$B_1(\tau, \lambda_i(\tau, \sigma(\tau)), \sigma(\tau)) \quad A'_{11}(\tau) + \dots + B_t(\tau, \lambda_i(\tau, \sigma(\tau)), \sigma(\tau)) \cdot A'_{1t}(\tau) = 0 (|\eta|) \qquad \text{for } i = 1, 2, \dots, m.$$

Therefore from the same consideration used above it follows that

$$|A_{ij}(\tau)| = 0 (|\eta|^2)$$
 $(i, j=1, 2, \dots, l).$

By the induction with respect to k we conclude that

$$|A_{ij}(\tau)| = 0 (|\eta|^k) \qquad (i, j = 1, 2, \dots, l).$$

Finally by simple calculation with respect to determinant and from (2.5) it implies that

$$R(\tau)^{l-1} = |A_{ij}(\tau) \stackrel{i \rightarrow}{{}_{j\downarrow}} 1, 2, \, \cdots, \, l| \leqq 0 \, (|\eta|^{kl}) \, .$$

Therefore from (2.3) we see that (l-1) $k \ge kl$ which is contradiction. Thus we have the fact that the Lopatinski determinant $R(\tau, \sigma)$ is not zero whenever $(\tau, \lambda, \sigma) \in \Gamma(P, N)$ for some λ . In particular $(\tau, 0, \mathbf{0}) = \tau N \in \Gamma(P, N)$, hence $R(1, \mathbf{0}) \ne 0$. Therefore by corollary 3.3 in our paper [1] we see that $R(\tau, \sigma) \ne 0$ for (τ, σ) with $Im \ \tau < 0$ and $\sigma \in R^{n-1}$, i.e., V is empty. Thus we complete our proof of Theorem 3.

Now we show that Theorem 1 and 3 imply Theorem 2. To show this we have only to consider the case where $-1 < \omega_1 \le 0$. Let $(1, \rho\omega_1, \rho\omega) \in \Gamma(P, N)$. Then by Theorem 3 we see that $R(1, \rho\omega) \ne 0$. Therefore by the

definitions described in Theorem 1 we obtain that

$$\rho_0(\boldsymbol{\omega}_1, \boldsymbol{\omega}) \leq \rho_1(\boldsymbol{\omega}/\|\boldsymbol{\omega}\|) \cdot \|\boldsymbol{\omega}\|^{-1}.$$

Hence by Theorem 1 we see that

$$\rho(-(\omega_1, \omega)) = \rho_0(\omega_1, \omega)^{-1},$$

which is the propagation speed with respect to the solutions of Cauchy problem for P in the direction $-(\omega_1, \omega)$.

§ 3. The proof of Theorem 1.

In section 2 we deal only with L²-sense-solutions, but hereafter we treat C^m-solutions of problems (1.1) which is not always well posed. For this purpose we use the following

Lemma 3.1. Let coefficients of P, B_j be real analytic and $f=h_k=0$ $(k=0,\dots,m-1)$ and $g_i=\tilde{\gamma}_i\cdot x_0^{m-m_i}\cdot H(x_0)$ $(i=1,\dots,l)$ where $\tilde{\gamma}_i$ are analytic in complex neighborhood $U(\mathbf{0})$ of the origin and let $H(x_0)$ be the Heaviside function with respect to x_0 . Assume $R_0(1,\mathbf{0})\neq 0$ where R_0 is the principal part of Lopatinski determinant with respect to the constant coefficients problem (1,1) resulting from freezing the coefficients at the origin.

Then there exist a neighborhood $U_1(\mathbf{0})$ independents of $\tilde{r}_i(i=1, 2, \dots, l)$ and a piecewise real analytic solution u(X) of (1, 1) defined in $U_1(\mathbf{0})$ with $x_1 \ge 0$ such that snpp (u(X)) in $U_1(\mathbf{0})$ with $x_1 \ge 0$ is contained in $R_+ \times R_+^n$.

We can prove Lemma 3.1 by a simple modification of Lax's consideration and Mizohata's estimate (See also Hamada [4]).

Using Lemma 3.1 and Hörmander-Hersh's results [5] we obtain the following

Lemma 3.2. Let the coefficients of P, $B_j(j=1,\dots,l)$ be constant and let $R_0(\tau,\omega)$ be not identically zero. Then in order that (1,1) have a nontrivial null solution it is necessary and sufficient that

$$R_0(1, \mathbf{0}) = 0$$
.

Now we proceed to prove Theorem 1. Under the assumption in Theorem 1, let $\xi = (1, \rho \omega_1, \rho \omega)$ with $\rho < \rho_0(\omega_1, \omega)$. Then by the definition of ρ_0 , $\xi \in \Gamma(P, N)$. Now we consider the case $\rho_1(\omega/\|\omega\|) \cdot \|\omega\|^{-1} < \rho_0(\omega_1, \omega)$. If $\rho < \rho_1(\omega/\|\omega\|) \|\omega\|^{-1}$, $R_0(1, \rho \omega) = R_0(1, \rho \|\omega\| \|\omega/\|\omega\|) \neq 0$. Then by the coordinate transformation

(3. 1)
$$\begin{cases} t' = t + \sum_{i=1}^{n} \rho \omega_i \cdot y_i, \\ y'_i = y_i \\ x' = x, \end{cases}$$
 $(i = 2, 3, \dots, n),$

30 T. Shirota

it follows that

$$P(D_{t}, D_{x}, D_{y}) = P(D_{t'}, D_{x'} + \rho \omega_{1} D_{t'}, D_{y'} + \rho \omega D_{t'}),$$

$$B_{s}(D_{t}, D_{x}, D_{y}) = B_{s}(D_{t'}, D_{x'} + \rho \omega_{1} D_{t'}, D_{y'} + \rho \omega D_{t'})$$

which we denote by $P'(D_{t'}, D_{x'}, D_{y'})$, $B'_j(D_{t'}, D_{x'}, D_{y'})$ respectively. Then $P'(1, \lambda, \mathbf{0}) = P(1, \lambda + \rho \omega_1, \rho \omega) = P((1, \rho \omega_1, \rho \omega) + \lambda e_1)$. Since $\xi \in \Gamma(P, N)$, as in the proof of Theorem 3, we see that the number of negative roots λ of $P'(1, \lambda, \mathbf{0}) = 0$ is l and the Lopatinski determinant $R_0(P', B'_j; 1, \mathbf{0})$ corresponding to the homogeneous operators $P'(B'_j)$ are well defined and is equal to $R_0(1, \rho \omega) \neq 0$. Furthermore it is easy to see that all the assumptions in the introduction are valid for $P'(R'_j)$. Hence from Lemma 3.1 with respect to its dual problem it follows that the Holmgren uniqueness theorem with respect to $P(R'_j)$ with the initial surface $P(R'_j) = P(R'_j) = P($

On the other hand if $\rho = \rho_1(\omega/\|\omega\|) \cdot \|\omega\|^{-1}$, then by the coordinate transformation analogous to (3.1) the operators P, B_j are transformed to P', B'_j respectively such that $R_0(P', B'_j; \tau, \omega)$ does not vanish identically, but that

$$R_0(P', B'_j; 1, \mathbf{0}) = 0.$$

Therefore from Lemma 3.2 we see that there exists a non-trivial solution u(x) of

(3.2)
$$Pu(X) = 0 \text{ in } x_1 > 0,$$

$$B_j u(X) = 0 \text{ in } x_1 = 0 \qquad (j = 1, 2, \dots, l),$$

$$u(X) = 0 \text{ in } t + \rho \omega_1 x_1 + \rho < \omega, y > \leq 0.$$

Then it follows from (3.2) that

$$\begin{split} & \underset{x, y}{\operatorname{Max}} \ \left\langle \operatorname{supp} \ u(0, x, y), \ -(\omega_{\scriptscriptstyle 1}, \omega) \right\rangle = 0 \ . \\ & \underset{x, y}{\operatorname{Max}} \ \left\langle \operatorname{supp} \ u(t, x, y), \ -(\omega_{\scriptscriptstyle 1}, \omega) \right\rangle = t \rho^{-1} \end{split}$$

which implies $\rho(-(\omega_1, \omega)) \leq \rho_1(\omega/\|\omega\|)^{-1} \cdot \|\omega\|$. Here we use, if necessary, translations of a non-trivial null solution.

Finally we must consider the case where $\rho_1(\omega/\|\omega\|) \|\omega\|^{-1} \ge \rho_0(\omega_1, \omega)$, but we have already known that $\rho_0(\omega_1, \omega)^{-1}$ is the propagation speed of Cauchy problem for P in the direction $-(\omega_1, \omega)$. Therefore it is not difficult to see that $\rho(-(\omega_1, \omega)) = \rho_0(\omega_1, \omega)^{-1}$.

§ 4. Example.

Let
$$P(D_t, D_x, D_y) = D_t^2 - D_x^2 - D_y^2$$
 and $B(D_t, D_x, D_y) = D_x + bD_y + cD_t$, where

b and c are real.

Then if $|b| \le -c(c < 0)$ or $b^2 + 1 < c^2(c > 0)$, for any $(\omega_1, \omega) \rho(-(\omega_1, \omega)) = \rho_0(\omega_1, \omega)^{-1}$.

If c=1, $R(1, \mathbf{0})=0$. Finally in the other case $P(-(\omega_1, \omega)) > P_0(\omega_1, \omega)^{-1}$ for some (ω_1, ω) , i.e., there exists at least one supersonic wave (see Duff [3]).

Department of Mathematics Hokkaido University

Bibliography

- [1] R. AGEMI and T. SHIROTA: On necessary and sufficient conditions for L²-well posensness of mixed problems for hyperbolic equations. Jour. Fac, Sci. Hokkaido, Univ., Ser. I, Vol. 21, No. 2, (1970), 133-151.
- [2] R. AGEMI and T. SHIROTA: On necessary and sufficient conditions for L²-well posensness of mixed problems for hyperbolic equations II. Jour. Fac. Sci. Hokkaido, Univ., Ser. I, Vol. 22, (to appear).
- [3] G. F. D. DUFF: On wave fronts and boundary waves. Comm. Pure and Appl. Math. 17 (1964), 189-225.
- [4] Y. HAMADA: The singularities of the solutions of the Cauchy problem. Pcbl. R. I. M. S. Kyoto Univ. Ser. A, 5 (1969), 21-41.
- [5] R. HERSH: Boundary conditions for equations of evolution. Arch. Rational Mech. Anal. 16 (1964), 243–264.
- [6] R. HERSH: On surface waves with finite and infinite speed of propagation. Arch. for Rational Mech. Anal. 19 (1965), 308-316.
- [7] M. IKAWA: On the mixed problem for the wave equation with an oblique derivative boundary condition. Proc. Japan Acad. 44 (1968), 1033-1037.
- [8] H. O. KREISS: Initial boundary value problems for hyperbolic system. Comm. Pure and Appl. Math. 11 (1970), 175-194.
- [9] R. M. LEWIS: Dicontinuous initial value problems for symmetric linear differential equations. J. Math. Mech., 7 (1958), 571-592.

(Received April 27, 1971)