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~ 1. Introduction and results. 

We are concerned in this paper with the propagation speeds of solutions 

of the mixed problem : 

P(X, D)u=f in xo>O , X1 >0 , 

(1. 1) Bj(X, D)u = ゎ in xo>O , x1 =0 (j= 1, 2…l) , 

DLZ4= ん in Xo = 0 , Xl>O (k=O , l ,… , m-1). 

一~ a 
Here X = (xo , x [, …, A), d-1 Dzz=吾云， P(X, D) is a x，同trictly hyperholic 

operator of order m , l is the number of roots ﾀ with positive imaginary part 
of ρ明 (X， じん σ)=0 with 1m 7" >0， σ=(σ2， σ3 ・ 1σπ)εRnI， BJ(j=I， 2 … ， l) are 

differential operators of order mj・ Furthermore we assume that mi -:þ m , mi 
学mj (i*j) and that P , Bj(j=l , 2, …, l) are non-characteristic with respect 
to the hyperplane x1 = O. 

Throughout the paper we assume that the coefficients of P and B j be 
constant, unless the contrary is explicitly stated. We say that ρ(一(ω[， ω)) 

is the propagation speed in the direction 一(ω[， ω) with ω1 三 o of P under 

the mixed boundary conditions ifρ(一(ω[， ω)) is the minimum ofρ(孟 0) with 

the following property: 

(1. 2) 

max¥ supp (u(t, ., .)), -(ωhω) ) 
C"' ， y) 、 J

豆 ρt+与す〈叩
for any tε [0， T] and for any solution uε Cm([o T] x R~) of (1. 1) with f=O 

and gj=0 (j=1 , 2, …, l). Where t =品， x=x[, Yi=ぬ (i=2γ ・・ ， n)， R~ ={x, 
y)[x;;;;O} and T is an arbitrary, but f�ed positive numher. 
Let R (7"， σ) be the Lopatinski determinant for (1. 1) with Ro (7"， σ) as its 

principal part. Put N = (1, 0, 0). We denote by r (P, N) the connected 
component containing N in Rn+l of the complement of the zeros of Pm (ご).
The aim of the present paper is to prove the following theorems. 
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THEOREM 1. Let (ωhω)ES"-I. Set ρ。 (ωhω)=1. u.b.{ρ>01(1 ， ρωbρω)ε 

r (P, N)}. Moreover let (J) ES,, -2. Set ρ1 (ω)=min {ρ孟OIRo (l ， ρω)=O}. Then 

we have 

ρ(一(ωbω))=max{Po (ωbωt\ ρdω/11ω11)-111ωII} 

for (1. 1) with Ro (1 ， 0) 学 O. Where we assume -1 <ω1 三五 O.

THEOREM 2. Let P and B j (j=l , 2 ， ・." l) be homogeneous oper.μtors. 

Assume problem (1. 1) with homogeneous boundary conditions be D-well 

posed, i. e. , there are constanぉ C>O and T>O such that for any fEH1 (卜∞，

T] x R~) τvith supp (f)c[O , T] x R'~ there exists a solution uεH叫([∞， T] 

x Rr:) with suPlう (u)c[O， T]xR空間yoining the following inequality : 

lI ulい 1 ([0, T] x R'~)豆 CIIfllo ([0, T] x Rり，

furthermore we assume that such solution be unique. 

Then the propagation ~ρeed in the direction 一(ωbω) with -1:;玉 ω12玉 o coinｭ

cides with that of solutions for Cauchy 1りroboem with re.やect to the 

operator P. 

Theorem 2 is a direct consequence of Theorem 1 and the following 

THEOREM 3. Under the ωsumptions of Theorem 2, the Hersh' s condi司

tion β valid for the ρroblem (1 , 1), i. e. , R (7'， σ) is not zero for any (7'， σ) 

with 1m 7'<0 and σε R" 1. Furthermore R (7'， σ) does not vanish , whenever 
(7', À， σ)εr (P, N) for some real ﾀ. 

It is not di伍cult to see that the above theorems are extended to the 

mixed problems for systems of operators of the f�st order. In fact by 

R. M. Lewis' results [9] we were suggested the assertion of Theorem 3. 
Moreover our results are also extended to the operator P such that the 

hyperplane x1 = 0 is characteristic. Therefore it seems to us that our results 

will be interesting for further investigations of energy inequalities and wave 

propagations for mixed problems of hyperbolic systems. 

~ 2. The proofs of Theorem 2 and 3. 

Under the assumptions of Theorem 2 for the problem (1. 1) the author 

and Agemi [1] proved the following 

LEMMA 2. 1. i) Let V be the set {(7'， σ)1 Im 7' <0， σε Rn- 1, R (7'， σ)=O}. 
Then S (7')= {σ1 (7'， σ)ε V} is indφendent of 7' and iぉ Lebesgue measure is 

zer・o. ii) Let (7'0' σ。)ε S，， -1 such that the rooおえザ P(τ0， À， σ。)=0 a陀 5φarated.

Then there is a neighborhood U(7'o， σ。) such that for any (7'， σ)EVcn 

U (7'0'σ。)ωith 1m 7' く 0， 17'12+ lal2= 1 and for αり j=1， 2， "', l, k=l+l , "', m 
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(2.1) [Cj (τ， Àk (τ， σ)， σw 

壬 C (!"o ， σ。)[ Im À;(!"， σ)[[Im Àk(!"' σ)[[ Im !"[-2 , 

ωhere ﾀt (!"， σ) are rooぉ of P(τ， À， σ)=0ωith Im ﾀ: (!"， σ)>0 and Im む(!"， σ) 

<0 re.学ectively， C(!"o， σ。) is a ρωitive const仰t and Cj(!"， Àk(!"' σ)， σ) 

= 1 IBh (!"，訂 (τ， σ)， σ)\1-1 IThe matrix nφlacing ﾀ; (!"， σ) 

¥ :• 1, 2, "', l )1 'Iin the l，げよ one 旬以!"， σ)
\ん↓ I[

Now let θ= (!"o, Ào， σ。)ε r (P, N). Then for any lower order term Q, (P+ 
Q) (tO 十 se1 ) ε hyp(θ) where e1 = (0, 1, 0,…, 0). Therefore P(tO 十 se1) ε Hypo(θ)

and since the surface x1 = 0 is noncharacteristic with respect to P, we see 
that the roots tk (s) are real, distinct and non-zero whenever s is real and not 
zero. Hence it implies that the roots ﾀ of P(!"o, À， σ。)=0 are the form tk(1)-1 , 

(tk(l) , ﾀo+ 1) which are also real and distinct. Thus for (τi， σ~) = (!"o， σ。)(([!"0[2 

十 jσ。 [2) ーさ) it satisfies the condition ii) of Lemma 2. 1. Furthermore it follows 
from the fact that ん are all real and distinct that for some neighborhood 

U(!"~， σ~) and for all (!"'， σ')ε VcnU(!"~， σ~) with Im τ'<0 

[Im l~' (!"', a') [ = 0 ([Im !"'[). 

Thus from (2.1) we see that for such (τ" a') 

[Cj (τ'， iJ(TF， σ') ， a')[ 豆 K'< ∞.

Furthermore by the homogeneity of P and Bj we see that for some neighｭ
borhood U (!"o， σ山 for any (!"， σ)ε Vcn U(!"o， σ。) with Im !" < 0 and for any 

j=l， ・ "， l; k=l+l， ・ "， m

(2.2) [Cj (!", Àk (τ， σ， σ)[ 豆K< ∞.

Since S = S (!") is independent of !", we can select a real analytic curve 
σ(り)=σ(!") for 可ε[ ーム ε] (ε>0) such that 

!" = !"o+iη， σ(0) =σo and σ(守)i， S for ηε[一 ε， 0). 

Now let F(!", ﾀ) be 

BI(τ，ん σ(τ))， B I(!", ﾀ; (!"， σ(τ))， σ(!") ),… , B1(!", Xi(!"， σ(!") )， σ(!")) [ 

Bl (!", À， σ(!")) ， Bl(!"' 厄(!"， σ(!")) ， σ(!") ),… , Bl(!"' Xi(!"， σ(!") )， σ(!")) I 

Then R(τ， σ(τ)) ， II (2:(!"， σ (!"))-À;(!"， σ (!")))=F(!"， À;ト(!"， σ(!")) which we denote 
i>j 

by R (!"). Since for 万 <0 and for !"=!"o + iη(!" ， σ(!" ))豆 V， R(!")学 O.

Therefore if R (!"o) = 0, there is an integer k ~ 1 such that for some 向学0，

R(!")=ak ザ (1+0(η))， i. e. , 
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(2.3) F(" 訂 ("σ(，)))=0(1ηIk). 

Then from (2. 2) and (2. 3) it follows that 

F(" ì.;(" σ(，))) = O(jη1 k) 

and obviously we see that 

for i=l 十 1，・ "， m，

F(" �.; ("σ(τ)) )三 O for j=2， ・..， l. 

Since degree, F( r , �.) = max mi < m, by the above equalities we see that 

F(,o, ì.) 三 O.

Furthermore since F(" �.)=B1(" ì.， σ(，)) All (，)十一 . +Bl(" ì.， σ(，)). All (,), where 
All' …, All are (l-l , l-l) cofactors of R(,), and by hypotheses in ~1 Bi(, o, 
ん ρ。) (iニ 1 ， 2 ， . .., l) are linearly independent as functions of ì., we obtain that 

A1i(,O) = 0 (i=1 , 2, ..., l). 

By the same method used above we also see that 

(2. 4) Aij(ro) = 0 (i, j=I, Z,… , l) . 

If k孟 2， using (2, 4) and differentiating F( ì., ,) with respect to " 

Bd" ん ("σ(，))， σ(，)) A;d，)+ … +Bl (" ん ("σ(，))， σ(， ))・

A;l(') ニ 0(1万 1) for i=l , 2, …, m. 

Therefore from the same consideration used above it follows that 

IAij(，)1 士 0(1η12) (i,j=I, Z-v f). 

By the induction with respect to k we conclude that 

(2.5) IAij(,)J = 0(1ηIk) (i, j=I, 2, -vf). 

Finally by simple calculation with respect to determinant and from (2.5) it 

implies that 

R(τY-1 = IAij(r)}� 1, 2,… , II 豆 0(1η1kl) . 

Therefore from (2.3) we see that (l-l) k "?;.kl which is contradiction. Thus 

we have the fact that the Lopatinski determinant R (r ， σ) is not zero whenｭ

ever (" ì.， σ)εr (P, N) for someλIn particular (,, 0, O)=rNε r (P, N), hence 
R(l, 0) 手 O. Therefore by corollary 3. 3 in our paper [1] we see that R (" 

σ)手 o for ("σ) with 1m ,<0 and σERn-\ i. e. , V is empty. Thus we com・

plete our proof of Theorem 3. 

Now we show that Theorem 1 and 3 imply Theorem 2. To show 

this we have only to consider the case where -1 <ω1 ~O. Let (1, pωhρω)ε 
r (P, N). Then by Theorem 3 we see that R (1, Pω)学 o. Therefore by the 
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de五nitions described in Theorem 1 we obtain that 

ρ。 (ω])ω) 豆 ρ1 (ω/11ω1 1)・ 11ω11 一 1

Cauchy 

Hence by Theorem 1 we see that 

ρ(一(ωhω)) =ρ。 (ωhω)-\

which is the propagation speed with respect to the solutions of 

problem for P in the direction 一(ω])ω).

The proof of Theorem 1. 

In section 2 we deal only with U剛sense-solutions ， but hereafter we treat 

C九solutions of problems (1. 1) which is not always well posed. For this 

purpose we use the following 

LEMMA 3. 1. Let c'Oefficients 'Of P, Bj be real analytic and f=ん=O(ん

=0,… , m-1) and ぁ=九 .x~ 町・ H(xo) (i=l , … , l) 叩here 九 are analytic in 

c'Omplex neighb'Orh'O'Od U(O) 'Of the 'Origin and let H(xo) be the Heaviside 

functi'On with re.砂町t t'O Xo・ Assume Ro(l , 0)学 o where Ro is the principal 

part 'Of L~ρatinski determinant with respect t'O the c'Onstant c'Oそfficients pr'Oｭ

blem (1. 1) resulting 介om 斤eezing the c'Oefficients at the 'Origin. 

Then there exist a neighb'Orh'O'Od U1 (0) independents 'Of へ (i= 1, 2,… , l) 
and a piecewise real analytic s'Oluti'On u (X) 'Of (1, 1) defined in U1 (0)ωitん

X1~0 such that snpp (u(X)) in UI(O) with X1~0 is c'Ontained in R+ x R~. 

We can prove Lemma 3. 1 by a simple modification of Lax's consideraｭ

tion and Mizohata's estimate (See also Hamada [4]). 

Using Lemma 3. 1 and H�mander-Hersh's results [5] 
following 

the obtain 

~ 3. 

we 

LEMMA 3. 2. Let the c'Oφcients 'Of P, Bj (j= しー ， l) be c'Onstant and 

let Ro(-r， ω) be n'Ot identically zer'O. Then in 'Order that (1. 1) hαve a n'On-

0・ivial null s'Oluti'On it i・s necessary and s-u;t百cient that 

Ro(l , 0) = O. 

Now we proceed to prove Theorem 1. Under the assumption in Theoｭ

rem 1, let .; = (1 ， ρωhρω) with ρ<ρ。 (ωhω). Then by the de五nition of ρ0， 

Eεr (P, N). N ow we consider the case P 1 (ω/11ω11 )・ 11ω11- 1 <po (ω])ω). If ρ< 

ρ1 (ω/11ω11) 11ω 11-\ Ro (1 ， ρω)=Ro(l ， ρ11ω11ω/11ω11 )手 O. Then by the coordinate 
transformation 

(i=2 , 3, …, n) , 

ν
 

ω
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・2
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一
一
一
一
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(3. 1) 
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it follows that 

P(D"D，γ， Dy) = P(D" , Dx' + ρωlD杓 D?I'+ ρωD，，)，

Bj(D" D" Dy) = Bj(D" , Dx' 十 ρωlD" ， D1I '+ ρωDt ，)

which we denote by P'(Dt" Dx" Dy')' B;(D" , Dx" Dy') respectively. Then 
P' (1 , À, O)=P(l , ﾀ + ρωhρω)=P((l ， ρωbρω) + ﾀel). Since ~E r (P, N) , as in the 
proof of Theorem 3, we see that the number of negative roots ﾀ of P' (1 , 
À， O) ニ o is l and the Lopatinski determinant Ro(P' , B;; 1, 0) corresponding 

to the homogeneous operators P' B; are well de五ned and is equal to Ro(l , 
ρω)手 O. Furthermore it is easγto see that all the assumptions in the 

introduction are valid for P', B;. Hence from Lemma 3. 1 with respect to 
its dual problem it follows that the Holmgren uniqueness theorem with 

respect to P, Bj with the initial surface t+ ρω1 ・ x十 ρ<ω， γ> =0 is tr'ue. 

From the fact that P, Bj are of constant coe伍cients and by translating the 

dependence domain of solutions, we see that ρ( 一 (ωbω))孟ρ1 (ω/11ω1 1)一 111ω11.

On the other hand ifρ ニ ρ1 (ω/11ω11 )・ 11ω11-\ then by the coordinate trans司

formation analogous to (3. 1) the operators P, Bj are transformed to P', B; 
respectively such that Ro (P' , B;; '1"， ω) does not vanish identically, but that 

Ro(P', B;; 1, 0) = O. 

Therefore from Lemma 3. 2 we see that there exists a non-trivial solution 

u(x) of 

(3. 2) 

Pu(X) = 0 in Xl>O , 

Bju (X) = 0 in Xl = 0 (j=1，え… ， l) , 

u(X)=Oint+ρωlXl+ ρ<ω， y> 豆 O.

Then it follows from (3. 2) that 

時.~/X (s仰 u(川叫 (ωb W)) = 0 

~~/X (supp u(川叫一(ωlj)〉 =tρ1

which implies ρ( 一(ωhω))豆町 (ω/11ω1 1) -1 ・ 11ω11. Here we use, if necessary, 
translations of a non-trivial null solution. 

Finally we must consicler the case where Pl (ω/11ω11) 11ω11 1 孟ρ。 (ωhω)， .but 

we have already known that ρ。 (ωhω) 1 is the propagation speed of Cauchy 

problem for P in the direction 一(ωhω). Therefore it is not di伍cult to see 

that ρ(一(ωhω))=ρ。 (ωhω) 1. 

~ 4. Example. 

Let P(D" Dx, Dy)=D;-D;-D71 and B(D" Dx, D，J=Dx十 bDlI+ cD" where 
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b and c are real. 

Then if [b[ 壬 -c(c<O) or b2 + 1 <c2 (c>O) , for any (ωhω)ρ(一(ωhω))=

ρ。 (ωhω) 1. 

If c= 1, R(1, 0)=0. Finally in the other caseρ(一(ωhω))>ρ。 (ωhω) 1 for 

some (ωhω)， i. e. , there exists at least one supersonic wave (see Du旺 [3]).
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