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Particle path length estimates for the Navier

Stokes equations in three space dimensions

By G. F. D. Durr - L
(Received January 14, 1983) o o

Abstract. Flows with finite energy of a viscous incompressible fiuid in a
domain of three dimensional space are studied to estimate particle path
lengths. In the general case a bound is given for the essential maximum
path length as time 7T—co. If the domain satisfies a Poincaré inequality,
then as T—oo all particle motions are essentially uniformly bounded Some
additional asymptotic results are also given. S

1. Introduction : : o o L Ay

In this paper are given results on the path lengths of the motions of
fluid elements or point masses, which we may refer to as particles.

For three space dimensions solutions of the Navier Stokes equations may
be turbulent in the sense of Leray and all calculations must be made with
allowance for this possibility which remains not completely decided despite
many advances in the mathematical theory of nonlinear fluid motions. Any
turbulent solutions may develop singularities which however can only occur
on sets of low dimension in space and time [2, 8]. One must therefore
work with integrals that remain convergent in the presence of such possible
singularities. After a sufficiently long time interval, the singularities can no
longer appear, and emphasis is then on asymptotic behaviour. We show that
motions generated by initial values with finite energy give rise to finite path
lengths over bounded time intervals. An asymptotic estimate is given for
large elapsed times in the general case of a domain in R? that satisfies a
cone condition. When the domain also satisfies a Poincaré inequality, it is
shown that the path lengths are bounded as T—co. These results extend
and complete those announced in and are in turn based on a technique
used by Foias, Guillopé and Temam in [4]. For domains with boundary
we use orthogonal projection on the subspace of solenoidal vector functions
that vanish on the boundary, and this is essentially our othér necessary

condition on the domains considered. The method yields an estimate free of
boundary terms as stated in below. This is applied to the path
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length estimations in Theorems 2, 3 and 4. For completeness we include
proofs of certain key lemmas.

2. The Navier Stokes equations and the initial value problem

Let QCRS® be a region in which solutions #={u;(x,t)} are defined for
the Navier StoKes equations for £>0. We assume such solutions exist, are
globally weak and locally regular except on certain singular sets [2, 5, 6, 7, 9].
They satisfy

7—}—% R P +vdu,; , 1=1,2,3
and guk =0,
Xy

where summation over repeated indices such as k is understood for k=1, 2, 3.
Here v is the constant viscosity and 4 the Laplacian differential operator.
The boundary conditions of no slip are u;(x;,#)=0 for {z;} €02, while the
initial conditions are

wi(zy 0) =unlzy). i=1,2,3.

We assume
3
= Zubl)dV < oo

as the hypothesis of finite initial energy. We use the Lebesgue p-norm

i, =[{, Z1wirav]”. =1

for vectors v, and similar norms for derivatives.

The Sobolev inequality in three space dimensions is
kil < C IPully,  1<p<3
-p

. ou;
where Vu denotes the gradient ui,,-Zﬁ.
J

Note that the constant in this inequality is independent of the domain £, [6].
Let L?(2) be the Hilbert space of vector functions u, v with inner

product S u-vdV=S i{ u;v,dV. Consider the closure £2 of the divergence
2

2 i=1
free (or solenoidal) vector functions of compact support in £. This set is

a linear subspace of .#? that is orthogonal to the space of gradient vectors
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of

in 9, for if v;= 3z and v <% we have
T

(4, v) = S zu,v,dv S i g av

3
=|. 3 2w dV (=0
={, wfnds=0
29

since u; is of compact support within 2 or is a limit of such vectors. Hence
orthogonality of the subspaces will follow [6; 9, p.141].

If P denotes orthogonal projection from L? onto <% we may write
PA4=1 thus defining the solenoidal projection of the Laplacian with compact
support. As shown in [9, p. 148] ||du||;=0 implies u=0 if ueC? u=0 on
02 and wu;;=0. Indeed O0=(du,w)=(du, Pu)=(du,u)= —(Fu)} by Green’s
Theorem. Hence Pu=0 in Q and « is a constant, which must be zero.
Hence ||du||, is a norm.

Following [9, p. 148], the completion of C% the set of smooth solenoidal
vector fields vanishing on 82, in the ||Jul|, norm will be denoted by &2
We now show [9, p.194] that a form of Sobolev’s inequality holds, namely

LemMMA 2.1. ||[Pulls<Zc||du|l; for ue 2
Proor. Let u=C?%, veCyc <% Then ©ueC>(Q)cC(2), u=0 on 92
and u;;=0, so that
|(Vu, V'o)‘ = |(Au, v)l = |(Zu, v)|
<||dullyl[o|l,
SC||Zu”2|“7'”||6/5
, . ) ) ) - |(Pu, Po)|
by Sobolev’s inequality with p=6/5. Hence if v=0, “Polles <c||dulls.

By duality of _%? spaces, the dual of .#7° is 718 g0 the supremum of
the left side over all v=C is exactly the norm of u in &¢®. This proves
the inequality for x€C5 and the result for .&? follows on closure since Cg

is dense in .2
3. The main estimate

We multiply the Navier Stokes equations by Jdu; and integrate over £.
The time derivative term yields
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S Zui-ui,;dVZS Aui-ui,th
/] Q .

since u;, is solenoidal and vanishes on the boundary. After integration by
parts we obtain

[ ruruav = - % %S(Vui)“’dV
| 4
= L il

The pressure term is
——sa Poidu,dV =0
since Ju; is orthogonal to all gradients. The viscous term becomes
| »Sﬂ JudendV = vj,, (FupdV

since du;—du; is a gradient orthogonal to Ju,. Finally, the nonlinear term
yields

Q2

< 11wl o] el o] |7 2| |
S C (et gl 17 2] o] 7 22] |52 |7 2] [y
< C||du) 2|72l 32

< 5 11 3ul+C7u

where we have used the inequalities of Holder, Sobolev and Young as well
as the Lemma of Section 2.

THEOREM 1. For a solution u of the Navier Stokes equations in a
domain @ in three space dimensions the estimate

d
| S Pl B o)\ Bl < K| P
holds:.
An estimate of this form was obtained by Leray in the case Q=R
and by Foias, Guillopé and Temam for the case of a periodic parallelepiped
in R®. Heywood gives somewhat similar estimates but with an additional

term-C||Vu||; on-the right. While this fourth order term is of no consequence
near singularities when ||Pul||, becomes large, it is possible to derive improved
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asymptotic estimates as t—oo from the estimate of [Theorem 1. The estimate
of is given by Shinbrot [9, p.201] in essentially the same form

for bounded domains.

4. The path length estimates

The motion of a particle or element of fluid at z;(f) at time ¢ is
given by

dx,;
—dE— =Uq (xjs t)

while its speed is given by

G =iz,

where s denotes arc length travelled. For a motion commencing at t=0 we
have

s :Sjlu(x, t)Idt

T
<l
because ||u||.=ess. max |u(x, )] .

To estimate the maximum norm we shall use an inequality of Adams
and Fournier [1, Theorem 4, p.718], namely

[|2el oo S K ||26] [l 24l ~°

where ¢>1, p>1, mp—p<n<mp, =np/(np+(mp—n)q). With the numeri-
cal choices n=3, m=1, p=6 and ¢=6/c large these conditions hold with
f=¢/1+e. Here also

16l = el = {17 2cl |6+ 2l £}

<|IPulls+Illls

<K ||du|ls+ K| IPulls
by the Lemma and Sobolev’s inequality. |

- For large ¢ we write |[[ull;<c|lPu|l, with p=3q/(3+¢q)=6/(2+¢). By
Hélder’s inequality and the Lemma
P ||, < | WP ae 57 P2l I3
<C||dullz(Pulls ,
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where a=(1+c¢)/2. Hence, finally,

el o < K (&) {1t l - 725} 757 ] T

<Ky (){|13ulls 5+ 17ally 55 ), T

<K& {1ully T 172l ly T 1l 75|

1—¢ 1+3¢
< Ku(&){13l P17 ]+ | B | T ||} 265

To estimate the integral of ||«||., we modify a method of Foias, Guillopé
and Temam [4]. Let f(f) be a smooth positive nonincreasing function for

t>0. From we have

d -
g (SO} 4o\ Tl B< K Pl £0)+ (17l )"
whence on division by the last factors on the right we find

d 2\~1 . ”HZqu
= SO+l s e <KIPuli.

Now integrate over (0, T') to obtain

1 T || dul s , 1
F O F Pl +”S FO+I7ap S WPedladt + 2oy marTe -

Noting that the integral on the right converges we may obtain estimates for
the integral on the left.

Now

‘ . T yag (T Ns || dul|3dE
PR So || 3 dt—So (f(t)‘l‘HVqu) (FO+| a2

T \ o3 [(T du|i3d, 1/3
<[, (rirag ][} ,(f(ltl)iHVziH%)z]
by Holder’s inequality. Hence

T T v o/3 1 1/3
J1dagars| [ rioae+af* | Ktz ]
The integral on the left is bounded for any finite 7" and so is bounded during
any possible epoch of turbulence. Referring to Lemma 2. 1 we now obta_ln

LEmMMA 4.1. ducsL¥30, T; L3(Q)
and
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rue L¥3(0, T LY2)).

It will be shown below that as T—oco we have ||[Fu|;=0a(TY).

the choice f(t)=(1+7T)"! is convenient and this yields

ST || ) 3di < (A +log (1+ T)>2/3 (KA+1+T)vs h
0 .

<BT"log(1+T)¥® as T—oo.
Now

T
s< So |2} |ooddt

<K@ [ {1uipat 13l = g de

The first term is bounded by

r . 3/4 T 1/4
<K (@) ndutgrae] [ {7 1]
<K(e) BiT"log(14+T)"* as T—o.

The second term may be estimated by

K (s)[S:HZulléf‘*dt]%H%)[S 7alde [ o [("aie

1/ 143

_(__) JA(J_—_;)
<K(e) BT +\ 1/ (log T) 2\ 1+

—<—K(5) BST%Jr% , as 1T—oo .
Hence we have

THEOREM 2. As T—oo, s<K(e) T%‘L%, e>0.

Hence

This result extends and completes of for which the
abbreviated proof there given is valid for R for a periodic rectangular
domain or for a closed three dimensional manifold, with a slight 1mprovement

in the order of magnitude as T—oo0.

We now prove the further

LemMaA 4.2. For t sufficiently large, the norm |[Vu|l, is decreasing in

t, and
1
Wul|l,=0e(t"2) as t—oo.

Proor. We have (Pu, Vu) = —(u, du)
—(u, Zu)
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since « is orthogonal to gradients, being solenoidal and vanishing on the
boundary. Hence

(172615 < e [of | D -
Dividing the main estimate by ||[F«|l3, we find

.d 1 Y d 1 v||dul2
- = < —
dt VulE VT TWlE = de (Wl T Pl

<Ki|Fullz .

d 1 v .
Hence “gr 7 = Ty — X745

Since ||u||; is decreasing with ¢, the first term on the right is increasing,
while the second term being integrable over (0, o) must take arbitrarily
small values. Hence for some #, the right side is positive, and it follows
that the time rate of change of ||[Fu||; is negative there. Consequently the
right side remains positive and it is easily seen that |||} is decreasing for
t>t,. Thus for T >2¢, we have

1
5 TWPaT)< ., IPulide <e(T)

o N

so that ||[Fu|}(T)<e(T)/T as T—oo. This completes the proof of the
lemma. See also [9, p. 203].

Tueorem 3. If HuHQS% Wullz, for t>t, where 4vc>1, then all path

lengths are essentially uniformly bounded for all times and in the limit

t— 00,

Proor. From the energy integral

- d
—CglluH%:—ZVHVuH%

we deduce

d 2cv
@l < — 2

and hencé
|ae|]s < Ct™e
Thus ||u||;€ L? (t,, o) for t,>0, with pcv>1.

The two following lemmas are now required.
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LEMMA 4.3. If ||u|ls€ L2(t,, 00) and t, is sufficiently large, then ||[Vu|j,&
1
La(¢y, 00) where b + %— —e= ~(1]—, e>0.

Proor oF LEMma. From the energy integral we obtain, dividing by
[loel 12~

LT
s dt H ”2 Hu‘lg—a

=0.

After integration we find

1

1 ©APullz
¢ !

a0 +v | IO d = lso).

Hence as t—oo the integral on the left is convergent for fixed §>0. Now

[ itz = {17l ::“::Z(ff)dt
o u q 2

<[[7 a5 [S‘” 7ol e T2 _

Jae] 2~

0

by Hélder’s inequality, where

This gives the conclusion of the Lemma, with a slight change of notation
for . o

LEMMA 4.4. If ||Pu|ls€ Li(t, 00) where t, is sufficiently large, then

., 1 1 1
HZquEL”(to, oo) with 7:?-#‘2——-8.

Proor oF LEMMA. From the main estimate we find, on division by
29—
[P 2]z

14d 12l
- Pl g tte <KI(Puli.

Noting that the term on the right side is integrable for #,<¢<oo, since
||[Fu||? is integrable and |[Fu||, is shown to be a decreasing function of ¢ by
Lemma 4.2, we find

1 ¢ ||du|ld 1
Lt [ g <K [ palgdet vl

Hence the integral on the left converges as t—co. Again
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7 ndupgar = S |13l %
0 ull3 2

°° el (|| due el ]’/2
é[L”” “”g""‘] U[S Pul

by Holder’s inequality, where

1 € 1 1
¢ 2q T2

With a small change of notation for ¢, this is the result stated in the Lemma.

To complete tHe proof of the Theorem, we now observe that if inclu-
1on for Hullz holds in LP(t, oo) with p<4, We can by the lemmas secure

convergence of HVqu in L%(¢, co) for some q< and for ||dul|l, in L7 (t,, o)

for some r<%. Reference to the path length calculations of Section 4
shows this suffices to establish ||u||.,& Li(t,, o). Explicitly, we have, with
7n=28¢/5, £=28¢/3,

f [l losdlt < K (¢) S [HZuH 2 7ol 2+ || Bl [ P el ]

<K@ (|| 1duteae]" | [ 1puieeae]”

+ | iz [[7 iruieeeaef™} <oo

under the conditions established. When 4ve>1, a range of positive values
for ¢, 1, ¢, .-+ is possible and this suffices for the estimates. This completes
the proof of the theorem.

THEOREM 4. If the domain £ satisfies a Poincaré inequality
lu||s<C ||Pully or equivalently has a positive lowest eigenvalue, then the
path lengths are essentially uniformly bounded as in Theorem 3.

This conclusion is immediate, since the hypothesis of the Theorem is
satisfied for ¢ sufficiently large.

Support of this research by the Natural Sciences and Engineering Re-
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