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The metric growth of the discrete Laplacian
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Abstract. Networks play important roles in the theory of discrete potentials. Espe-
cially, the theory of Dirichlet spaces on networks has become one of the most important
tools for the study of potentials on networks. In this paper, first we study some rela-
tions between the Dirichlet sums of a function and of its Laplacian. We introduce some
conditions to investigate properties of several functional spaces related to Dirichlet po-
tentials and to biharmonic functions. Our goal is to study the growth of the Laplacian
related to biharmonic functions on an infinite network. As an application, we prove a
Riesz Decomposition theorem for Dirichlet functions satisfying various conditions.
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1. Introduction with preliminaries

Let N = (X,Y,K,r) be an infinite network which is connected and
locally finite and has no self-loop. Here X is the set of nodes, Y is the set
of arcs, K is a node-arc incidence matrix, and the resistance r is a strictly
positive function on Y. For x € X and for y € Y we let

e(y) ={z € X : K(z,y) # 0},
Y(z)={y €Y : K(z,y) # 0}.

Note that e(y) consists of exactly two nodes z; and x_, which satisfy
K(zy,y)=1and K(z_,y) = —1.

Let L(X) and L(Y') be the sets of all real-valued functions on X and Y
respectively and let Ly(X) be the set of all w € L(X) with finite support.
For every u,v € L(X), let us put

du(y) = —r(y) ! Z K(z,y)u(x) (discrete derivative),
zeX

Dlu] = Z r(y)(du(y))? (Dirichlet sum),
yey
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It is well-known that D(XNV) is a Hilbert space with respect to the norm

for a fixed node xg € X (cf. [4, Proposition 2.1], [2, Section 9.3]). Denote
by Do(N) the closure of Lo(X) in the space D(N).
hyperbolic type if D(N) # Dg(N).
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Dlu,v] = Z r(y)du(y)dv(y) (Dirichlet mutual sum),

yey
Au(z) = Z;/K(x,y)du(y) (Laplacian),
A%u(z) = A(Au)(z) (bi-Laplacian),
D(N)={u€ L(X): Dlu] < oo} (Dirichlet space),
BD(N) = {u € D(N) : u is bounded},
H(N) = {u e L(X): Au(z) =0on X},
HD(N) = H(N) N D(N),
D@ (N) = {u € L(X) : D[Au] < oo},
H?(N) = {uec L(X): Auec H(N)}
QP(N)={ue L(X): Au= -1, u> 0},
H?D(N)=H?(N)nD(N),
HPD®(N)=H?(N)nDP(N).

ull2 = (D[u] + u(a0)?)/?

every a € X there exists a unique function v € L(X) which satisfies

where ¢,(z) = 0 if  # a and £,(a) = 1. Denote this function by g,(z) and

u€ Do(N) and Au(z) = —¢e4(z),

call the Green function of N with pole at a.

For w € L(Y), define Ow € X and H[w] by

ow(x) = K(x,y)w(y),

yey

We say that N is of
In case N is of hyperbolic type, for
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yey

We introduce the following three conditions: We say that the network
N satisfies condition (LD) if there exists 0 < ¢ < oo such that

DIAf] < cD[f] (LD)

for all f € Lo(X) (cf. [1]). In case network is of hyperbolic type, a function
u € L(X) is said to satisfy property (P) if

> gal@)(Au(@))? < oo, (P)
zeX
and to satisfy property (SP) if
Z Ja(z)|Au(z)| < 00, (SP)
zeX

where g, denotes the Green function of N with pole at a. Properties (P)
and (SP) were introduced in [3]. In Section 2 we study some sufficient
conditions for (LD), in Section 4 some conditions for (P) and in Section 5
some sufficient conditions for (SP). As an application, in Section 5 we prove
a Riesz Decomposition theorem for functions in D(N) satisfying various
conditions.

2. Relations between D[u| and D[Aul]

As in [1], we define the arc-arc incidence function b(y,y’) by

,) = Z K(ZC,y)K(JB,y/).

zeX

For w € L(Y), we define B,w € L(Y) by

Bw(y) =r(y) ™" Y by, w) =rm)™ Y by y)wy),

Yy EY y' €Y (e(y))

where we mean Y (e(y)) = U, ey Y (2). For u € L(X) and f € Lo(X), the
following relations will be used frequently:
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Au = 9du, dAu= —B,du, D[Au]= H[B,du,

Dlu, f] = = Y w@)Af(x) = = Y f(z)Au(x).

reX reX

Taking u = 1 in the formula for D[u, f], we see for f € Lo(X)

Y Af(x)=o0.

reX

We show some sufficient conditions of condition (LD).

Lemma 2.1  Denote by vy(y) the number of arcs in'Y (e(y)). Foru € L(X),
the following inequality holds:

DlAu] <4 r(y) ) Y. duy)’.

yeYy y' €Y (e(y))

Proof.  Since |b(y,y")| < 2, we have

Brw(y)| <2r(y)™" > |w),

y'€Y (e(y))
so that by the Cauchy-Schwarz Inequality
2
Bl <062 X ww)) see 0 Y w6
y' €Y (e(y)) y' €Y (e(y))

Letting w = du we have

D[Au) = H[Byw] = Y r(y)|Byw(y)[?

yey
<4y ry) ) D> w)? O
yeYy y' €Y (e(y))

Theorem 2.1 Assume that there exist rq > 0 and vg < oo such that
r(y) > 1o and y(y) < 7o for ally € Y. For u € L(X) the following
inequality holds:
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4
’YO Zdu 70 D[ ]
yey

Especially N satisfies condition (LD).

Proof. Lemma 2.1 shows that

DA <4 rw) ) Y duly)? 4%2 S duy)?

yeY y'€Y(e(y)) yeY y'eY (e(y))
470 ’Yo )2 = 470
du( —-D
< S g < 1S gty = B ot
yey yey
as required. 0

Corollary 2.1 Assume that v(y) < 0 < oo and r(y) =1 on Y. Then
D[Au] < 443 D[u] for every u € L(X).

Remark 2.1 Denote by v(x) the number of arcs which meet z, i.e., v(z) =

#Y (2) = > ey [K(z,y)|. Then v(y) < v(a) + v(b), where e(y) = {a,b}. If
v(z) <y for z € X, then 79 < 2vy. Corollary 2.1 implies that D[Au] <
162 D[u).

We proved in [1, Proposition 6.1]

Proposition 2.1  Assume that v(z) < vy for allx € X and r(y) =1 on
Y. Then D[Au] < 812D[u] for every u € L(X).

Theorem 2.2 Let § be the number defined by

5= rw) by, ) Pri)

yeY y'ey
Then D[Au] < §D[u]. Especially N satisfies condition (LD) if § < co.

Proof. By Cauchy-Schwarz’s inequality, we have

(B < ) (X )P ) (3 )t )

y' ey y' ey

(3 b Br) ) ol

y' ey
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Letting w = du we have

D[Ad] = H[B,uw] = 3 r(y)(Brw(y))?
yey

< (X X 0 b sPr) ) Hlul =60l O

yeY y’'ey

Corollary 2.2 D[Au] < 4(Zer r(y)_l)QD[u].
Proof. Tt suffices to note that |b(y,y')| < 2. O

Remark 2.2 There is no relation between D[Au] and D[u] in general.
We show this by using the following network:

Proposition 2.2 Let X = {z,}n>0 andY = {yn}n>1. Let K(zy,y,) =1,
K(xp—1,yn) = =1 forn > 1 and K(z,y) = 0 for any other pairs. We call
this network a linear network. Assume that inf, r(y,) = 0. Then condition
(LD) does not hold for (X,Y,K,r).

Proof. Let

1 if k< n;
Up (T) =
@) =1, if k> n.

Then

dty (Yn) = _T(yn)il(un(xn) — Up(Tn-1)) = T(yn)ila

Therefore

D[un] = r(yn) X (T(yn)_1)2 = r(yn)_lv

D[Au”] =z r(y”) X (_QT(yn)_2)2 = 4T‘(yn)_3.



The metric growth of the discrete Laplacian 405

We have

2

. D [Un] . T<yn)
f <inf =
T ek S R
as required. O

Corollary 2.3 A linear network satisfies condition (LD) if and only if
inf,, r(yn) > 0.

Proof. Theorem 2.1 and Proposition 2.2 show the assertion. O

A network with inf,cy r(y) > 0 does not satisfy condition (LD) in
general.

Example 2.1 Let X = {z,}n>0 U {znjln>1,1<j<n and Y =
{y:,jay;,j}nzmgjgn. Let K(:cn,y:;j) = 1, K(ij,y;j) = -1,
K(wn—lvy;,j> = _1a K(Zn,j,y;’j> =1 for n > 1 and 1 < j <n and

K (z,y) = 0 for any other pairs. Let r(y;j) =7(y, ;) =1 Let

2 ifk<my
2 if k< mng .
Un (k) = 0 ifk>n, Up(2,;) =<1 if k=mn;
0 if k>n.
Then
1 ifk=mn;
dun (yy, ]) —(un(zk,5) — un(zr-1)) = 0 ifk#n,

1 if k=mn;
dun (4 ;) = —(un(@) = an)):{o if k£ n

ft1 —n ifk=n-—1;
Auy, (xg) Zdun Zdun ka] n if k =n;

0 otherwise,

Auy(2,5) = dun(y];j) — dun(y,ij) =0,
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—n if k =mn;
0 otherwise,
n ifk=n-—1;

0 otherwise,

and

k
Zdunyk] +duny,w Z:l2+12 = 2n,

j:

||
Nt

k
D[Au,] = ZZ dAun yk] —|—dAun(yk+’j)2)

k=1j=1

8

3
|
_

dAUn(y:_1,j)2 + Z(dAun(y;j)Z + dAun(yI,jV)
j=1

<.
Il
—

n+1
+ Z dAun(y;rLj)2

= (n—1n*+n((-n)*>+ (—n)?) + (n + 1)n® = 4n°.
We have

Dluy,] 2n 0
= — —>
D[Au,]  4n3

as n — OoQ.

3. Condition (LD)

We proved in [1, Lemma 6.1]
Lemma 3.1 Condition (LD) implies A(Do(N)) C Dg(N).
Theorem 3.1  Assume condition (LD). Then D(N) ¢ D@ (N).
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Proof. Let u € D(N). There exist v € Do(N) and h € HD(N) such that
u = v + h by Royden’s decomposition (cf. [5, Theorem 4.1], [2, Exercise
9.6(f)]). Since Au = Av + Ah = Aw, we have D[Au] = D[Av] < oo by
Lemma 3.1. U

Lemma 3.2 Assume condition (LD). Then there ezists ¢ > 0 such that
D[Au] < eDlu] for all w € D(N).

Proof. By Royden’s decomposition we find v € Do(N) and h € HD(NV)
such that w = v+h. Let { f,, }», be a sequence in Lo(X) such that ||v— f, |2 —
0 as n — oo. We have D[f,,h] = =3 v fu(x)Ah(z) =0 and

|D[v, h] = D[fn,h]| = |Dlv = fn,h]| < Do = fu]"/*D[h]'/* — 0
as n — oo. These imply D[v, h| = 0, and that
Dlu] = D[v] + D[v, h| + D[h] = D[v] + D[h] > DIv].

Since {f.(z)}, converges pointwise to v(x), we see that {Af,(x)}, con-
verges pointwise to Av(x), so that by Fatou’s lemma

DI[Av] < liminf D[Af,].

n—oo

Condition (LD) implies that D[Af,] < ¢D|[f,] for all n. We have

D[Au] = D[Av] < liminf D[Af,] < climinf D[f,] = ¢D[v] < e¢D[u]

as required. O
Proposition 3.1  Assume condition (LD). Then DIlh, Av] = 0 for h €
H®D(N) and v € Do(N).

Proof.  Let {fn}n be a sequence in L(X) such that ||v — fu|l2 — 0 as
n — 00. Since Af, € Lo(X), we have

D[h, Afn] == > (Ah(x))(Afa(x))

zeX

= D[Ah, fo] = = > (A%h(x)) fu(z) = 0.

zeX
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Lemma 3.2 shows that
D[h, Av] = D[h, Av — Af,] < D[R]"?>D[A(v — f,)]"/?
< 01/2D[h]1/2D[U o fn]1/2 -0

as n — 00, so that D[h, Av] = 0. O
Proposition 3.2 Let h € HOD®(N) = H® (N)ND®)(N). If condition
(LD) is fulfilled, then D[Ah,Av] =0 for every v € Do(N).

Proof. We find {f.}n C Lo(X) such that ||v — fu|lo — 0. Then
D[Ah, Af,] = D[A?h, f,] = 0. Using Lemma 3.1 we know that D[Ah, Av]
is well-defined and, using Lemma 3.2, that

D[Ah, Av] < D[AR]'Y2DIA(v = f)]'/? < ¢!/2D[AR]?Dlv — fo]'/* — 0

as n — o0o. |

Proposition 3.3 Assume that N is of hyperbolic type and that condition
(LD) is fulfilled. Then Do(N)NH® (N) = {0}.

Proof. Let u € Do(N) and A%y = 0. Then Au € Do(N) by Lemma 3.1,
so that Au € HD(N). Since N is of hyperbolic type, we have Dy(N) N
HD(N) = {0} (see [5, Lemma 1.3]), so that Au = 0. Namely u € Do(N) N
HD(N), and hence u = 0. O

Corollary 3.1 Assume that N is of hyperbolic type and that condition
(LD) is fulfilled. Then HAD(N) = HD(N).

Proof. Clearly, HD(N) ¢ H?D(N). Let u € H®D(N). There exist
h € HD(N) and v € Do(N) such that u = h +v. Then A%y = A2y = 0.
Proposition 3.3 shows that v = 0, and hence u = h € HD(N). O

Let {N,, = (X,,Y,, K,,,7)}n be an exhaustion of N and a € X. The
Green function gén) of N,, with pole at a is defined by

Mgl () = —ealw) (v € Xa),  gi(2) =0 ( € X\ X,).

It is well-known that g((ln)(x) < g((lnﬂ)(:v) on X and g((l”)(x) — ga(z) as
n — oo for each x € X (cf. [5, Remark 3.1]). Noting Dlg,] = go(a) and
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9] ==Y " g (x), DIlg{™ — ga] = gala) — g{" (a),

zeX
we have
Lemma 3.3 lim D[g{™] = D[g,] and lim D[g{" — g.] =0

Theorem 3.2 Assume that N is of hyperbolic type and satisfies condition
(LD). Ifu € D(N), then Y, . x(Au(z))? < co.

Proof. Let {N,, = (X,,, Yy, K, ) }n be an exhaustion of N and let g(n)
be the Green function of IV,, with pole at z € X,,. We set g( )( ) = 0 for
r € X \ X,, and put

fal@) = 3 ¢ (@)Au(z).

zeX,
Then

fa(x) =0 on X\ X, and Af,(r)=—-Au(r) on X,.

Especially {Af,(x)}, converges pointwise to —Au(x). By our assumption,
there exists a constant ¢ > 0 such that D[Af,] < ¢D][f,] for all n.
Let h, = u+ f,. Then h,, is harmonic on X, and

Dlu] = D[hy, = fu] = D[fn] + D[hn| = 2D[fn, hn]

D[fa] + D] +2 > falz = D[fn] + Dlhy),

zeEX,,

so that D[f,] < D[u]. We have

Z(Afn(x))2 = *D[fnaAfn] < D[fn]1/2D[Afn]1/2

reX
< 2Dlf,] < ¢/?Dlu).

By Fatou’s Lemma, we have

> (Au()® < lim inf D (Afa(x))? < /2Dlu] < 0. O

reX reX
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4. The metric growth of the Laplacian

The metric growth of the Laplacian of u is said to be so slow in [3] if u
satisfies property (P). As a discrete analog of [3, Theorem VII.1.1], we have

Theorem 4.1 Let N be of hyperbolic type and uw € D(N). If Au €
BD(N), then u satisfies property (P).

Proof. Let a € X and {N,, = (X,,Y,, Ky,,7n)}n be an exhaustion of N
such that a € X; and let g((ln) be the Green function of N,, with pole at a.
We set g () =0for x € X\ X,,. Then gt e Ly(X) and D[gt(ln) —ga] — 0
as n — o0o. We put

#n(z) = —gi™ () Au().

By our assumption, there exists ¢; > 0 such that |Au(z)| < ¢; on X. We
shall show that

|depn (y)| < M(|dgs™ (y)| + |dAu(y)])

where M = max(c1,gq(a)). Let e(y) = {x1,x2}. Since gim () < g((ln)(a) <
ga(a),

r()den ()] = |g{ (21) Au(zr) — g5 (22) Au(as)]
< g (1)l Au(zr) — Au(wa)] + |95 (21) — g8 (w2) || Au(az)]
< ga(@)[r(y)dAu(y)| + c1|r(y)dgl™ (v)|
< Mr(y)(|dgs™ (y)] + [dAu(y)]).

We have

Dlgal < 3" r(y) (M(1dg{” (9)| + ldAu(y))))”
< 2M? (D[gg”)] + D[Au]) — 2M?(Dl[g,] + D[Au]).

There is a constant co > 0 such that D[p,] < ¢o. Since ¢, € Lo(X), we
have
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> 9 (@) (Au(@)? = = Y en(x)Au(z) = Dlpn, ]

zeX reX

< Dlpn]2D[u]/? < /> D[u]'/2.

By Fatou’s lemma

Z ga(x 2 < hmlnf Z g\ (z)(Au(z))? < c§/2D[u]1/2,
zeX zeX
that is, u satisfies property (P). O
We prepare

Lemma 4.1  The following relation holds for fi, fo € L(X):

A(fif2)(@) = (Afi(@)) fola) + fr(@)(Afe@) + Y r(y)dfi(y)dfa(y).

yeY (2)

Proof. For xz € X and y € Y (x) we let n,(y) be a unique node with

K($, y)K(nm(y)ay) =-L

Then
du(y) = —r(y) " (K (z, y)u(z) + K (0,(y), y)u(n.(y)))
= —r(y) " K (z,y) (u(z) — u(n(y))), (1)
Au(z)= Y Kyduly)=— > v "(ul@) - um(). (2)
yeY (z) yeY (z)
We have
A(fif2)(z )—(Afl( ))f2( ) = fi(z)(Afa(2))
=— > r ) fo(x) = f1(02(y)) f2(n2(y)))
yeY (z)
LY — () fa(a)
yeY (2)

+ i) Y () (fale) = fona(y)))

yeY (2)
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= Z r(y) " (f1(@) f2(2) + fr(nz(y)) fo(na(y))

YyEY ()

— filne () fo(@) — f1(2) f2(n2(y)))
= > @) AR - A0®) (f2(2) - f2(0:(1))),

yEY ()

using (1),
= > ) (—rWEK (@, y)dh @) (—r@) K (z, y)df2(y))
YEY ()
= Y rWdhi(y)dfa(y).
YEY ()
This completes the proof. O

As a discrete analog of [3, Theorem VII.1.2], we shall prove

Theorem 4.2  Assume that N is of hyperbolic type. If u € HOD® (N)N
BD(N), then u satisfies property (P).

Proof. Let {N,, = (X,,,Yn, K,,,7n)}» be an exhaustion of N and let gé”)
be the Green function of N, with pole at z € X,,. We set g (x) = 0 for
x € X \ X,,. Now we consider f, € L(X) defined by

falz) =Y gt (2)Au(z).

Then

fa(x)=0 on X\ X, and Af,(r)=—-Au(r) on X,.

By our assumption, there exists ¢ > 0 such that |u(z)] < ¢ on X.
We shall show that |f,(x)] < 2c on X. We may assume x € X,,. Define
o(z) = gé”) (x) = gg([;")(z) for z € X,, and p(z) =0 for z € X \ X,,. Notice
that Ap(z) = —e,(2) for z € X,,. For z € 0X,, (the outer boundary of X,,),
we use (2) and obtain
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Ap(z)=— > 1) el@)—pm.) = > ) ¢ (n.(y) > 0.
yeY (2) yEY (2);
n:(y)eXn
Since ¢ € Lo(X), we have

0= Ap(z)=-1+ > Ag(z)

zeX z€0X,,

and

Fal@) =) p(2)Au(z) = ) u(2)Ap(2) = —u(z) + ) u(z)Ap(z).

zeX zeX z€0X,

These implies

[fa@) < lu@)[+ Y Juz)Ap()] <cte D Ap(z) = 2¢

2€0X,, 2€0X,,

Applying Lemma 4.1 to g{" )( ) and Au(z) and using v € H®(N), we
have

A(gi Au)(2) = Agi™ (2) Au(z) + g™ (2) A%u(z)

+ > r(y)dglm (y)dAuly)

yeY (2)
= AgM (2)Au(z)+ > r(y)dglM (y)dAu(y).

YyEY (2)

Thus we have

Z g((zn)(z)(Au(Z))2 = Z gé”)(z)(Au 2))?

zeX ze€Xy
= 9) =D Afal2)gl" (2)Auz)
z€X, zeX
==Y f(@AGMAU)(z) == D fal2) A9V Au)(2)
zeX zeX,

== 3 fu(2)Ad™(2) =Y > fal@)r(y)dgl (y)dAuly)

z2€Xn 2€Xn yeY (2)
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= = > > fa@)r(y)dgM (y)dAu(y)

z€Xp yeY(2)

< fa@Bu@]+ 3 3 fal2)r(y)dgd (y)dAu(y)

z€X, yeY(2)

< 2c|Au(a)| + 4¢ Y r(y)ldg{™ (y)|ldAu(y)]
yey

< 2¢|Au(a)| 4 4¢D[g{™ ]2 D] Au) /2.
Since D[g((ln)] — DJg,] as n — oo, we have

Z ga(z 2 < hm 1nf Z g\ (2)(Au(z))?

zeX zeX

< 2¢|Au(a)| + 4¢D[g,])?*D[Au]'? < .

This shows that u satisfies property (P). O

Theorem 4.3 Assume that N is of hyperbolic type and satisfies condition
(LD). Then every u € D(N) satisfies property (P).

Proof.  Since g,(x) < gq(a) < 0o, Theorem 3.2 implies

D ala 2 < ga(a) Y (Au(z))? < co. O

rzeX zeX

5. Riesz Decomposition

To study property (SP) introduced in Section 1, we recall the following
set of functions on N:

QP(N)={ue L(X) : Au=—1, u > 0}.

We denote by Ogp the set of all locally finite infinite networks N such that
the set QP (N) is the empty set.
We proved in [6, Theorem 3.1]

Lemma 5.1 N ¢ Ogqp if and only if 3 .y ga(x) < 00 for alla € X.
Notice that if N ¢ Ogp, then N is of hyperbolic type, so that there
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exists the Green function g,(z) of N with pole at a.

Proposition 5.1 Let N ¢ Ogp. Then property (P) implies property (SP)
for every u € D(N).

Proof.  Since u satisfies property (P), we see by Lemma 5.1

5 sn@au)] < (X ) - (3 sutoau()?) "

reX reX reX
for every a € X. O
We have

Theorem 5.1 Let N ¢ Oqp. If u € D(N) satisfies property (SP), then u
has the following Riesz Decomposition: There exists h € HD(N) such that

u(z) = h(z) + ) g:(2)(~Au(2))

on X.

Proof. By our assumption, the Green potential

v(z) = Z g:(z)Au(z) € L(X)

zeX

of a signed measure Au is well-defined. Let {N,, = (X,,,Y,, Ky, ) }n be

an exhaustion of N and let ggn) be the Green function of N,, with pole at

z € X,,. We set gﬁ”) () =0 for x € X \ X,, and define f,, and h,, by

fnlz) = Z ggn)(az)Au(z), hp =u+ fn.

z€Xp

Notice that h,, is harmonic on X,, and

Ditn, ful = = 3 (Ahy (@) fu (@) = 0,

rzeX

so that D[u] = D[hy]+ D[f,]. We see by Lebesgue’s dominated convergence
theorem that {f,(z)}, converges pointwise to a function v(x) for every
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x € X. Since {D[fn]}n is bounded, we see that v € Do(N) (cf. [7, Theorem
4.1]). Let h be the pointwise limit of h,,. Then h = u+v € D(N) and h is
harmonic on X, i.e., h € HD(N). We have

u(z) = h(z) —v(z) = h(z) + ) g:(2)(~Au(2))

zeX
for z € X. O
Remark 5.1 In the above theorem, we see that h = 0 if u € Dy(N).

Corollary 5.1 Let N ¢ Ogp. Then u € D(N) admits the following Riesz
Decomposition:

u(@) = h(z) + Y g=(2)(~Au(z)), he€HD(N)

zeX

if any one of the following conditions is satisfied:

(1) Au e BD(N);
(2) u is bounded and v € HZ D) (N);
(3) condition (LD) is satisfied.

Proof.  Since N ¢ Ogp, N is of hyperbolic type. One of Theorems 4.1, 4.2
and 4.3 can be applied and implies that u satisfies property (P). Proposition
5.1 shows that wu satisfies property (SP). By Theorem 5.1 we have the
assertion. Il
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