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1. Introduction

We consider the linear Volterra equation

u(t)+ \int_{0}^{t}h(t-\tau)A(\tau)u(\tau)d\tau=k(t) (1. 1)

in a Banach space X, where u, k are functions with values in X, h is a
scalar function and A(t) is a linear closed operator which generates an
analytic semigroup. In [2] Friedman and Shinbrot proved the existence and
uniqueness of the solution of (1. 1) assuming that the domain of A(t) is
independent of t, A(t)A(0)^{-1} is H\"older continuous and h, k satisfy some
smoothness conditions. In order that the integral in (1. 1) exists as a Bochner
integral it was assumed that k(0)\in D(A^{\mu}(0)) for some 0<\mu\leqq 1 .

They also constructed the fundamental solution W(t, s) which is an
operator valued function satisfying

W(t, s)+ \int_{s}^{t}h(t-\tau)A(\tau)W(\tau, s)d\tau=I (1. 2)

in some sense. The fundamental solution constructed in [2] is not a bounded
operator but has the form W(t, s)=W_{\mu}(t, s)A^{\mu}(s) with some bounded operator
W_{\mu}(t, s) for any \mu\in(0,1] .

In this paper using the idea of Crandall-Nohel [1] we transform (1. 1)
to the initial value problem of the evolution equation

du(t)/dt (0) A(t)u(t)=(Gu)(t),\cdot u(0)=k(0) , (1. 3)

where G is some mapping defined on C([0, T];X) . This problem has a
solution for any initial value k(0)\in X. In general for the solution u of (1. 3)
the integral of (1. 1) does not exist in the sense of Bochner integral since
||A(\tau)u(\tau)||=O(\tau^{-1}) as \tauarrow 0 . However, it will be shown that if we interpret
it as the imporper integral

\lim_{\epsilon\downarrow 0}\int_{\epsilon}^{t}h(t-\tau)A(\tau)u(\tau)d\tau ,
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then the integral exists and (1. 1) holds.
Analogously the equation (1. 2) is transformed to the initial value problem

of some differential equation, and we define W(t, s) as the solution of this
problem. Then W(t, s) is a bounded operator valued function, and we have

||A(t)W(t, s)||\leqq C/(t-s) , 0\leqq s<t\leqq T-,

for some constant C. It will also be shown that the integral of (1. 2) exists
as an improper integral and the equality (1. 2) holds.

Under some smoothness assumptions on h, k it is shown that

u(t)=W(t, 0)k(0)+ \int_{0}^{t}W(t, s)\dot{k}(s)ds

is the unique solution of (1. 1). Here we need not assume k(t)\in D(A^{\mu}(t))

for some 0<\mu\leqq 1 unlike Theorem 4 of [2].
In out results the domain of A(t) may be dependent on t . Our funda-

mental assumption on \{A(t)\} is that to the evolution equation

du(t)/dt (t) u(t)=0 , 0<t\leqq T -

there exists a fundamental solution having some suitable properties.
Finally we note that the nonlinear version of the results of this paper

appeared in [7].

2. Statement of results

Let X be a complex Banach space. We use the notations C^{m}([0, T];X) ,
C^{m}((0, T];X) to denote the set of functions with values in X which are m
times continuously differentiate in [0, T] , (0, T] respectively. If X is the
set of complex numbers, we simply denote them by C^{m}([0, T]) , C^{m}((0, T]) .
For an operator A its domain and range are denoted by D(A) and R(A)
respectively.

Let A(t) be a closed, densely defined linear operator such that -A(t)
generates an analytic semigroup in X for each t\in[0, T] . We need the
following assumptions :

(A) \{A(t), 0\leqq t\leqq T\} satisfies the conditions listed in [3] or [4] or [5].
Hence the resolvent set of A(t) contains a fixed closed sector \Sigma=\{\lambda:\theta\leqq

arg \lambda\leqq 2\pi-\theta} where \theta is some angle with 0<\theta<\pi/2 , and there exists a
positive constant C such that

||(\lambda-A(t))^{-1}||\leqq C/|\lambda|

for any t\in[0, T] and \lambda\in\Sigma . The fundamental solution U_{0}(t, s) to the evolu-
tion equation
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du(t)/dt (t) u(t)=0 . 0<t\leqq T ,

exists, and has the following properties:
(i) U_{0}(t, s) is differentiate in t\in(s, T] for any 0\leqq s<T, R(U_{0}(t, sj)\subset

D(A(t)) for 0\leqq s<t\leqq T,\cdot and for some positive constant C the following
inequality holds :

||(\partial/\partial t)U_{0}(t, s)||=||A(t)U_{0}(t, s)||\leqq C/(t-s)

(ii) If u_{0} is an arbitrary element of X and f(t) is a H\"older continuous
function in [s, T] , 0\leqq s<T,\cdot with values in X, then

u(t)=U_{0}(t, s)u_{0}+ \int_{s}^{t}U_{0}(t, \tau)f(\tau)d\tau

is the unique solution of the initial value problem

du (t)/dt+A(t)u(t)=f(t) , s<t\leqq T ,

u(s)=u_{0} .

We shall consider the integral equation

u(t)+ \int_{0}^{t}h(t-\tau)A(\tau)u(\tau)d\tau=k(t)1 0\leqq t\leqq T , (2. 1)

where h is a given scalar function, k is a given function with values in X.
Concerning h and k we need the following assumptions which are the same
as those of [2] :

(H) h(0)>0 , h\in C^{1}([0, T]) , \dot{h} is absolutely continuous in [0, T] and
\ddot{h}\in L^{p}(0, T) for some p>1 .

(K) k\in C^{1}([0, T] ; X) and b.
\cdot

is uniformly H\"older continuous, i . e .
||\dot{k}(t)-\dot{k}(s)||\leqq c|t-s|^{\beta}

for t, s\in[0, T] where c, \beta are positive constants, and \beta\leqq 1 .
Throughout the paper we suppose that the assumptions (A), (H), (K) hold.
We also consider the fundamental solution of (2. 1) which is an operator

valued function W(t, s) satisfying

W(t, s)+ \int_{s}^{t}h(t-\tau)A(\tau)W(\tau, s)d\tau=Il (2. 2)

Let r be the solution of
h(0)^{-1}\dot{h}(t)+h(0)r(t)+(\dot{h}*r)(t)=0 (2. 3)

where
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( \dot{h}*r)(t)=\int_{0}^{t}\dot{h}(t-s)r(s)ds .

From (H) it follows that r is absolutely continuous and \dot{r}\in L^{p}(0, T) . As is
easily seen

h(0)^{-1}h(t)+(h*r)(t)=1 , (2. 4)

h(0)^{-1}\dot{h}(t)+r(0)h(t)+(h*\dot{r})(t)=01 (2. 5)

Following the a_{l}rgument of Crandall\cdot Nohel[1] , pp. 315-317, the equations
(2. 1) and (2. 2) are transformed to

du(t)/dt (0) A(t)u(t)=(Gu)(t)j u(0)=k(0) (2. 6)

where

(Gu) (t)=\dot{k}(t)+h(0)(r*\dot{k})(t)+h(0)r(t)k(0)

-h(0)r(0)u(t)-h(0)(u*\dot{r})(t) ,

and
(\partial/\partial t)W(t, s)+h(0)A(t)W(t, s)

=h(0)r(t-s)-h(0)r(0)W(t, s) (2. 7)

-h(0) \int_{s}^{t}\dot{r}(t-\tau)W(\tau, s)d\tau , W(s, s)=I

respectively.

THEOREM 1. Let u be a function belonging to C([0, T];X)\cap C^{1}((0, T] ;
X) such that u(t)\in D(A(t)) for t>0 and A(t)u(t) is continuous in (0, T] .
If u is the solution of (2. 6), then for \epsilon>0\int_{\epsilon}^{t}h(t-s)A(s)u(s)ds is uniformly

bounded and converges to k(t)-u(t) as \epsilonarrow 0 uniformly in any closed subset
of (0, T] . Conversely if the last statement is true and u(0)=k(0), then u is

the solution of (2. 6). In this case \int_{\text{\’{e}}}^{t}\dot{h}(t-s)A(s)u(s)ds is uniformly bounded

when \epsilon>0 ,

\int_{0}^{t}\dot{h}(t-s)A(s)u(s)ds=\lim_{\text{\’{e}}\downarrow\epsilon}\int_{\epsilon}^{t}\dot{h}(t-s)A(s)u(s)ds_{\nwarrow}

exists, and the following equality holds:

\dot{u}(t)+h(0)A(t)u(t)+\int_{0}^{t}\dot{h}(t-s)A(s)u(s)ds=\dot{k}(t) . (2. 8)

THEOREM 2. The solution W(t, s) of (2. 7) exists under the assumptions
(A), (H). There exists a positive constant C such that for 0\leqq s<t\leqq T
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|| \frac{\partial}{\partial t}W(t, s)||\leqq\frac{C}{t-s} , ||A(t)W(t, s)|| \leqq\frac{C}{t-s} . (2. 9)

For 0\leqq s<t\leqq T the imporper integral

\int_{0}^{t}h(t-\tau)A(\tau)W(\tau, s)d\tau

(2. 10)
= \lim_{\text{\’{e}}\downarrow 0}\int_{s+\text{\’{e}}}^{t}h(t-\tau)A(\tau)W(\tau, s)d\tau

exists and (2. 2) holds.

THEOREM 3. Let u be the function defifined by

u(t)=W(t, 0)k(0)+ \int_{0}^{t}W(t, s)\dot{k}(s)ds . (2. 11)

Then u\in C([0, T] ; X)\cap C^{1}((0, T] ; X), u(t)\in D(A(t)) for t>0 and A(t)u(t)
is continuous in (0, T] . The improper integral

\int_{0}^{t}h(t-\tau)A(\tau)u(\tau)d\tau=h.m\int_{8}^{t}\epsilon\downarrow 0h(t-\tau)A(\tau)u(\tau\rangle d\tau

exists and (2. 1) holds.

THEOREM 4. If u is a function satisfying the conditions of Theorem
1. Then (2. 11) holds. Hence the solution of (2. 1) or (2. 6) is unique.

Finally we consider the regularity property as was discussed in [6].
Let \{M_{k}\} be a sequence of positive numbers such that for some positive

constants d_{0}, d_{1} , d_{2}

M_{k+1}\leqq d_{0}^{k}M_{k} for k\geqq 0 ,

(\begin{array}{l}kj\end{array}) M_{k-f}M_{j}\leqq d_{1}M_{k} for 0\leqq j\leqq k ,

M_{k}\leqq M_{k+1} for k\geqq 0 ,

M_{j+k}\leqq d_{2}^{j+k}M_{j}M_{k} for j\geqq 0 , k\geqq 0

The set of scalar valued or X valued functions v which are infinitely dif-
ferentiable in [0, T] and satisfy

||d^{n}v(t)/dt^{n}||\leqq C_{0}C^{n}M_{n} , 0\leqq t\leqq T, n=0,1,2, \cdots ,

for some constants C_{0}, C are denoted by G(\{M_{k}\}) or G(\{M_{k}\}, X) respectively.

THEOREM 5. Suppose that the following conditions are satisfified in
addition to (A), (H), (K) :
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(i) A(t)^{-1}, which is a bounded operator valued function in view of
the assumption (A), is infifinitely differentia te in [0, T] .

(ii) There exist constants K_{0} , K_{1} such that for all \lambda\in\Sigma, t\in[0, T] and
non-negative integers n

||( \frac{\partial}{\partial t})^{n}(\lambda-A(t))^{-1}||\leqq K_{0}K^{n}M_{n}/|\lambda|

(iii) k\in G(\{M_{k}\}) .
Then W(t, s) is infifinitely differentia te in 0\leqq s<t\leqq T and there exist positive
constants H_{0}, H such that for any non-negative integers n, m, l

||( \frac{\partial}{\partial t})^{n}(\frac{\partial}{\partial t}+\frac{\partial}{\partial s})^{m}(\frac{\partial}{\partial s})^{l}W(t, s)||

(2. 12)
\leqq H_{0}H^{n+rn+l}M_{n+m+l}(t-s)^{-n-l}

furthermore k\in G(\{M_{k}\}, X) , then the solution u(t) of (2. 1) is infifinitely

differentia te in (0, T] and there exist constants F_{0}, F such that for any
integer n\geqq 0

||d^{n}u(t)/dt^{n}||\leqq H_{0}H^{n}M_{n}||k(0)||t^{-n}+F_{0}F^{n}M_{n}t^{1-n} .

3. Proofs of Theorems 1, 2

Theorem 1 is established in essentially the same manner as Theorem
1 of [7] and the proof is omitted.

Let U(t, s) be the fundamental solution of the equation

du(t)/dt+h (0) A(t)U(t, s)=0 . (3. 1)

From the hypotheses (A), (H) there exists a constant C such that

\#\frac{\partial}{\partial t}U(t, s)||\leqq\frac{C}{t-s}, ||A(t)U(t, s)|| \leqq\frac{C}{t-s} (3. 2)

for 0\leqq s<t\leqq T. From (3. 2) it follows that

||U(t, s)-U( \tau, s)||\leqq\frac{C}{\rho}(\frac{t-\tau}{t-s})^{\rho} (3. 3)

for any 0\leqq s<\tau<t\leqq T and 0<\rho\leqq 1 .
The equation (2. 7) is further transformed to the integral equation

W(t, s)=U(t, s)

+h(0) \int_{s}^{t}U(t, \tau)\{r(\tau-s)-r(0)W(\tau, s)-\int_{s}^{\tau}\dot{r}(\tau-\sigma)W(\sigma, s)d\sigma\}d\tau .
(3. 4)
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The equation (3. 4) can be solved by successive approximation, and we define
W(t, s) as the solution of this integral equation. It is clear that W(t, s) is
strongly continuous in 0\leqq s\leqq t\leqq T, and hence it is uniformly bounded. From
(3. 3) and (3. 4) it follows that

||W(t, s)-

\leqq C\{

W(\tau, s)||

\frac{1}{\rho}(\frac{t-\tau}{t-s})^{\rho}+t-\tau+\frac{1}{\rho(1-\rho)}(t-\tau)^{\rho}(t-s)^{1-\rho}\} .
(3. 5)

The following lemma will be needed in the proof of the present theorem.
Lemma 3. 1. For any \rho with 0<\rho<1-1/p, there exists a constant C_{\rho}

such that

|| \int_{s}^{t}\dot{r}(t-\sigma)W(\sigma, s)d\sigma-\int_{s}^{\tau}\dot{r}(\tau-\sigma)W(\sigma, s)d\sigma\#

(3. 6)
\leqq C_{\rho}(t-\tau)^{\rho}’. 0\leqq\tau<t\leqq T

p_{R}
. oOF . The left member of (3. 6)

=|| \int_{0}^{t-s}\dot{r}(\sigma)W(t-\sigma, s) d \sigma-\int_{0}^{\tau-s}\dot{r}(\sigma)W(\tau-\sigma, s)d\sigma||

\leqq\int_{\tau-S}^{t-s}||\dot{r}(\sigma)W(t-\sigma, s)||d\sigma

+ \int_{0}^{\tau-s}|\dot{r}(\sigma)|||W(t-\sigma, s)-W(\tau-\sigma, s)||d\sigma=I+II

Since \dot{r}\in L^{p}(0, T)I\leqq C(t-\tau)^{1-1/p}||\dot{r}||_{L}p_{(0,T)} . With the aid of (3. 5) and some
elementary calculus it is easy to show

II \leqq C_{\rho}\{\frac{1}{\rho}(1-\rho p’)^{-1/p’}(t-\tau)^{\rho}(\tau-s)^{1/p’-\rho}||\dot{r}||_{L^{p_{(0.TJ}}}

+(t- \tau)||\dot{r}||_{L^{1}(0,T)}+\frac{1}{\rho(1-\rho)}(t-\tau^{\backslash \rho},(\tau-s)^{1-\rho}||\dot{r}||_{L^{1}(0,T)\}1}

Thus the proof of the lemma is complete.
Now we return to the proof of Theorem 2. Using (3. 5), Lemma 3. 1

and some well known argument on parabolic evolution equations we see that
W(t, s) is differentiate in t in the interval (s, T] , R(W(t, s))\subset D(A(t)) for

t>s, and (2. 9) holds.
Let 0\leqq s<t\leqq T and 0<\epsilon<t-s . In view of (2. 7)

\int_{s\dagger*}^{t^{\vee}}-\cdot h(t-\tau)A(\tau)W(\tau, s)d\tau=\int_{s+*}^{t}h(t-\tau)\{

- \int_{s}^{\tau}\dot{r}(\tau-\sigma)W(\sigma, s)d\sigma-\frac{1}{h(0)}\frac{\partial}{\partial\tau}W

r(\tau-s)-r(0)W(\tau, s)

(3. 7)
(\tau, s)\}d\tau .
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By integration by parts

\int_{s+*}^{t}h(t-\tau)\frac{\partial}{\partial\tau}W(\tau, s)d\tau

=h(0)W(t, s)-h(t-s- \epsilon)W(s+\epsilon, s)+\int_{s+\text{\’{e}}}^{t}\dot{h}(t-\tau)W(\tau, s)d_{T1}

Substituting this to (3. 7) and letting \epsilonarrow 0 we get

\lim_{\epsilonarrow 0}\int_{s+\epsilon}^{t}h(t-\tau)A(\tau)W(\tau, s)d\tau

=(h*r)(t-s)-r(0) \int_{s}^{t}h(t-\tau)W(\tau, s)d\tau

- \int_{s}^{t}(h*\dot{r})(t-\sigma)W(\sigma, s) da-W(t,s)

+ \frac{1}{h(0)}h(t-s)-\frac{1}{h(0)}\int_{s}^{t}\dot{h}(t-\tau)W(\tau, s)d\tau .

In view of (2. 4) and (2. 5) the right member of this equality is equaL to

I-r(0) \int_{s}^{t}h(t-\tau)W(\tau, s)d\tau

+ \int_{s}^{t}\{\frac{1}{h(0)}\dot{h}(t-\sigma)+r(0)h(t-\sigma)\}W(\sigma, s)d\sigma

-W(t, s)- \frac{1}{h(0)}\int_{s}^{t}\dot{h}(t-\tau)W(\tau, s)d\tau=I-W(t, s)

Thus the proof of Theorem 2 is complete.

4. Proofs of Theorems 3, 4

PROOF OF THEOREM 3. Let u(t) be the function defined by (2. 10).
With the aid of (3. 4) and some elementary calculus we get

\int_{0}^{t}W(t, s)\dot{k}(s)ds=\int_{0}^{t}U(t, \tau)f(\tau)d\tau , (4. 1)

where

f( \tau)=\dot{k}(\tau)+h(0)(r*\dot{k})(\tau)-h(0)r(0)\int_{0}^{\tau}W(\tau s)\hslash(s)ds

(4. 2)
-h(0) \int_{0}^{\tau}\int_{s}^{\tau}\dot{r}(\tau-\sigma)W(\sigma, s)d\sigma\dot{b}(s)d_{S1}

Since f(\tau) is bounded and continuous, it follows from (3. 3) that the right
member of (4. 1) is H\"older continuous. Combining this with the assumption
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(K) we see that f(\tau) is H\"older continuous. Hence in view of the assumption
(A) the left member of (4. 1) is differentiable and

\frac{\partial}{\partial t}\int_{0}^{t}W(t, s)\dot{k}(s)ds+A(t)\int_{0}^{t}W(t, s)\dot{k}(s)ds=f(t)

In view of (2. 7) and (4. 3) we get

A(t)u(t)= \{r(t)-r(0)W(t, 0)-\int_{0}^{t}\dot{r}(t-\sigma)W(\sigma, 0)d\sigma

- \frac{1}{h(0)}\frac{\partial}{\partial t}W(t, 0)\}k(0)+\frac{1}{h(0)}\dot{k}(t)+(r*\dot{k})(t)

-r(0) \int_{0}^{t}W(t, s)\dot{k}(s)ds-\int_{0}^{t}\int_{s}^{t}\dot{r}(t-\sigma)W(\sigma, s)d\sigma\dot{k}(s)ds

- \frac{1}{h(0)}\frac{\partial}{\partial t}\int_{0}^{t}W(t, s)\dot{k}(s)ds .

Following the argument by which we derived (2. 10) from (3. 7) we can
establish without difficulty

u(t)+ \lim_{\epsilon\downarrow 0}\int_{e}^{t}h(t-\tau)A(\tau)u(\tau)d\tau=k(t)f

PROOF 0F THEOREM 4. Formally differentiating both sides of (3. 4) with
respect to s we get

\frac{\partial}{\partial s}W(t, s)+\int_{s}^{t}h(t-\tau)A(\tau)\frac{\partial}{\partial s}W(\tau, s)d\tau=h(t-s)A(s) ( (4. 4)

Considering (\partial/\partial s)W(t, s) as an unknown function in (4. 4) and taking Theorem
2 into consideration we get

\frac{\partial}{\partial s}W(t, s)=h(0)W(t, s)A(s)+\int_{0}^{t}W(t, \tau)\dot{h}(\tau-s)A(s)d\tau .

Thus

\frac{\partial}{\partial s}(W(t, s)u(s))=\frac{\partial}{\partial s}W(t, s)\cdot u(s)+W(t, s)\dot{u}(s)

=h(0)W(t, s)A(s)u(s)+ \int_{s}^{t}W(t, \tau)\dot{h}(\tau-s)A(s)u(s)d\tau (4. 5)

+W(t, s)\dot{u}(s) ,

or equivalently

W(t, s’)u(s’)-W(t, s)u(s)=h(0) \int_{s}^{s’}W(t, \sigma)A(\sigma)\dot{u}(\sigma) da
(4. 6)

+ \int_{s}^{s’}\int_{0}^{t}W(t, \tau)\dot{h}(\tau-\sigma)A(\sigma)\dot{u}(\sigma)d\tau d\sigma+\int_{s}^{s’}W(t, \sigma)\dot{u}(\sigma)d\sigma
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for 0\leqq s<s’\leqq t . This formal ca1cu1atio^{}n is justified by using the Yosida
approximation of A(t) to establish (4. 6) and we see that (4. 5) is valid under
our present assumptions. Substituting (2. 8) in the last term of (4. 5) we get

\frac{\partial}{\partial t}(W(t, s)u(s))

= \int_{s}^{t}W(t, \tau)\dot{h}(\tau-s)A(s)u(s)ds (4. 7)

-. W(t, s) \int_{0}^{s}\dot{h}(s-\tau)A(\tau)u(\tau)d\tau+W(t, s)\dot{k}(s)

Integrating both sides of (4. 7) over [\epsilon, t] and applying Fubini theorem to
the integral of the first term of the right member we get

u(t)-W(t, \epsilon)u(\epsilon)

= \int_{\epsilon}^{t}W(t, s)\{\int_{\epsilon}^{s}\dot{h}(s-\sigma)A(\sigma)u(\sigma)d\sigma

- \int_{0}^{s}\dot{h}(s-\sigma)A(\sigma)u(\sigma)d\sigma\}ds+\int_{*}^{t}W(t, s)\dot{b}(s)dst

Letting \epsilonarrow 0 and using Theorem 1 we obtain

u(t)-W(t, 0)u(0)= \int_{0}^{t}W(t, s)\dot{b}(s)ds

to complete the proof of the theorem.
PROOF op THEOREM 5. It follows from (3. 4) that

W(t, s)=W_{0}(t, s)- \int_{s}^{t}V(t, \tau)W(\tau, s)d\tau

where

W_{0}(t, s)=U(t, s)+h(0) \int_{s}^{t}U(t, \tau)r(\tau-s)d\tau ,

V(t, s)=h(0)r(0)U(t, s)+h(0) \int_{s}^{t}U(t, \tau)\dot{r}(\tau-s)d\tau .
It is easy to show that r\in G(\{M_{k}\}) . Hence using Lemma 3. 2and Theorem
3. 2 of [6] we can show that the same type of estimates as (2. 12) hold for
the derivatives of W_{0}(t, s) and V(t, s) . Using the argument of the proofs of
Theorems 3. 1 and 3. 2 of [6] we can verify (2. 12). The remaining part
of the theorem is the same as that of Theorem 3. 3 of [6].
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