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Period-additivity and multistability in piecewise smooth systems

Hunseok Kang and Ah Reum Lee

(Received December 4, 2013)

Abstract. Piecewise smooth systems have been consistently considered and investi-

gated in nonlinear dynamics due to their practical applications. In this paper, we study

a generic type of piecewise smooth dynamical system to deal with period-additivity

and multistability in the system; an arithmetic sequence of periodic attractors appear-

ing in the period-adding bifurcation and the coexistence of multiple attractors in the

system. We state a physical observation of the phenomena and then provide rigorous

mathematical arguments and numerical simulations.
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1. Introduction

Bifurcation and stability have attracted constant attention and interest
in dynamical systems. In this paper, we perform bifurcation analysis and
examine stability to understand the dynamics of a generic type of piecewise
smooth dynamical system. It is well-known that maps that are piecewise
smooth and depend smoothly on a parameter possess rich and interesting
dynamics, and in particular, such maps exhibit various kinds of bifurcation
phenomena such as border-collision in the phase space. See [5], [6]. The
systems are applicable to represent adequate mathematical models for many
processes in science and engineering fields. They arise naturally in physical
systems including grazing impacting systems in mechanical oscillators [4],
piecewise linear electronic circuits [5], [8], and cardiac dynamics [7].

The purpose of the research is to explore period additivity and multista-
bility in piecewise smooth systems. We consider a two-dimensional piecewise
smooth system in which a linear map is continuously combined with a non-
linear map. For such a system, the phase space can be divided into two
regions where the dynamics in each region is different from each other but
are nonetheless smooth, and a border that separates the two regions. We
shall investigate its dynamics properties which are involved in bifurcation
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and stability. As a parameter in the system increases, the periods of the
stable periodic attractors follow an arithmetic increasing sequence. This
phenomenon is usually called an arithmetic period-adding bifurcation. On
the other hand, multistability is characterized by the coexistence of multi-
ple attractors, and it is common in nonlinear dynamical systems. In such
a case, starting the system from a different initial condition can result in a
completely different asymptotic state.

In Section 2, we describe the system model to be considered in this paper
and give a linear analysis of the system. To find the underlying arithmetic
rule among the periods, in Section 3, we investigate the dynamical mecha-
nism of arithmetic period-adding bifurcation for specific parameter settings.
In Section 4, we look into the existence and appearance of multistability
rigorously. Conclusions are given in Section 5.

2. System Description

We define a piecewise smooth dynamical system Fµ with one border and
two smooth regions which is induced by two-dimensional maps H and Lµ

as follows:

(xk+1, yk+1) = Fµ(xk, yk) =

{
H(xk, yk) if xk ≤ µ,

Lµ(xk, yk) if xk > µ,
(1)

where

H(x, y) = (a− x2 + by, x),

Lµ(x, y) = (a + cx + by − (µ + c)µ, dx + (1− d)µ),
(2)

and a, b, c, d and µ are system constants. The system (1) was firstly
introduced in [6] for the research of border-collision bifurcation [6]. It is
characterized by nondifferentiability on the border, i.e., two distinct one-
sided derivatives on the border, which result in various kinds of bifurcation
phenomena in the dynamics. See [1], [3], [6].

The system (1) is composed of two distinct two-dimensional maps; one
is nonlinear and the other is linear. Obviously, H(µ, y) = Lµ(µ, y) for all y,
and thus, Fµ is continuous everywhere. The system Fµ may possess at most
three fixed points. One of them is obtained from Lµ(x, y) = (x, y)
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(xLµ
, yLµ

) =
(

µ2 − (b− bd− c)µ− a

bd + c− 1
,
dµ2 − (1− c− d)µ− ad

bd + c− 1

)
,

and the other two are from H(x, y) = (x, y)

(
x±H , y±H

)
=

(
b− 1±

√
(b− 1)2 + 4a

2
,
b− 1±

√
(b− 1)2 + 4a

2

)
,

We propose the criteria for determining stabilities of the system at the three
fixed points above. The following results are straight-forwardly calculated.
See [3] for details.

Proposition 1 (a) If the inequality −1 < bd < 1 − |c| holds, then the
fixed point (xLµ , yLµ) is a sink for Lµ if exists.

(b) If the inequalities

|b| < 1 and
∣∣∣∣

4a

(b− 1)2
− 1

∣∣∣∣ < 2 (3)

hold, then the fixed point (x+
H , y+

H) is a sink for H whereas the other
fixed point (x−H , y−H) is a saddle for H if exist.

Finally, we consider a particular value µ0 for the border x = µ of the
system, that is,

µ0 =
b− 1 +

√
(b− 1)2 + 4a

2
. (4)

Then it makes the following relation:

(xLµ
, yLµ

) =
(
x+

H , y+
H

)
if and only if µ = µ0.

From now on, we fix µ = µ0 so that both of the maps H and Lµ have the
same fixed point on the border, which is

(xLµ
, yLµ

) =
(
x+

H , y+
H

)
= (µ0, µ0).
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3. Additivity of periodicity

In this section, we probe mathematical properties of the system Fµ in
(1) focusing on its periodic attractors when µ = µ0. We shall ascertain
that, as the parameter c increases while other parameters are fixed, periodic
attractors are continuously created, one of them is terminated before another
is created, and their periodicity follows an arithmetic sequence. To verify
these, we examine the following:

1. the existence and stabilities of periodic orbits;
2. the way of the periodic attractors being arranged.

In order to provide a detailed mathematical arguments illustrating such
phenomena, we assign the following values to the parameters:

a = 1.5, b = −0.9, d = 1.0, (5)

and c is varied as a bifurcation parameter. The value µ0 given in (4) is
µ0 = 0.6. As assumed in Section 2, the border µ = µ0 = 0.6 is fixed so the
system to be considered is as follows:

(xn+1, yn+1) =

{
(1.5− x2

n − 0.9yn, xn) if xn ≤ 0.6,

(1.5 + cxn − 0.9yn − 0.6(c + 0.6), xn) if xn > 0.6.
(6)

Here, the parameters’ values are selected so as to avoid some undesirable
cases where round-off errors of irrationals for µ0 in numerical computations
result in some critical fallacies.

In addition, we restrict our attention to the period-n orbits which are
obtained from the equations

L(i−1)
µ ◦H ◦ L(n−i)

µ (x, y) = (x, y), (7)

for i = 1, 2, . . . , n, which are quadratic. Each equation in (7) makes two
distinct solutions. Clearly, one of them is the fixed point. We denote the
fixed point by P∗, i.e., P∗ := (0.6, 0.6), and the other solution by (p(i)

n , q
(i)
n ).

The inequalities

p(i)
n ≥ µ0 and p(n)

n ≤ µ0, (8)
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for i = 1, 2, . . . , n−1, guarantee that {(p(i)
n , q

(i)
n ) : i = 1, 2, . . . , n} exists as a

period-n orbit by the definition given in (1). A straight-forward calculation
indicates that neither Hn(x, y) = (x, y) nor Ln

µ(x, y) = (x, y) provide any
period-n orbit in the system for n ≥ 2.

3.1. Fixed point
Using Proposition 1(a), one can find an interval K such that for each

c ∈ K the fixed point P∗ is a sink for both H and Lµ if exists;

K := (−1 + b, 1− b) = (−1.9, 1.9). (9)

In addition, the inequality in Proposition 1(b) holds under the values of
parameters in (5). Thus, for each c ∈ K, the fixed point P∗ is a sink for
both Lµ and H. From now on, we only deal with the case where c ∈ K.

3.2. Period-2 attractor
From Eq. (7) at n = 2, we obtain a set P2 of two points

P2 =
{(

p
(i)
2 , q

(i)
2

)∣∣i = 1, 2
}
,

where

p
(1)
2 = q

(2)
2 = µ0 − 19δ2(c),

p
(2)
2 = q

(1)
2 = µ0 − 10cδ2(c),

and

δ2(c) =
120c + 361

1000c2
.

However, for any c ∈ K, at least one of the values p
(1)
2 and p

(2)
2 does not

satisfy the inequalities in (8), where K is given in (9). This means that the
set P2 cannot be selected as a period-2 orbit of the system Fµ, and hence,
there is no period-2 orbit when c ∈ K.

3.3. Period-3 attractor
From Eq. (7) at n = 3, we obtain a set P3 of three points

P3 =
{(

p
(i)
3 , q

(i)
3

)∣∣i = 1, 2, 3
}
,
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where

p
(1)
3 = q

(2)
3 = µ0 − (90c + 100)δ3(c),

p
(2)
3 = q

(3)
3 = µ0 − (100c + 81)δ3(c),

p
(3)
3 = q

(1)
3 = µ0 − (100c2 − 90)δ3(c),

and

δ3(c) =
1200c2 + 1800c + 649

1000(10c2 − 9)2
. (10)

Plugging p
(1)
3 , p

(2)
3 and p

(3)
3 into the inequalities in (8), we find an interval

I3 ⊂ K so that for c ∈ I3 the set P3 is accepted as a period-3 orbit. It is a
closed interval I3 = [c(1)

3 , c
(2)
3 ], where

c
(1)
3 = − 81

100
and c

(2)
3 = −3

4
+
√

78
60

≈ −0.6028.

This means that for each c ∈ I3 there exists a period-3 orbit of Fµ, which is
P3.

We show that the period-3 orbit P3 is attracting. Let D(H ◦L2
µ) be the

Jacobian matrix of the map H ◦ L2
µ. The characteristic polynomial χ3 of

D(H ◦ L2
µ) at (p(1)

3 , q
(1)
3 ) is

χ3(λ) = λ2 −
(

6
5
c2 +

9
5
c +

1189
500

)
λ +

729
1000

.

For each c ∈ (c(1)
3 , c

(2)
3 ), one can confirm that

χ3(−1) > 0, χ′3(−1) < 0, χ3(1) > 0, χ′3(1) > 0 and 0 < χ3(0) < 1.

This implies that D(H ◦ L2
µ) at (p(1)

3 , q
(1)
3 ) has two eigenvalues whose mag-

nitudes are less than 1. Hence, P3 is a period-3 attractor for the system Fµ

with H ◦ L2
µ.

On the other hand, the characteristic polynomial χ̄3 of D(H ◦L2
µ) at P∗

is
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χ̄3(λ) = λ2 +
(

6
5
c2 +

9
5
c− 27

25

)
λ +

729
1000

.

It is easy to show that for each c ∈ (c(1)
3 , c

(2)
3 ) the inequality

χ̄3(−1) · χ̄3(1) < 0

holds. Thus, the fixed point P∗ is a saddle for the maps Li−1
µ ◦ H ◦ L3−i

µ

(i = 1, 2, 3). For this reason, P∗ loses the stability and becomes unstable.
This phenomenon is called a dangerous border-collision bifurcation. See [1],
[2] for details.

3.4. Period-4 attractor
From Eq. (7) at n = 4, we obtain a set P4 of four points

P4 =
{(

p
(i)
4 , q

(i)
4

) ∣∣ i = 1, 2, 3, 4
}
,

where

p
(1)
4 = q

(2)
4 = µ0 − (900c2 + 190)δ4(c),

p
(2)
4 = q

(3)
4 = µ0 − 1810cδ4(c),

p
(3)
4 = q

(4)
4 = µ0 − (1000c2 − 171)δ4(c),

p
(4)
4 = q

(1)
4 = µ0 − (1000c3 − 1800c)δ4(c),

where

δ4(c) =
12000c3 + 18000c2 − 21600c + 361

400000c2(5c2 − 9)2
.

Plugging p
(1)
4 , p

(2)
4 , p

(3)
4 and p

(4)
4 into the inequalities in (8), we find an

interval I4 ⊂ K so that for c ∈ I4 the set P4 is valid as a period-4 orbit. It
is a closed interval I4 = [c(1)

4 , c
(2)
4 ], where

c
(1)
4 =

√
171
1000

≈ 0.4135 and c
(2)
4 ≈ 0.7744,
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and c
(2)
4 is the largest root of the equation δ4(c) = 0. Thus, for each c ∈ I4,

there exists a period-4 orbit of Fµ, which is P4.
We show that the period-4 orbit P4 is attracting. Let D(H ◦L3

µ) be the
Jacobian matrix of the map H ◦ L3

µ. The characteristic polynomial χ4 of

D(H ◦ L3
µ) at (p(1)

4 , q
(1)
4 ) is

χ4(λ) = λ2 −
(

6
5
c3 +

9
5
c2 − 54

25
c +

8461
5000

)
λ +

6561
10000

.

For each c ∈ (c(1)
4 , c

(2)
4 ), one can confirm that

χ4(−1) > 0, χ′4(−1) < 0, χ4(1) > 0, χ′4(1) > 0, and 0 < χ4(0) < 1.

This implies that D(H ◦ L3
µ) at (p(1)

4 , q
(1)
4 ) has two eigenvalues whose mag-

nitudes are less than 1. Hence, P4 is a period-4 attractor for the system Fµ

with H ◦ L3
µ.

On the other hand, the characteristic polynomial χ̄4 of D(H ◦L3
µ) at P∗

is

χ̄4(λ) = λ2 +
(

6
5
c3 +

9
5
c2 − 54

25
c− 81

50

)
λ +

6561
10000

.

It is easy to show that for each c ∈ (c(1)
4 , c

(2)
4 ), the inequality

χ̄4(−1) · χ̄4(1) < 0

holds. Thus, the fixed point P∗ is a saddle for Li−1
µ ◦H ◦L4−i

µ (i = 1, 2, 3, 4).
Thus, similarly, P∗ loses the stability and becomes unstable.

3.5. Arithmetic sequence of periodicity
Using the same argument described in Section 3.3 and 3.4, one can

continue to find periodic attractors. A period-n orbit Pn is composed of the
solutions to the equations Li

µ ◦ H ◦ Ln−i
µ (x, y) = (x, y) (i = 1, 2, . . . , n) as

follows:

Pn =
{(

p(i)
n , q(i)

n

) ∣∣ i = 1, 2, . . . , n
}
.

Applying the inequalities (8), one can find the closed interval In satisfying
the following properties:
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Figure 1. Period-adding bifurcation at a = 1.542, b = −0.97, and d = 1. c is the
leading bifurcation parameter, and it varies from −1.97 to 1.97.

1. for each c ∈ In, the set Pn is valid as a period-n attractor of Fµ;
2. as c ∈ K increases, the periodic attractors Pn appear in succession;
3. the periodicity of the newly created periodic attractor increases by 1 as

c increases.

One can also figure out how the stability at the fixed point P∗ changes as c

varies:

1. for each c ∈ K \ ⋃
In, the fixed point P∗ is a sink for Fµ (See Section

3.1.);
2. for each c ∈ In, the stability at the fixed point is dominated by the saddles

generated by Li
µ ◦H ◦ Ln−i

µ (i = 1, 2, . . . , n), but not determined by Lµ

nor by H;
3. as c ∈ K increases, the appearance and disappearance of dangerous

border-collision bifurcation repeat, and thus, the stability at the fixed
point changes accordingly.

Figure 1 exhibits a bifurcation diagram related to the period-additivity.

4. Multiple attractors

Multistability, as characterized by the coexistence of multiple attrac-
tors, is common in nonlinear dynamical systems. In this case, starting the
system from a different initial condition can result in a completely differ-
ent asymptotic state. We work on the multistability of the system, which
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means, for each n ≥ 3, there exists a subinterval Jn ⊂ In such that for each
c ∈ Jn the system possesses a fixed point attractor as well as a period-n
attractor.

Considering the case n = 3, we study the mechanism of how the multiple
attractors are formulated so as to confirm the coexistence of the period-3
attractor P3 with the fixed point attractor P∗. In Section 3.3, we have seen
that Li−1

µ ◦H ◦ L3−i
µ (i = 1, 2, 3) generates P3 but neither H3 nor L3

µ can
provide any period-3 orbit. Thus, we examine whether Hi−1 ◦ Lµ ◦ H3−i

(i = 1, 2, 3) create any period-3 orbit. The solutions to the equations Hi−1 ◦
Lµ ◦H3−i(x, y) = (x, y) constitute a set P̃3:

P̃3 =
{(

p̃
(i)
3 , q̃

(i)
3

) ∣∣ i = 1, 2, 3
}
,

where

p̃
(1)
3 = q̃

(2)
3 =

3
√

α

100c
+

13(4c2 + 7c + 3)
c 3
√

α
− 3 + c

5c

p̃
(2)
3 = q̃

(3)
3 =

1
9c + 10

(
237
50

+
27c

5
+

81
10

p̃
(1)
3 − 10

(
p̃
(1)
3

)2
)

p̃
(3)
3 = q̃

(1)
3 =

1
9c + 10

(
57
5

+ 9c− 9p̃
(1)
3 − 10c

(
p̃
(1)
3

)2
)

,

and

α = −500
(
250c3 + 1040.1c2 + 1279c + 486

−
√
−(6172c4 + 16318c3 + 14284.79c2 + 4158c + 10.8)(9c + 10)2

)
.

The set P̃3 is valid as a period-3 orbit of Fµ if the following inequalities
hold:

p̃
(1)
3 ≥ µ0, p̃

(2)
3 ≤ µ0, and p̃

(3)
3 ≤ µ0. (11)

A closed interval J3 = [−81/100,−431/540] is obtained from the inequalities
(11). This means, for each c ∈ J3, the system Fµ has a period-3 orbit P̃3,
which is different from P3.

The stabilities of Fµ at P̃3 and P∗ are given as follows. Let D(H2 ◦Lµ)
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be the Jacobian matrix of H2 ◦ Lµ. The characteristic polynomial η3 of
D(H2 ◦ Lµ) at (p̃(1)

3 , q̃
(1)
3 ) is

η3(λ) = λ2 +
(

4c
(
p̃
(3)
3

)2 +
18
5

p̃
(3)
3 − 9c

10

)
λ +

729
1000

.

For each c ∈ J3, the inequality η3(−1)η3(1) < 0 holds. Thus, the period-3
orbit P̃3 is a saddle orbit for the map H2 ◦ Lµ, and hence, P̃3 is unstable.

On the other hands, the characteristic polynomial η̄3 of D(H2 ◦ Lµ) at
P∗ is

η̄3(λ) = λ2 +
(

27
50

c +
54
25

)
λ +

729
1000

.

For each c ∈ J3, one can confirm that

η̄3(−1) > 0, η̄′3(−1) < 0, η̄3(1) > 0, η̄′3(1) > 0 and 0 < η̄3(0) < 1.

This implies that D(H2 ◦ Lµ) at P∗ has two eigenvalues whose magnitudes
are less than 1. Hence, the fixed point P∗ is a sink for the system Fµ with
H2 ◦ Lµ.

In Section 3.3, it is shown that for c ∈ I3 the fixed point P∗ loses the
stability due to the maps Li−1

µ ◦ H ◦ L3−i
µ (i = 1, 2, 3). In this section,

it is seen that for c ∈ J3 ⊂ I3, the stability at P∗ is recovered by the
maps Hi−1 ◦Lµ ◦H3−i (i = 1, 2, 3). This can be confirmed by observing the
stable and unstable manifolds of P∗ by Hi−1◦Lµ◦H3−i and Li−1

µ ◦H ◦L3−i
µ ,

respectively. Therefore, for each c ∈ J3, there exist two attractors: the fixed
point attractor P∗ and the period-3 attractor P3. Figure 2 illustrates this
situation.

In this way, one can continue to find the multistability for the period-n
orbit for each n ≥ 3, and eventually, reach to the following conclusions.

1. Every period-n attractor begins with a multistability. For each n ≥ 3
there exists an interval Jn ⊂ In such that for each c ∈ Jn the system
Fµ possesses two attractors simultaneously: the fixed point attractor P∗

and the period-n attractor Pn.
2. Each multistability starts at the moment of the occurrence of saddle-node

bifurcation and ends up with the disappearance of the attracting fixed
point due to the occurrence of dangerous border-collision bifurcation.



138 H. Kang and A. R. Lee

Figure 2. Stabilities of periodic attractors and fixed point for c ∈ I3 = [c1, c5].
Multistability appears when c ∈ J3 = (c1, c3). As c reaches from c1 to c3, the

period-3 saddle orbit P̃3 is merged with the sink P∗, and so, Fµ loses the stability
at P∗ and multistability ends when c = c3. In contrast, as c reaches to c5 from
c3, the period-3 attractor P3 is merged with the saddle P∗, and so, Fµ recovers
the stability at P∗.

5. Conclusion

Nonsmooth dynamical systems arise commonly in physical and engineer-
ing applications and they permit behaviors that usually find no counterparts
in smooth systems. One of the common examples of multistability is KAM
islands in a Hamiltonian system.

Piecewise smooth dynamical systems are of particular interest in physi-
cal and engineering fields. We have discussed the problem of period-adding
bifurcation and multistability in the system which have not been observed
in smooth systems. We have provided physical analysis and mathematical
arguments to establish our finding. For the period-adding bifurcation, we
have shown that as a leading parameter in the system increases, the periods
of the newly created periodic attractors follows an arithmetic sequence. In
addition, we have identified the saddle-node bifurcation as the mechanism
to create another periodic attractors in the presence of an existing periodic
one which produces multistability.
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