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A remark on the Navier-Stokes flow with bounded initial data

having a special structure
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Abstract. The Navier-Stokes equations with bounded initial data admit unique

local-in-time smooth mild solutions. It is shown that the solution can be extended

globally-in-time, if the initial velocity has a special structure. Thanks to the struc-

ture, the annihilation of the pressure occurs, and then the mild solution is a solution

to the viscous Burgers equations. By the maximum principle, it is derived an a priori

bound for velocity, uniformly in time and space.
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1. Introduction

We consider the Navier-Stokes equations in Rn with n ∈ N and n ≥ 2,
which describe the motion of incompressible viscous fluids:





ut −∆u + (u,∇)u +∇p = 0, x ∈ Rn, t > 0,

∇ · u = 0, x ∈ Rn, t > 0,

u|t=0 = u0, x ∈ Rn.

(NS)

Here u = (u1, . . . , un) = (u1(x, t), . . . , un(x, t)) and p = p(x, t) denote the
velocity and pressure of fluids, respectively. This Cauchy problem is called
(NS) throughout this paper. Notations of derivatives are as follows: ut :=
∂tu := ∂u/∂t, ∂j := ∂/∂xj for j = 1, . . . , n, ∆ :=

∑n
j=1 ∂2

j and ∇ :=
(∂1, . . . , ∂n). For vectors a = (a1, . . . , an) and b = (b1, . . . , bn), we denote by
a · b = (a, b) :=

∑n
j=1 ajbj . The problem is to determine a pair of a solution

(u, p) to (NS), uniquely from the initial velocity u0 := (u1
0(x), . . . , un

0 (x)).
We deal with bounded, solenoidal and non-small initial data.

It is well known by e.g. [6] that (NS) admits a local-in-time mild solution
when u0 ∈ L∞σ (Rn) for n ≥ 2. The definition of function spaces is given in
Section 3, as well as mild solutions. The mild solution is constructed by a
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successive approximation in C(0, T∗;L∞σ ). The mild solution u is unique, as
long as u exists. Moreover, the mild solution is smooth, which was shown
by e.g. [8]. Once we construct a smooth mild solution, a pair (u, p) satisfies
(NS) in the classical sense, provided the pressure

p =
n∑

i,j=1

RiRju
iuj (1.1)

is chosen. This strategy was developed by Fujita and Kato [2].
Furthermore, in [6] the existence time of the mild solution is estimated

from below as T∗ ≥ C‖u0‖−2
∞ with some positive constant C depending only

on n. When n = 2, one can extend the mild solution globally-in-time by [7]
as follows. One can apply the maximum principle (see Lemma 3.1 below)
for the vorticity ω to the 2-D vorticity equation to derive a priori bounds as
‖ω(t)‖∞ ≤ ‖ω0‖∞ for t > 0. This leads us to a priori bounds for velocity:

‖u(t)‖∞ ≤ C‖u0‖∞ exp{C‖ω0‖∞t} for t > 0, (1.2)

provided ω0 ∈ L∞. For the details, see e.g. [12].
When n ≥ 3, the existence of unique global-in-time smooth solutions to

(NS) is a famous open problem. In general, it is not known whether a priori
bounds like (1.2) can be derived. In this paper, we treat the initial velocity
u0 having the following special structure:

u0(x) =
(
a, u2

0(x1), u3
0(x1, x2), . . . , un

0 (x1, . . . , xn−1)
)

(1.3)

with some constant a and bounded functions uk
0 of variables x1, . . . , xk−1.

They satisfy the compatibility condition, i.e., ∇·u0 = 0 holds for all x ∈ Rn.
These initial data appear in [11] with n = 3 and a = 0 for proving the ill-
posedness theorem of (NS) in Ḃ−1

∞,∞(R3).
The purpose of this paper is to establish the existence theory of a unique

global-in-time smooth mild solution to (NS) with initial velocity of the form
(1.3). We see that the mild solution u has the same structure to u0, i.e.,

u(x, t) =
(
a, u2(x1, t), u3(x1, x2, t), . . . , un(x1, . . . , xn−1, t)

)
. (1.4)

Thanks to (1.4), the annihilation of the pressure given by (1.1) occurs. So,
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our mild solution satisfies the vector valued viscous Burgers equations. We
apply the maximum principle to derive the uniform in time and space a
priori bound:

‖u(t)‖∞ ≤ ‖u0‖∞ (1.5)

for t > 0. Obviously, (1.5) is a better estimate than (1.2).

2. Main Results

In this section we state the main results.

Theorem 2.1 Let n ≥ 2. Let u0 ∈ L∞(Rn) be of the form (1.3). Then
there exists a unique global-in-time smooth mild solution u in C(0,∞;L∞σ )
satisfying (1.5) for t > 0.

We restrict ourself that the solution treated here is a mild solution,
only. In general, the uniqueness of classical solutions does not hold in the
framework of L∞. In fact, for g ∈ C1([0, T ))n and for c ∈ R, a pair u(t) =
g(t) and p(t) = −g′(t) · x + c satisfies (NS) for t ∈ (0, T ) with u0 = g(0).
Nevertheless, the mild solution is uniquely determined by u0 = g(0) as
u(t) = u0. The uniqueness of such solutions in L∞-framework was studied
by [5], [10].

It is not known whether the similar theorem holds for the boundary
value problem. Even local-in-time solvability is not known except for the
half space [13]. Recently, the analyticity of the Stokes semigroup in L∞ type
spaces is established by [1]. A similar solution which is not a mild solution
for the boundary value problem in the half space is often called a Poiseuille
flow; see e.g. [4].

3. Maximum Principle

This section is devoted to the definition of function spaces, the notion
of a mild solution and the maximum principle.

We first define function spaces. Let L∞(Rn) be the space of all bounded
functions on Rn with a norm ‖f‖∞ := ess.supx∈Rn |f(x)|. Let L∞σ be the
solenoidal subspace of L∞; we sometimes omit the notation (Rn), if no
confusion occurs, likely. Also, we do not distinguish vector valued and scalar
functions as well as function spaces. Let BMO be the space of all bounded
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mean oscillation functions. Let C(0, T ;X) be the space of all continuous
functions on (0, T ) with value in X. Since L∞ and BMO are subspaces of
S ′, all calculation can be justified in the tempered distribution sense.

Let u be called a mild solution if it satisfies the integral equation:

u(t) = et∆u0 −
∫ t

0

e(t−s)∆P(u(s),∇)u(s)ds, (INT)

where et∆ := Gt∗ stands for the solution operator of the heat equation,
Gt(x) := (1/(4πt)n/2 exp{−|x|2/4t} is the Gauss kernel. The Helmholtz
projection onto solenoidal subspace denotes P, which is the matrix operator
whose ij-component is given by δij+RiRj . Here δij is Kronecker’s delta, and
Ri := ∂i(−∆)−1/2 denotes the Riesz transform. Note that Ri is a bounded
operator from L∞ to BMO, and from BMO to BMO. Thus, (1.1) makes
BMO sense, if u is bounded. A mild solution is constructed as the limit
of successive approximation in C(0, T∗;L∞σ ) when u0 ∈ L∞σ : let us define
{uj}∞j=1 by

u1(t) := et∆u0 and uj+1(t) := u1(t)− B(uj) for j ∈ N,

B(uj) := B(uj)(t) :=
∫ t

0

e(t−s)∆P(uj(s),∇)uj(s)ds.

We now recall the maximum principle for solutions to the equations:

{
vt −∆v + (w,∇)v = 0, x ∈ Rn, t > 0,

v|t=0 = v0, x ∈ Rn.
(P)

Here w is some function. Note that (P) is the Cauchy problem of the vector
valued viscous Burgers equations, provided w := v ∈ Rn. Also, (P) is
equivalent to the 2-D vorticity equation, provided v := ω := ∂1u

2−∂2u
1 ∈ R

and w := u ∈ R2. However, the 3-D vorticity equations are not of this type.

Lemma 3.1 Let v0 ∈ L∞(Rn), and let v, w ∈ C(0,∞;L∞). Assume that
v is a smooth solution to (P). Then ‖v(t)‖∞ ≤ ‖v0‖∞ for t > 0.

The maximum principle of this type was originally developed by Oleinik
in [9]. The parabolicity of (P) is not needed, i.e., the terms ∆v is removable.
Since this lemma is precisely proved by [3, Theorem 2.3.8], we skip its proof.
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4. Proof

We shall give a proof of Theorem 2.1. The following property is essential.

Proposition 4.1 Let n ≥ 2 and T ∈ (0,∞]. Assume that u0 ∈ L∞(Rn)
is of the form (1.3). Let u ∈ C(0, T ;L∞σ ) be a mild solution. Then p given
by (1.1) vanishes.

Proof of Proposition 4.1. In what follows, we argue an induction with re-
spect to n. Let us start at n = 2. Let ∆k :=

∑k
i=1 ∂2

i for k = 1, . . . , n− 1.

n = 2. Since et∆ = et∂2
1 et∂2

2 and et∂2
j a = a, we see that the first approxi-

mation

u1(x, t) = et∆u0(x) =
(
a, et∆1u2

0(x1)
)

=
(
a, u2

1(x1, t)
)
.

If a = 0, then u1 is a mild solution. Indeed, B(u1) = 0, since (u1,∇)u1 = 0.
If a 6= 0, then we obtain that U1 := (u1,∇)u1 = (0, a∂1u

2
1(x1, t)). We

thus see that

B(u1) =
∫ t

0

e(t−s)∆U1(s)ds =
(

0,

∫ t

0

e(t−s)∆U2
1 (s)ds

)
=:

(
0, w2

2(x1, t)
)
.

Here PU1 = U1, since ∇ · U1 = 0. So, u2 = (a, u2
2(x1, t)) with u2

2 = u2
1 −w2

2.
We next compute u3. It has the same structure, i.e., U2 := (u2,∇)u2 =

(0, U2
2 (x1, t)), and then ∇ · U2 = 0. So, we see

B(u2) =
(

0,

∫ t

0

e(t−s)∆U2
2 (s)ds

)
=:

(
0, w2

3(x1, t)
)
.

This yields that u3 = (a, u2
3(x1, t)) with u2

3 = u2
1−w2

3. For j ≥ 2, uj has the
same structure (1.4). Therefore, (1.4) holds.

Note that Ri maps the constant (u1)2 = a2 to zero, and u2 is not a
function of x2, which heuristically imply

p =
2∑

i,j=1

RiRju
iuj = R1R1a

2 + 2aR1R2u
2 + R2

2(u
2)2

= 2a(−∆)−1∂1∂2u
2 + (−∆)−1∂2

2(u2)2 = 0. (4.1)
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These equalities hold in BMO sense; ∇p = 0 holds in L∞ sense.

n ≥ 3. We now check (1.4) for all n. Let n ≥ 3, and assume that (1.4)
holds for n− 1. We see that

u1(x, t) =
(
a, et∆1u2

0(x1), . . . , et∆n−1un
0 (x1, . . . , xn−1)

)

=
(
a, u2

1(x1, t), . . . , un
1 (x1, . . . , xn−1, t)

)
.

Note that u1
j = a, and that uk

j is a function of x1, . . . , xk−1 and t for all
j ∈ N and k = 2, . . . , n − 1, since uk

j is independent of un
` for all ` ∈ N by

the construction. Hence, it is enough to calculate the n-th component, only.
We have that Un

1 := (u1,∇)un
1 =

∑n−1
k=1 uk

1∂kun
1 is a function of x1, . . . , xn−1

and t, and then ∇ · U1 = 0. Via B(u1), we see that un
2 is a function of

x1, . . . , xn−1 and t. Analogously, for j ≥ 3, we see that

un
j = un

1 (t)−
∫ t

0

e(t−s)∆
n−1∑

k=1

uk
j−1(s)∂kun

j−1(s)ds

is a function of x1, . . . , xn−1 and t. The point is that P always disappears
in the bilinear terms. Therefore, the mild solution u is of the form (1.4).

Finally, we arrive at the fact that RiRju
iuj vanishes for any i and j,

provided u is of (1.4), since uiuj is not a function of xi∨j , where i ∨ j :=
max{i, j}. Hence, similarly to (4.1), we easily seek that p = 0 in BMO

sense. This completes the proof of Proposition 4.1. ¤

We are in a position to give the complete proof of our main results.

Proof of Theorem 2.1. Let u0 ∈ L∞(Rn) be of (1.3). As is shown by [6],
one can construct a unique local-in-time smooth mild solution u up to time
T∗, and T∗ ≥ C‖u0‖−2

∞ with some constant C. By Proposition 4.1, p van-
ishes, then u satisfies (P) with v = w := u. By Lemma 3.1, we have (1.5)
for t ∈ (0, T∗]. Taking ε ∈ (0, T∗), and let T1 := T∗ − ε be fixed, we see that
the mild solution u can be constructed from u(T1) regarded as the initial
velocity. Since ‖u(T1)‖∞ ≤ ‖u0‖∞, the mild solution is constructed at least
up to T1 + T∗ = 2T∗ − ε. Note that u(T1) is also of the form (1.3), then
Propostion 4.1 and Lemma 3.1 are applicable again. Thus, (1.5) holds for
t ∈ (0, T1 + T∗]. We may repeat this procedure to get the unique global-in-
time smooth mild solution u satisfying (1.5) for all t > 0. ¤
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Remark 4.2 (i) One can also prove Theorem 2.1 as follows. Firstly, we
construct a unique global-in-time smooth solution u in C(0,∞;L∞) to (P)
with w := v := u and v0 := u0 of (1.3), since one may solve the linear trans-
port equation (with the viscous term) in order, component-wisely. Secondly,
Lemma 3.1 produces (1.5) for t > 0. Thirdly, p of (1.1) vanishes by Proposi-
tion 4.1. Thanks to the uniqueness theorem of mild solutions by Kato [10],
u is the only one mild solution determined by u0. This method also works
on the Euler equations if the initial velocity u0 ∈ B1

∞,1.
(ii) The structure (1.3) is not a necessary condition to gain (1.5). Indeed,
n = 2, if u0(x) = (sin x2, sinx1), then u = u1 = (e−t sinx2, e

−t sinx1) is a
mild solution, and the pressure p = e−2t(cos x1) cos x2.
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