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Abstract. This paper deals with two analytic questions on a connected compact Lie

group G. i) Let a ∈ G and denote by γ the diffeomorphism of G given by γ(x) = ax

(left translation by a). We give necessary and sufficient conditions for the existence of

solutions of the cohomological equation f − f ◦ γ = g on the Fréchet space C∞(G) of

complex C∞ functions on G. ii) When G is the torus Tn, we compute explicitly the

distributions on Tn invariant by an affine automorphism γ, that is, γ(x) = A(x + a)

with A ∈ GL(n,Z) and a ∈ Tn. iii) We apply these results to describe the infinitesimal

deformations of some Lie foliations.
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0. Preliminaries

Let M be a manifold and γ a diffeomorphism of M . Usually, the couple
(M, γ) is called a discrete dynamical system. Natural question: What are the
geometric objects invariant under the action of γ? Formulated as such, this
question is far to be trivial. However one can answer it in special situations
for a given manifold if we specify the diffeomorphism γ and the nature of
the geometrical objects. It has been customary, in the theory of dynamical
systems, to seek an invariant measure. But this problem is very hard in
general. Instead of this, it is more easier to seek an invariant distribution.
This leads systematically to solving certain equations (called cohomological
equations) on the Fréchet space C∞(G) of complex C∞ functions on G.
Regardless of this, these equations constitute a theme currently booming.

The purpose of this paper is to answer these questions for some diffeo-
morphisms of a (connected) Lie group G: First, G is arbitrary compact and
γ is a translation and then, G is the torus Tn and γ is an affine automor-
phism.
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Let G be a connected compact Lie group of dimension n. We denote
by C∞(G) the space of complex C∞-functions on G equipped with the C∞-
topology. This topology can be defined as follows. Let {U1, . . . , Uk} be
an open cover of G such that, for each i ∈ {1, . . . , k}, there exists a C∞-
diffeomorphism φi : Rn −→ Ui. Let {ρ1, . . . , ρk} be a C∞-partition of 1 such
that the support (which is compact) of each ρi is contained in Ui. Then, if
f ∈ C∞(G), one may write f =

∑k
i=1 ρif .

For any s = (s1, . . . , sn) ∈ Nn, |s| = s1 + · · ·+ sn is the length of s; we
denote by Ds the differential operator:

∂|s|

∂xs1
1 . . . ∂xsn

n
.

Let i ∈ {1, . . . , k}; the function (ρif) ◦ φi : Rn −→ C is of class C∞ and
with compact support. For any r ∈ N, we set:

‖f‖r =
k∑

i=1

( ∑

|s|≤r

sup
u∈Rn

|Ds((ρif) ◦ φi)(u)|
)

.

It is easy to see that ‖ ‖r is a norm on C∞(G) and that the family {‖ ‖r}r≥0

defines the C∞-topology on C∞(G) which makes it a Fréchet space.
Let a ∈ G and γ be the analytic diffeomorphism x ∈ G 7−→ ax ∈ G (left

translation by a). Then γ acts on functions by composition: f ∈ C∞(G) 7−→
f ◦γ ∈ C∞(G). We say that f ∈ C∞(G) is γ-invariant if it satisfies f = f ◦γ;
the quantity f − f ◦γ is a measure of the ‘invariance defect’ of f ; it is called
a divergence of f for γ. The divergence functions generate a vector subspace
C of C∞(G). Its determination led to the problem:

Given g ∈ C∞(G), does there exists f ∈ C∞(G)
such that f − f ◦ γ = g? (1)

This consists exactly to the determination of the cokernel C∞(G)/C of the
continuous operator:

δ : f ∈ C∞(G) 7−→ (f − f ◦ γ) ∈ C∞(G).

This cokernel is the first cohomology vector space H1(Z, C∞(G)) of the
discrete group Z with coefficients in the Z-module C∞(G). The quotient
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C∞(G)/C, where C is the closure of C, is the first reduced cohomology vector
space of Z with coefficients in C∞(G); we denote it H

1
(Z, C∞(G)).

An element T of the topological dual of C∞(G) is a distribution on G.
(The evaluation of T on f ∈ C∞(G) will be denoted 〈T, f〉.) We say that T

is γ-invariant if, for any function f ∈ C∞(G), we have 〈T, f ◦ γ〉 = 〈T, f〉;
so it is a continuous linear functional C∞(G) −→ C which vanishes on the
subspace C. Then, the space Dγ(G) of γ-invariant distributions on G can
be identified to the topological dual of the quotient C∞(G)/C (and then the
dual of C∞(G)/C).

According to the different situations that arise, we will give some an-
swers to the following questions:

– Under what conditions the cohomological equation (1) admits solu-
tions?

– Determine the subspace C or, failing that, its closure C.
– Calculate the space Dγ(G) of distributions on G invariant under the

action of γ.

We begin with the torus Tn and a translation γ. It will be a decisive
step to solve the problem in the two situations: i) γ is a translation on
an arbitrary compact G; ii) G again is the torus Tn and γ is an affine
automorphism, that is, an element of the group Tn o GL(n,Z) (of affine
automorphisms of the Lie group Tn).

1. G is a torus

Let n ≥ 1 be an integer. The real vector space Rn will be equipped with
its usual scalar product 〈 , 〉 and the associated norm | · |. The torus Tn is
obtained as the quotient of Rn by its standard lattice Zn. A function on Tn

is just a function f : Rn −→ C satisfying the relation f(x + m) = f(x) for
any x ∈ Rn and any m ∈ Zn. For m ∈ Zn, we denote by Θm the function
Θm(x) = e2iπ〈m,x〉. If f is integrable, it admits a Fourier series expansion:

f(x) =
∑

m∈Zn

fmΘm(x)

where the complex numbers fm are its Fourier coefficients given by the
integral formula:



154 A. El Kacimi Alaoui and H. Hmili

fm =
∫

Tn

f(x)e−2iπ〈m,x〉dx.

If f is square integrable, the coefficients fm satisfy the condition∑
m∈Zn |fm|2 < +∞.

In the same way, any distribution T on Tn (viewed as a Zn-periodic
distribution on Rn) can be written:

T =
∑

m∈Zn

TmΘm

where the family of complex numbers Tm (indexed by m ∈ Zn) is of poly-
nomial growth, that is, there exists r ∈ N and a constant C > 0 such that
|Tm| ≤ C|m|r for any m ∈ Zn.

For any r ∈ N, we denote by W 1,r the space of functions f on Tn whose
Fourier coefficients (fm)m∈Zn satisfy the condition

∑
m∈Zn |m|r|fm| < +∞.

Similarly, W 2,r will be the space of functions f whose Fourier coefficients
(fm)m∈Zn satisfy the convergence condition

∑
m∈Zn |m|2r|fm|2 < +∞.

These are Banach spaces respectively for the norms:

‖f‖1,r = |f0|+
∑

m∈Zn\{0}
|m|r|fm| for f ∈ W 1,r

and:

‖f‖2,r =
√
|f0|2 +

∑

m∈Zn\{0}
|m|2r|fm|2 for f ∈ W 2,r.

W 2,r is the rth Sobolev space of the torus Tn; it has a Hilbert structure
given by the Hermitian product:

〈f, g〉r = f0g0 +
∑

m∈Zn\{0}
|m|2rfmgm.

We have natural inclusions:

C∞(Tn) ⊂ · · · ⊂ W 1,r+1 ⊂ W 1,r ⊂ · · · ⊂ W 1,0

and:
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C∞(Tn) ⊂ · · · ⊂ W 2,r+1 ⊂ W 2,r ⊂ · · · ⊂ W 2,0 = L2(Tn).

The following proposition is easy to establish.

Proposition 1.1 Let T =
∑

m∈Zn TmΘm be a series (where Tm are com-
plex numbers). Then the following assertions i), ii) and iii) are equivalent :

i) T is a regular distribution, that is, T is a C∞-function.
ii) For any r ∈ N, the series

∑
m∈Zn |m|2r|Tm|2 converges.

iii) For any r ∈ N, the series
∑

m∈Zn |m|r|Tm|convergenes.

The injections j1,r : W 1,r+1 ↪→ W 1,r and j2,r : W 2,r+1 ↪→ W 2,r are
compact operators.

The first three points of the proposition say:

⋂

r∈N
W 1,r =

⋂

r∈N
W 2,r = C∞(Tn).

Any vector a ∈ Rn defines a linear functional on Rn : x ∈ Rn 7−→
〈a, x〉 ∈ R and then on the lattice Zn.

Definition 1.2 ([Sc]) Let a = (a1, . . . , an) be a vector of Rn such that the
subgroup generated by its projection on Tn = Rn/Zn is dense in Tn. (This
implies in particular that the numbers 1, a1, . . . , an are linearly independent
over Q.)

i) We say that a is Diophantine if there exist real numbers C > 0 and
τ > 0 such that |1− e2iπ〈m,a〉| ≥ C/|m|τ for any nonzero m ∈ Zn.

ii) We say that a is Liouville vector if there exists C > 0 such that, for
any τ > 0, there exists mτ ∈ Zn satisfying |1− e2iπ〈m,a〉| ≤ C/|mτ |τ .

For instance, any vector a of Rn as in Definition 1.2 and for which the
components a1, . . . , an are algebraic numbers is Diophantine.

Indeed, by multiplying the components by a common denominator, one
may suppose that the ai are algebraic integers. Let Q[a1, . . . , an] be the
number field generated by a1, . . . , an. Denote by d the degree of the Galois
extension Q[a1, . . . , an] and G its Galois group. Let σi (i = 1, . . . , d) be
the different embeddings of Q[a1, . . . , an] in Q. For any m ∈ Zn \ {0}, the
product

∏
j σj(〈a,m〉) is a non zero algebraic integer invariant by G, then
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it is a non zero integer. This implies:
∣∣∣∣
∏

j

σj(〈a,m〉)
∣∣∣∣ ≥ 1.

Then, if σ1 = Id:

|〈a,m〉| ≥ 1∣∣∣ ∏
j≥2 σj(〈a,m〉)

∣∣∣
≥ C

|m|d−1

where C is a real positive constant.

Remark 1.3 The Diophantine condition is invariant under the action
of GL(n,Z), that is, if a is Diophantine, for any ξ ∈ GL(n,Z), ξ(a) is
Diophantine.

The proof is immediate. Let ξ∗ be the transpose of ξ and let C and τ be
the constants given by i) in Definition 1.2. For any m ∈ Zn different from
0, we have:

〈m, ξ(a)〉 = 〈ξ∗(m), a〉

≥ C

|ξ∗(m)|τ

≥ C

‖ξ∗‖τ
· 1
|m|τ .

This remark will justify what does ‘Diophantine condition’ mean for an
element a in an arbitrary compact Lie group considered in Theorem 2.5.

We define a continuous linear functional L : C∞(Tn) −→ C by L(g) =∫
Tn g(x)dx = g0 for any function g =

∑
m∈Zn gmΘm. One can interpret L

as an operator on C∞(Tn) which associates to each g the function L(g)1
where 1 is the constant function equal to 1; it is a compact operator because
its rank is finite (equal to 1). Its kernel N is closed and such that C∞(Tn) =
N ⊕C · 1. Denote by P the first projection C∞(Tn) = N ⊕C · 1 −→ N . It
satisfies P ⊕L = I (where I is the identity operator on C∞(Tn)). We have
the:

Theorem 1.4 Let γ be the diffeomorphism of Tn associated to a transla-
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tion by the vector a = (a1, . . . , an) where a1, . . . , an are linearly independent
over Q and the subgroup generated by a is dense in Tn.

i) Suppose a Diophantine. Then there exists a bounded operator
C∞(Tn) G−→ C∞(Tn) such that δG = I −L. Consequently, the equation
f − f ◦γ = g has a solution f ∈ C∞(Tn) if and only if, L(g) = 0. More-
over, the vector space H1(Z, C∞(Tn)) has dimension 1 and is generated
by the constant function 1.

ii) Suppose a is Liouville vector. Then, there exists an infinite family of
linearly independent functions g satisfying L(g) = 0 and such that the
equation f−f ◦γ = g has no solution. In this case, H1(Z, C∞(Tn)) is an
infinite dimensional and non Hausdorff topological vector space. But its
associted Hausdorff space H

1
(Z, C∞(Tn)) is one dimensional and also

generated by the constant function equal to 1.
In the two cases the space Dγ(Tn) of γ-invariant distributions has di-
mension 1 and is generated by the Haar measure dx = dx1 ⊗ · · · ⊗ dxn.

Proof. If we integrate both sides of the equation (1), the left gives 0. There-
fore a necessary condition for the existence of a solution is

∫
Tn g(x)dx = 0.

Suppose that it is filled. The Fourier expansions of the functions f and g:

f(x) =
∑

m∈Zn

fme2iπ〈x,m〉 and g(x) =
∑

m∈Zn

gme2iπ〈x,m〉

reduce the equation to the system:

(
1− e2iπ〈m,a〉)fm = gm with m ∈ Zn. (2)

The necessary condition
∫
Tn g(x)dx = 0 means in fact g0 = 0. We set:

fm =





0 if m = 0
gm

1− e2iπ〈m,a〉 if m 6= 0.
(3)

The function f is then formally given by its Fourier coefficients (fm)m∈Zn .
Let us study its regularity by using Proposition 1.1. Let r ∈ N.

i) a is Diophantine
We have:
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|m|2r|fm|2 = |m|2r

∣∣∣∣
gm

1− e2iπ〈m,a〉

∣∣∣∣
2

≤ 1
C2
|gm|2|m|2(r+τ).

Since g is C∞, the series
∑

m∈Zn |gm|2|m|2(r+τ) converges, then∑
m∈Zn |m|2r|fm|2 < +∞ which shows that f is C∞.

The image of the operator δ : C∞(Tn) −→ C∞(Tn) is exactly the
subspace N ; in fact the restriction of δ to N is an (algebraic and continuous)
isomorphism on N ; let G0 denote its inverse: to g in N we associate the
unique f in N which is the solution of the equation δf = g. We then set
G = G0P ; we verify easily that δG = I − L.

Let us show that G is bounded. It is sufficient to prove that G0 is. The
inequality (3) shows that, for any positive s, the operator:

G0 : g ∈ N ⊂ W 2,s+r 7−→ G0(g) = f ∈ C∞(Tn) ⊂ W 2,s

satisfies the inequality:

‖G0(g)‖2,s ≤ β‖g‖2,s+r

where r = 1+ (integral part of τ) and β is a positive real constant. This
proves that G0 is bounded.

The fact that the vector space H1(Z, C∞(Tn)) has dimension 1 and that
Dγ(Tn) is one dimensional generated by the n-form dx = dx1 ⊗ · · · ⊗ dxn is
immediate.

ii) a is Liouville
In this case, there exists C > 0 such that, for any τ ∈ N∗, there exists

mτ ∈ Zn satisfying:

∣∣1− e2iπ〈mτ ,a〉∣∣ ≤ C

|mτ |τ .

Let (τk)k be an increasing sequence in N∗; the corresponding mτk
will be

denoted mk. We define a function g by its Fourier coefficients:

gm =

{
|mk|−τk/2 if m = mk

0 if not.
(4)

The function g is of class C∞ and satisfies
∫
Tn g(x)dx = g0 = 0. But:



Cohomological equations and invariant distributions on a Lie group 159

|fmk
|2 =

∣∣∣∣
gmk

1− e2iπ〈m,a〉

∣∣∣∣
2

=
|mk|−τk

|1− e2iπ〈m,α〉|2

≥ 1
C2
|mk|τk .

Then the coefficients fm are not of polynomial growth and even cannot
define a distribution f which is solution of equation (1)! By this way, one
can construct an infinite family of linearly independent functions (g`)`∈N∗ of
class C∞ for which the equation (1) has no solution. Therefore the cokernel
of the operator δ : C∞(Tn) −→ C∞(Tn) is infinite dimensional.

If g is a trigonometric polynomial whose constant term g0 is zero, the
cohomological equation always has a solution: the problem of convergence
does not arise. Because the closure of the subspace algebraically generated
by these polynomials has codimension 1 (it is the orthogonal subspace of
the constant function 1), the image of the operator:

δ : C∞(Tn) −→ C∞(Tn)

is not closed, then H1(Z, C∞(Tn)) is not Hausdorff but its associated Haus-
dorff space H

1
(Z, C∞(Tn)) has dimension 1. This shows that the vector

space Dγ(Tn) has dimension 1 generated by the n-form dx = dx1⊗· · ·⊗dxn.
¤

The case where the subgroup generated by a is not dense in Tn was not
covered here but it will be contained in Theorem 2.5.

2. The general case

Let G be a compact connected Lie group. Let a ∈ G; so a generates an
Abelian subgroup Γ whose closure K is a compact Abelian subgroup of G.
Therefore:

(1) - The group K is finite if Γ is already closed in G. (In this case K = Γ.)
(2) - The group K is an extension of a torus Tn by a finite group Λ if the

subgroup Γ is not closed in G. The torus Tn is the connected component
of the identity element.
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We will consider only the case where Λ is the trivial group, that is, K

is a connected subgroup of G. A slight modification of our method may
probably permit to study the general situation, that is, Λ is nontrivial.

2.1. The group Γ is finite
The principal fibration Γ ↪→ G

π−→ B = G/K is then a covering with
group Γ over the compact manifold B. We have a map π∗ : C∞(G) −→
C∞(B) which is linear, continuous and surjective defined by:

π∗(f) =
∑

σ∈Γ

f ◦ σ. (5)

The kernel π∗ contains the subspace C whose elements are functions of the
form f − f ◦ γ. In fact, it was proved in [EMM] that the sequence:

0 −→ C ↪→ C∞(G) π∗−→ C∞(B) −→ 0 (6)

is exact. This clearly shows that the equation f − f ◦ γ = g has a solution
if and only if

∑
σ∈Γ g ◦ σ = 0.

2.2. The group Γ is infinite
In this situation Γ is not closed and is strictly contained in K. As we

have said, K is a torus Tn. Its left action on G defines a principal bundle:

Tn ↪→ G
π−→ B = G/Tn.

For example, if G = SO(3), γ is a 3 × 3-matrix and then it defines a
rotation with respect to an axis ∆ in R3. Any element of Γ is also a rotation
with axis ∆. Hence the group K is the cyclic group Z/pZ or the special
orthogonal group SO(2). In the latter case, the manifold B = G/K is the
sphere S2.

Let U1, . . . , Up be a cover of B by open sets all diffeomorphic to Rd

(where d is the dimension of B) and such that, if U is one of them, there
exists a diffeomorphism Ψ : π−1(U) −→ U × Tn which makes the following
diagram commutative:

π−1(U) Ψ //

π

²²

U × Tn

p1

²²
U

id // U.
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(p1 is the projection on the first factor.) The diffeomorphism Ψ can be
constructed as follows. Let σ : U −→ π−1(U) be a C∞ cross section of π;
we define Ψ−1 : U × Tn −→ π−1(U) by Ψ−1(u, x) = x · σ(u) where the sign
dot is the group multiplication on Tn.

Moreover there exists a continuous function u ∈ U
a7−→ a(u) =

(a1(u), . . . , an(u)) ∈ Tn with the a1(u), . . . , an(u) linearly independent over
Q and such that the action of Γ on the open set π−1(U) is equivalent (via
Ψ) to the action:

(u, x) ∈ U × Tn −→ (u, x + a(u)) ∈ U × Tn.

Remark 2.3 The element a(u) is independent of u. (We denote it a.)

This is a consequence of the choice of the trivialization of π over U and
the fact that the left action of γ on G commutes with its right action. Then,
the right translations on G are automorphisms of the action of K generated
by γ. In other words, the translation in each torus Fu = π−1(u) = Tn is
by the vector a. This will enable one to apply Theorem 1.4 in each fibre Fu

but independently of u ∈ B.

2.4.
We will put a topology on the space of functions f : G −→ C adapted

to this fibred structure and which permits the control of their regular-
ity. Let U be one of the open sets U1, . . . , Up and Ψ the associated triv-
ializing diffeomorphism. Let f : G −→ C be a measurable function.
The restriction of f to V = π−1(U) (via the diffeomorphism Ψ) can be
viewed as a function fU : U × Tn −→ C; then we can use the coordi-
nates (u, x) = (u1, . . . , ud, x1, . . . , xn). We suppose that f is square inte-
grable and we consider it as a distribution. Let us fix some notations. If
k = (k1, . . . , kd) ∈ Nd is a multi-index, we set:

( i ) ks = ks1
1 . . . ksd

d for any s = (s1, . . . , sd) ∈ Nd,
( ii ) |k| = k1 + · · ·+ kd (this is the length of k),
(iii) ∂|k|/∂uk = ∂|k|/∂uk1

1 . . . ∂ukd

d .

For fixed u ∈ B and multi-indices r ∈ Nd and s ∈ Nn, the distribution
∂|r|+|s|f/∂ur∂xs on Fu = π−1(u) = Tn admits a Fourier expansion:
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∂|r|+|s|f
∂ur∂xs

(u, x) =
∑

m∈Zn

∂|r|fm

∂ur
(u)(2iπ)|s|msΘm

Let r, s ∈ N and set:

‖f‖U
r,s =

( ∑

|r|≤r

∫

U

∣∣∣∣
∂|r|f0

∂ur
(u)

∣∣∣∣
2

du

+
∑

|r|≤r

∑

|s|≤s

∫

U

∑

m∈Zn\{0}
|m|2|s|

∣∣∣∣
∂|r|fm

∂ur
(u)

∣∣∣∣
2

du

)1/2

.

(Exceptionally here |m| denotes the Euclidean norm of the vector m ∈ Zn.)
Let L2(G) be the space of square integrable functions f : G −→ C. The
set of f ∈ L2(G) satisfying ‖f‖U

r,s < +∞ for any open set U of B and
trivializing the fibration π is a vector space W r,s(G) on which ‖ ‖U

r,s is a
norm. This norm is in fact associated to the Hermitian product:

〈f, g〉Ur,s =
∑

|r|≤r

∫

U

∂|r|f0

∂ur

∂|r|g0

∂ur
du

+
∑

|r|≤r

∑

|s|≤s

∫

U

∑

m∈Zn\{0}
|m|2|s| ∂

|r|fm

∂ur

∂|r|gm

∂ur
du.

Let us take again the cover of B by the open sets U1, . . . , Up; denote ‖ ‖Ui
r,s

by ‖ ‖i
r,s. A function f ∈ L2(G) is of class C∞ if and only if ‖f‖i

r,s < +∞
for any i = 1, . . . , p and all r, s ∈ N.

For any function f ∈ L2(G), let I(f) be the function on B defined by:

I(f)(u) =
∫

Tn

f(u, x1, . . . , xn)dx1 ⊗ · · · ⊗ dxn. (7)

It is easy to see (via Fubini’s theorem) that the function I(f) ∈ L2(B) and
that the map I : L2(G) −→ L2(B) is linear, continuous and surjective.
Moreover, it sends the space C∞(G) onto the space C∞(B).

Theorem 2.5 Let γ be the diffeomorphism of G associated to a transla-
tion. (The notations are the same as before.) Then:

i) If a is Diophantine, the equation f−f ◦γ = g has a solution f ∈ C∞(G)
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if and only if, I(g) = 0. In this case, the vector space H1(Z, C∞(G)) is
canonically isomorphic to the space C∞(B) of C∞-functions on B.

ii) Suppose a is Liouville. For each u ∈ B, there exists an infinite family
of linearly independent functions (g`)`∈N∗ in C∞(G) such that I(g`) = 0
and for which the cohomological equation f − f ◦ γ = g` has no solution
on the fibre Fu and then it has no solution on the group G.

In case ii), we can interpret improperly H1(Z, C∞(G)) as a space of
‘C∞-functions on B with values in H1(Z, C∞(Tn))’ even H1(Z, C∞(Tn)) is
non Hausdorff!

Proof. i) The proof of this point consists on two steps. First on each open
set Vi = π−1(Ui) diffeomorphic to a product Ui × Tn, and then globally on
the group G.

• We identify Vi to Ui × Tn. Using Fourier coefficients, the equation
f − f ◦ γ = g gives rise to the system:

(
1− e2iπ〈m,a〉)fm = gm for m ∈ Zn.

Then, a necessary condition for g to be of the form f−f ◦γ is g0 = 0, which
is just the condition I(g) = 0. Suppose it filled. Then we have a formal
solution:

fm(u) =





0 if m = 0

gm(u)
1− e2iπ〈m,a〉 if m 6= 0.

It is easy to prove that these Fourier coefficients define a C∞-function: It is
sufficient to verify that, for r, s ∈ N and i = 1, . . . , p, we have ‖f‖i

r,s < +∞.
• Let {ρi} be a partition of unity on B subordinated to the open cover

{Ui}. Then {ρi} where ρi = ρi ◦π is a partition of unity on G subordinated
to the cover {Vi} with ρi constant on the fibres of π. For each i = 1, . . . , p,
we denote by gi the restriction of g to the open set Vi; then gi is a function
of class C∞ on Vi satisfying the condition I(gi) = 0. As was shown above,
there exists a C∞-function fi on Vi which satisfies fi − fi ◦ γ = gi. Then
it is immediate to see that f =

∑p
i=1 ρifi is a C∞-function on G and is a

solution of the equation f − f ◦ γ = g.
ii) Let u ∈ B and ` ∈ N∗. We take g`

u = g the C∞-function on the torus
Tn = Fu constructed in point ii) in the proof of Theorem 1.4. Let ψ : B −→
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R+ be a function with support in a neighborhood W of u contained in a
trivializing open set of π and equal to 1 in a neighborhood W ′ ⊂ W of u.
Let ψ = ψ ◦π. Then ψ is a C∞-function on G equal to 1 on a neighborhood
of the fibre Fu = Tn; moreover, it is constant on the fibres of π. We set
g` = ψg`

u; this is a C∞-function on G such that I(g`) = 0 but which is not
a solution of the cohomological equation f − f ◦ γ = g`. By varying ` in N∗,
we obtain the desired sequence (g`)`. ¤

Remark 2.6 We have restricted our attention to compact Lie groups to
simplify the presentation. But the proofs can be adapted to any Lie group
G and almost without any change if, in addition, G is exponential.

2.7. What about continuous functions?
We have seen that the regularity of the solutions of the cohomological

equation (1) depends on the arithmetic nature of the vector a. What hap-
pens, instead of working on C∞(G), we consider the functions that are only
continuous? The situation is different. For instance, the following result
was proved in [MS]:

Let Cbv
0 (S1) be the Banach space of continuous functions with bounded

variation and which integrates to 0 on the circle G = S1. Let γ be an
irrational rotation of S1. Then, there exists a residual set R ⊂ Cbv

0 (S1) such
that, for any g ∈ R, there is no continuous function f on S1 satisfying the
cohomological equation f − f ◦ γ = g.

3. Affine automorphism of a torus Tn

In this section the group G will be the torus Tn = Rn/Zn and γ the
affine automorphism γ(x) = A(x+a) where A is a matrix in GL(n,Z), that
is, A is with integer coefficients and its determinant is equal to 1 or −1;
a = (a1, . . . , an) is an element of Tn (viewed as a vector of Rn).

3.1. Notations
We will fix few notations we shall use in this subsection. This will allow

us to work smoother and easier to understand the different steps of the
calculation.

The diffeomorphism γ is an affine automorphism of Tn whose direction
is given by the matrix A. Let A′ be the transpose of A and B the inverse
of A′. For any k ∈ Z, Bk will be the |k|th power of B if k ≥ 0 and of B−1
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if k < 0. We define the sequence of matrices (Sk) indexed by Z as follows:

{
S0 = 0

Sk+1 = SkB + I.
(8)

Such sequence is easy to construct by induction. We set:

a⊥ = {m ∈ Zn : 〈m, a〉 = 0} and FB = {m ∈ Zn : B(m) = m}.

Then a⊥ and FB are subgroups of Zn. From now on we will suppose that
the following hypothesis is satisfied:

The matrix B has no periodic vector m ∈ Zn of period q ∈ N \ {0, 1},
that is, no vector m ∈ Zn satisfies Bq(m) = m.

3.2.
An immediate computation shows that the action of γ on a function

f : Tn −→ C is given as follows:

f ◦ γ =
∑

m∈Zn

e2iπ〈A′(m),a〉fmΘA′(m) =
∑

m∈Zn

e2iπ〈m,a〉fB(m)Θm.

Then the cohomological equation (1) gives the system:

fm − e2iπ〈m,a〉fB(m) = gm pour m ∈ Zn. (9)

So it is easy to see that the kernel L of the operator δ is generated by Θm

with m varying in the subgroup a⊥ ∩ FB that is:

L =
{
f ∈ C∞(Tn) : fm = 0 for m /∈ a⊥ ∩ FB

}
. (10)

Clearly we have L ⊂ Ker(δ). Let us prove the inclusion Ker(δ) ⊂ L. Recall
that:

δ(f)m = fm − e2iπ〈m,a〉fB(m).

Thus if f ∈ Ker(δ) and if m ∈ FB\a⊥, then it is easy to deduce that fm = 0.
Consider the case where m /∈ FB . Then if δ(f) = 0, we have |fm| = |fB(m)|.
Thus nonvanishing of fm contradicts the rapid decrease of the coefficients
fm by Proposition 1.1. Finally Ker(δ) = L.
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A necessary condition for the equation (9) to admit a solution is then
gm = 0 for m in a⊥ ∩ FB . Let V be the subspace of C∞(Tn) defined by:

V =
{
f ∈ C∞(Tn) : fm = 0 for m ∈ a⊥ ∩ FB

}
.

The operator δ : C∞(Tn) −→ C∞(Tn) preserves each factor of the decom-
position:

C∞(Tn) = V ⊕ L. (11)

Indeed, the subspace L, being the kernel of δ, is of course left invariant by
δ. On the other hand, if f ∈ V , then fm = 0 for any m ∈ a⊥ ∩ FB . Since
B(m) = m, this implies δ(f)m = fm − e2iπ〈m,a〉fB(m) = fm − fm = 0,
showing that δ(f) ∈ V .

We can then restrict ourselves to the study of the operator δ on the
subspace V . For g ∈ V given, the system (9) has a priori two formal
solutions:

f+
m =





0 if m ∈ a⊥ ∩ FB

gm

1− e2iπ〈m,a〉 if m ∈ (a⊥)c ∩ FB

fm =
∞∑

k=0

e2iπ〈Sk(m),a〉gBk(m) if not.

(12)

or:

f−m =





0 if m ∈ a⊥ ∩ FB

gm

1− e2iπ〈m,a〉 if m ∈ (
a⊥

)c ∩ FB

fm = −
−∞∑

k=−1

e2iπ〈Sk(m),a〉gBk(m) if not.

(12′)

The injectivity of δ forces these two solutions to coincide, which then imposes
the condition:

∑

k∈Z
e2iπ〈Sk(m),a〉gBk(m) = 0.
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We will see that this condition does nothing but impose to γ-invariant dis-
tributions to be zero on the function g.

3.3.
We have already noted that the vanishing of the γ-invariant distributions

on a function g ∈ Tn is a necessary condition for the cohomological equation
(1) to admit a solution for the given g. So it seems natural to determine
such distributions. This is what we shall do in this subsection.

Let Σ0 be a subset of Zn containing one and only one element of each
orbit under the action of B on Zn \FB . We set Σ = (a⊥ ∩FB)∪ (Σ0 \FB).
For any m ∈ Σ, we denote by Tm the linear functional C∞(Tn) −→ C
defined by:

〈Tm, g〉 =





∫

Tn

Θm(x)g(x)dx = gm for m ∈ a⊥ ∩ FB

∑

k∈Z
e2iπ〈Sk(m),a〉gBk(m) for m ∈ Σ0 \ FB

(13)

where Θm(x) = e−2iπ〈m,x〉. An immediate computation shows that Tm is
continuous and verifies 〈Tm, f ◦ γ〉 = 〈Tm, f〉; so it is a γ-invariant distribu-
tion on Tn.

Before proceeding we give a concrete example on which we can see the
whole Σ and the nature of invariant distributions. We take n = 2. Let
a = (a1, 0) where a1 is a non rational real number in ]0, 1[ and A =

(
1 0
1 1

)
.

Then:

A′ =
(

1 1
0 1

)
, B =

(
1 −1
0 1

)
, and Bk =

(
1 −k
0 1

)
for k ∈ Z.

It is easy to see that:

a⊥ = {(0,m2) ∈ Z2 : m2 ∈ Z} and FB = {(m1, 0) ∈ Z2 : m1 ∈ Z}.

The matrix B acts on the lattice Z2. The equivalence of two elements
(m1,m2) and (m′

1,m
′
2) is given as follows: (m1, 0) ∼ (m′

1, 0) ⇐⇒ m1 = m′
1;

for m2 and m′
2, both of them different from 0:

(m1,m2) ∼ (m′
1,m

′
2) ⇐⇒ m2 = m′

2 and m1 −m′
1 ∈ m2Z.
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Points of the set Σ which indexes the invariant distributions: a⊥ ∩ FB

is reduced to (0, 0) and represents the only invariant measure which is

the Lebesgue measure dx1⊗dx2; points in appearance circled represent

the other invariant distributions (which are only of order 1).

Denote by Nm the kernel of Tm and by N the intersection of all Nm; N
is a closed subspace of C∞(Tn). Finally, we have all the ingredients needed
to show that, for a trigonometric polynomial g in the space N , the numbers
fm given by the expressions (12) or (12′) are the Fourier coefficients of a
function f of class C∞ solution of the equation δf = g. We have then proved
the:

Theorem 3.4 The closure of the image of the operator δ : C∞(Tn) −→
C∞(Tn) is equal to the subspace N . This shows that the first reduced coho-
mology topological vector space H

1
(Z, C∞(G)) is isomorphic to C∞(Tn)/N

and that the space Dγ of γ-invariant distributions is generated by the Tm.

4. Application to the deformations of some foliations

The vector space H1(Z, C∞(M)) associated to an action of the discrete
group Z on a compact manifold M via a diffeomorphism γ plays a funda-
mental role in the theory of deformations: it is related to the infinitesimal
deformations of γ in the diffeomorphism group Diff(M) of M and also to that
of the foliation obtained by suspension of γ. We shall apply our computa-
tions to describe such infinitesimal deformations in the case of a translation
on a non Abelian compact Lie G.
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4.1. Some definitions
• Recall that a foliation F of dimension m on a manifold N is given

by a subbundle τ of rank m of the tangent bundle TN which is completely
integrable, that is, for two arbitrary sections X, Y ∈ C∞(τ) of τ (vector
fields tangent to τ), the bracket [X, Y ] is also a section of τ . A connected
submanifold tangent to τ is called a leaf of F .

• Let N be a compact manifold of dimension m + n. For any x ∈ N ,
we denote Gx(N, n) the Grassmannian of planes of codimension n of TxN .
We obtain a locally trivial fibre bundle G(N, n) −→ N whose typical fibre
is the Grassmannian G(m + n, n) of the vector space Rm+n. A C∞-field (or
just a field) of m-planes on N is nothing but a section of G(M, n) −→ M .
Let τ be a field of m-planes and (τ1, . . . , τm) a basis of local sections of τ .
If X =

∑m
i=1 aiτi and Y =

∑m
j=1 bjτj are two local sections of τ , we have:

[X, Y ] =
m∑

i,j=1

aibj [τi, τj ] +
m∑

i,j=1

{
ai(τi · bj)τj − bj(τj · ai)τi

}
. (14)

In the quotient V = TN/τ , the value [X, Y ] at a point x ∈ N depends
only on the values of X and Y at this point and not on the values of their
derivatives. This gives rise to a 2-form Qτ : τ × τ −→ V whose value at
Xx and Yx is the class in the quotient Vx = TxN/τx of the vector [X, Y ]x.
By Frobenius theorem, the field of m-planes τ is integrable if and only if
the 2-form Qτ is identically zero. In this case, τ defines a foliation F of
codimension n on N .

The space C∞(G(N, n)) of C∞-sections of G(N, n) equipped with the
C∞-topology is a Fréchet manifold [Ham2]. The subset F(M, n) of foliations
of codimension n on N (“zero set of Q”) is closed; we equip it with the
induced topology.

• A deformation of F parameterized by an open neighborhood T of 0
in the Euclidean space Rd is a continuous map t ∈ T −→ Ft ∈ F(N, n) such
that F0 = F . The study of deformations of foliations is a very hard subject
in general. We shall focus our attention just on infinitesimal deformations
which are described exactly by the elements of the group H1

F (N,V) of foli-
ated cohomology with values in the normal bundle V = TN/TF which we
shall introduce below (for more details see [Ha1] or [EN]).

• For any r ∈ N, we denote Λr(T ∗F) the bundle of exterior algebras of
degree r over TF (tangent bundle to F). Its sections are the foliated forms
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of degree r; they form a vector space Ωr
F (N). We have an operator along

the leaves dF : Ωr
F (N) −→ Ωr+1

F (N) defined (as in the classical case) by the
formula:

dFα(X1, . . . , Xr+1) =
r+1∑

i=1

(−1)iXi · α(X1, . . . , X̂i, . . . , Xr+1)

+
∑

i<j

(−1)i+jα([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xr+1)

where X̂i means that the argument Xi is omitted. We easily verify that
d2
F = 0. So we obtain a differential complex (called the de Rham foliated

complex of F):

0 −→ Ω0
F (N) dF−→ Ω1

F (N) dF−→ · · · dF−→ Ωm−1
F (N) dF−→ Ωm

F (N) −→ 0. (15)

Let Zr
F (N) be the kernel of dF : Ωr

F (N) −→ Ωr+1
F (N) and Br

F (N) the image
of dF : Ωr−1

F (N) −→ Ωr
F (N). The quotient Hr

F (N) = Zr
F (N)/Br

F (N) is the
rth vector space of foliated cohomology of (N,F).

If X is a non singular vector field on N , it induces a foliation (or a
flow) F . One can define more simply its foliated cohomology. Let τ be
the tangent bundle to F and ν a complement of τ in TN . Let χ be the
differential 1-form such χ(X) = 1 and χ|ν = 0. Then it is easy to see that,
for any r ∈ N, we have:

Ωr
F (N) =





C∞(N) if r = 0

C∞(N)⊗ χ if r = 1

0 if r ≥ 2

and that the foliated complex is reduced to:

0 −→ Ω0
F (N) dX−→ Ω1

F (N) −→ 0 (16)

where dX is the operator defined by dXf = (X · f) ⊗ χ. Its cokernel
Ω1
F (N)/ImdX is exactly the first vector space H1

F (N) of foliated cohomology
of the foliation F . It depends only on the foliation, not on the vector field
X: one can easily verify, by exhibiting an explicit isomorphism of foliated
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complexes, that we obtain the same foliated cohomology if we consider the
vector field Z = hX with h any nonvanishing function. One can prove also
that it does not depend on the choice of the complement ν.

• By the definition of a foliation the normal bundle V is a foliated bundle,
that is, there exists an open cover {Ui}i trivializing the foliation and such
that the transition functions gij : Ui ∩ Uj −→ GL(n,R) which define V are
constant on the leaves. Then dF extends to an operator dF : Ωr

F (N,V) −→
Ωr+1
F (N,V) on the foliated forms with values in V. This permits to define

the foliated cohomology H∗
F (N,V) of (N,F) with values in V. The vector

space H1
F (N,V) contains exactly the infinitesimal deformations of F (see

[Ha1]); its study is fundamental in deformation theory.

4.2. The case of a suspension
Let M be a (connected) compact manifold and γ a diffeomorphism of

M . We denote by (x, t) the coordinates of a point z of Ñ = M × R and X̃

the vector field ∂
∂t ; X̃ is invariant by the diffeomorphism (x, t) ∈ M ×R 7−→

(γ(x), t + 1) ∈ M ×R and then induces a non singular vector field X on the
quotient manifold N = M ×R/(x, t) ' (γ(x), t + 1). The second projection
π̃ : Ñ = M × R −→ R is equivariant under the two actions of the group Z:
τk : t ∈ R −→ t+k ∈ R and (γk, τk) : (x, t) ∈ Ñ −→ (γk(x), t+k) ∈ Ñ ; this
means that, for any k ∈ Z, the following diagram is commutative:

Ñ
(γk,τk)//

eπ
²²

Ñ

eπ
²²

R
τk // R

So π̃ induces a submersion π : N −→ S1; it is a flat fibration with mon-
odromy γ. Let F be the flow (or foliation of dimension 1) defined by X;
we say that (N,F) is the suspension of (M, γ). The following result was
established in [DE]:

Theorem 4.3 The differential equation X ·f = g has a solution in C∞(N)
if, and only if, the cohomological equation K −K ◦ γ = Φ has a solution in
C∞(M) for the function Φ =

∫ 1

0
g(·, t)dt. Then the two topological vector

spaces H1
F (N) and H1(Z, C∞(M)) are canonically isomorphic.

We now have all the necessary ingredients that allow us to apply the
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results of the previous sections to deformations of certain foliations. Let G

be a compact connected Lie group of dimension n with Lie algebra G and γ

the diffeomorphism of G associated to a translation.

Theorem 4.4 Let F be the foliation obtained on N = G × R/(x, t) '
(γx, t + 1) by suspension of γ. Then, if γ is Diophantine, the topological
vector space H1

F (N,V) is isomorphic to the Fréchet space C∞(B)⊗G where
B is the homogeneous space B = G/K.

Proof. It simply consists to get into some assumptions statements of Sec-
tions 1, 2 and 3.

Let (X1, . . . , Xn) be a basis of G where the X1, . . . , Xn are left invariant
vector fields on G. The elements ω and α respectively of Ω0

F (N,V) and
Ω1
F (N,V) are of the form:

ω =
n∑

i=1

fi ⊗Xi and α =
n∑

j=1

gj ⊗ χ⊗Xj

where the fi and the gj are C∞-functions on N . The operator dF :
Ω0
F (N,V) −→ Ω1

F (N,V) can be written dFω =
∑n

i=1(X · fi) ⊗ χ ⊗ Xi.
Then, solving dFω = α is equivalent to solve the system:

X · fi = gi for i = 1, . . . , n

from which we deduce that H1
F (N,V) = H1

F (N) ⊗ G. The remaining part
of the proof results from Theorem 3.4 and Theorem 4.4. ¤

If G is non Abelian, the homogeneous space B is a manifold of positive
dimension. Then Theorem 4.5 shows that the vector space H1

F (N,V) is
infinite dimensional. This suggests that the deformations of the foliation F
abound.
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